Inhabitants of low-lying islands face increased threats due to climate change as a result of their higher exposure and lesser adaptive capacity. Sagar Island, the largest inhabited estuarine island of Sundarbans, is experiencing severe coastal erosion, frequent cyclones, flooding, storm surges, and breaching of embankments, resulting in land, livelihood, and property loss, and the displacement of people at a huge scale. The present study assessed climate change-induced vulnerability and risk for Sagar Island, India, using an integrated geostatistical and geoinformatics-based approach. Based on the IPCC AR5 framework, the proportion of variance of 26 exposure, hazard, sensitivity, and adaptive capacity parameters was measured and analyzed. The results showed that 19.5% of mouzas (administrative units of the island), with 15.33% of the population at the southern part of the island, i.e., Sibpur–Dhablat, Bankimnagar–Sumatinagar, and Beguakhali–Mahismari, are at high risk (0.70–0.80). It has been concluded that the island has undergone tremendous land system transformations and changes in climatic patterns. Therefore, there is a need to formulate comprehensive adaptation strategies at the policy- and decision-making levels to help the communities of this island deal with the adverse impacts of climate change. The findings of this study will help adaptation strategies based on site-specific information and sustainable management for the marginalized populations living in similar islands worldwide.
Peer-reviewed publication