
Academic Editors: Yuanwei Qin,

Wei Cao and Jun Zhai

Received: 17 December 2024

Revised: 9 January 2025

Accepted: 22 January 2025

Published: 24 January 2025

Citation: Nyamtseren, M.; Pham, T.D.;

Vu, T.T.P.; Navaandorj, I.; Shoyama, K.

Mapping Vegetation Changes in

Mongolian Grasslands (1990–2024)

Using Landsat Data and Advanced

Machine Learning Algorithm. Remote

Sens. 2025, 17, 400. https://doi.org/

10.3390/rs17030400

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Mapping Vegetation Changes in Mongolian Grasslands
(1990–2024) Using Landsat Data and Advanced Machine
Learning Algorithm
Mandakh Nyamtseren 1, Tien Dat Pham 2,3,* , Thuy Thi Phuong Vu 4, Itgelt Navaandorj 1 and Kikuko Shoyama 5

1 Institute of Geography-Geoecology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia;
n.mandakh@gmail.com (M.N.); itgelt0203@gmail.com (I.N.)

2 School of Natural Sciences, Faculty of Science and Engineering, Macquarie University,
Sydney, NSW 2109, Australia

3 Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
4 Forest Inventory and Planning Institute (FIPI), Ministry of Agricultural and Rural Development (MARD),

Vinh Quynh, Thanh Tri, Hanoi 100000, Vietnam; vuphuongthuyfipi@gmail.com
5 College of Agriculture, Ibaraki University, Ami 300-0393, Japan; kikuko.shoyama.sx68@vc.ibaraki.ac.jp
* Correspondence: tiendat.pham@mq.edu.au or dat.pham@westernsydney.edu.au

Abstract: Grassland ecosystems provide a range of services in semi-arid and arid regions.
However, they have significantly declined due to overgrazing and desertification. In the
current study, we employed Landsat time series data (TM, OLI, OLI-2) spanning from
1990 to 2024, combined with vegetation indices such as NDVI and SAVI, along with
NDWI and digital elevation models (DEMs), to analyze land cover dynamics in the Ugii
Lake watershed area, Mongolia. By integrating multisource remote sensing data into the
advanced XGBoost (extreme gradient boosting) machine learning algorithm, we achieved
high classification accuracy, with overall accuracies exceeding 94% and Kappa coefficients
greater than 0.92. The results revealed a decline in montane grasslands (−6.2%) and
an increase in other grassland types, suggesting ecosystem redistribution influenced by
climatic and anthropogenic factors. Cropland exhibited resilience, recovering from a
significant decline in the 1990s to moderate growth by 2024. Our findings highlight the
stability of barren land and underscore pressures from ecological degradation and human
activities. This study provides up-to-date statistical data to support decision-making in
the conservation and sustainable management of grassland ecosystems in Mongolia under
changing climatic conditions.

Keywords: grassland; remote sensing; Landsat; XGBoost; Mongolia; vegetation change

1. Introduction
Mongolia is considered a country with limited water resources, and the Government

of Mongolia has prioritized the conservation, protection, and sustainable management of
vegetations through laws, programs, and the implementation of an international obliga-
tion. Mongolian vegetation, particularly grassland ecosystems, provides valuable socio-
economic and ecosystem resources for communities and native wildlife. These ecosystems
play an important role as potential carbon sinks, contributing to the mitigation of global
climate change [1].

In recent decades, Mongolian grasslands have been intensively utilized for livestock
grazing, resulting in land degradation [2,3]. Another driver of land degradation is desertifi-
cation, which has been exacerbated by climate change [4]. Grasslands across the country
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have significantly declined [5], resulting in reduced livestock yields, increased economic
losses, increased vulnerabilities, and reduced living standards for rural communities [6].
In response, Mongolia has implemented significant policy measures, including sustainable
grazing practices through rotational grazing systems and restrictions on overgrazing in sen-
sitive areas. Large-scale land restoration programs, such as the Green Belt Initiative, focus
on the reforestation and rehabilitation of degraded lands, supported by international collab-
orations, including the United Nations Convention to Combat Desertification (UNCCD) [7].
These efforts highlight the urgency of employing monitoring tools using Earth observations
to track vegetation dynamics and inform effective policy interventions. Addressing these
issues requires comprehensive, up-to-date vegetation databases to support sustainable
land management.

Earth observations have been widely used for mapping vegetation, using vari-
ous multispectral sensors, such as MODIS [8–10], Landsat TM, ETM+, OLI [11–14],
Sentinel-2 [15–17], and PlanetScope [18], as well as synthetic aperture radar (SAR) sen-
sors such as Sentinel-1 C-band [19,20]. SAR data are dependent on cloud cover and
vegetation canopy. However, Sentinel-1 temporal data were not available before 2015, and
their short wavelength is often sensitive to certain grassland types, making it challenging to
distinguish them from forest and crop types [20]. On the other hand, optical sensors have
been proven to be suitable for effectively mapping and monitoring vegetation changes in
semi-arid and arid lands, as they offer lower costs and easier repeatability and cover wider
areas [9,21]. The literature review shows that the methods used to map and detect decadal
changes in drylands are diverse, ranging from those based on the Normalized Difference
Vegetation Index (NDVI) [10,22] to pixel-based and object-based approaches [23,24].

NDVI-based approaches, commonly used for vegetation monitoring, leverage the
contrast between near-infrared and red reflectance to quantify vegetation greenness. These
methods are computationally efficient and suitable for long-term time-series analysis,
especially in data-scarce regions. However, NDVI is sensitive to soil background effects
and atmospheric conditions, which can distort vegetation assessments in arid and semi-arid
regions. Persistent cloud cover also poses significant challenges in obtaining clear satellite
images, limiting the temporal resolution and accuracy of such indices [25]. Additionally,
NDVI-based methods primarily rely on temporal changes in vegetation indices but are
often inefficient and incapable in automating change detection.

In contrast, object-based approaches utilize both spectral and spatial information from
high-resolution imagery to segment and classify land cover. These methods are more
suitable for analyzing heterogeneous landscapes [26] and address some of the limitations
of pixel-based NDVI by incorporating contextual information. Nevertheless, object-based
methods are computationally intensive and require substantial ground truth data for val-
idation, which are often unavailable in remote regions, such as Mongolia’s grasslands.
Object-based approaches utilize spectral information about different vegetation types and
relationships derived from optical remotely sensed data, enabling the automated moni-
toring of vegetation changes when multi-temporal Earth observations are available [9,27].
To overcome these challenges, integrating multisource data, such as digital elevation mod-
els (DEMs) and additional spectral indices, can enhance the accuracy of vegetation mapping
and the detection of vegetation changes [28]. However, to the best of our knowledge, up-to-
date grassland maps and their change detection using time-series Landsat (TM/OLI/OLI-2)
imagery between 1990 and 2024 have not yet been reported for Mongolia. Thus, this study
aims to fill the gap in the current literature by (1) investigating an advanced machine
learning algorithm to map multi-decadal vegetation dynamics using Landsat time-series
data between 1990 and 2024 in Mongolia, (2) providing up-to-date statistical analysis of
areas of grassland areas in Mongolia for the first time in 2024 using Landat-9 OLI-2 as an im-
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portant national grassland database, and (3) providing a valuable tool for decision-makers
in supporting sustainable grassland conservation and management in Mongolia.

We hypothesis that integrating multi-source Earth observation data into advanced
machine learning algorithms will produce accurate maps and a reliable database of multi-
decadal grassland vegetation changes, providing insights for sustainable grassland man-
agement under changing climatic conditions.

2. Materials and Methods
2.1. Study Area

Ugii Lake in Mongolia (Figure 1) is a crucial wetland and a designated Ramsar site,
hosting a diverse range of bird species, including the whooper swan, swan goose, and
common pochard. The lake is also home to species with significant conservation status
according to the IUCN Red List, such as the vulnerable saker falcon and the globally
endangered steppe eagle. Additionally, species like the white-naped crane are classified as
‘Rare’ under Mongolian law [29].
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Ugii Lake is also a popular tourist destination, attracting approximately 150,000 visitors
annually. The primary land uses in the area include traditional livestock breeding, tourism,
and infrastructure development [30]. However, the lake faces several environmental threats,
including wetland degradation due to overgrazing, deforestation, and climate change.
Invasive alien species further threaten the ecosystem, leading to habitat destruction and
biodiversity loss. The lake and its surrounding grasslands support diverse vegetation types,
including montane grasslands, meadow grasslands, and mixed grass species such as Stipa
spp., Leymus spp., and Artemisia spp. Over the past three decades, these grasslands have
undergone significant changes. Montane grasslands have declined, driven by overgrazing
and climate-induced stressors, while meadow grasslands have shown some recovery in
recent years due to reduced grazing pressures and natural regrowth [31].

Climate change has exacerbated issues such as droughts and altered ecological be-
haviors, impacting both local livelihoods and the environment. Furthermore, there is a
significant lack of scientific research and monitoring of vegetation in the lake, leading to
the poor management and overexploitation of resources, particularly in areas used for
pastoralism and forestry [31,32].

2.2. Materials
Satellite Data

Multi-decadal Landsat surface reflectance (SR) data obtained through Earth explorer
(https://earthexplorer.usgs.gov/, accessed on 1 October 2024) were used to map vegetation
dynamics in the study area (Table 1). We used Collection 2, which were atmospherically
corrected SR data with a single-channel algorithm developed by National Aeronautics and
Space Administration (NASA) Jet Propulsion Laboratory (JPL). All data used in the current
study (Table 1) were acquired from Landsat time-series Collection 2 SR.

Table 1. Time-series Landsat imagery used, covering 34 years in the study area.

Sensor Spatial
Resolution (m) Image_ID Cloud Cover

(%) Year Band Used

Landsat-5 TM 30
LT05_L2SP_133027_19900908
LT05_L2SP_133028_19900908
LT05_L2SP_134027_19900916

2.0
0.0
2.0

1990

Coastal, Blue, Green,
Red, Near-infrared
(NIR), Mid-infrared
(MIR), Shortwave

infrared 1 (SWIR 1),
Shortwave infrared 2

(SWIR 2)

Landsat-5 TM 30
LT05_L2SP_133027_20000919
LT05_L2SP_133028_20000919
LT05_L2SP_134027_20000926

1.0
0.0
3.0

2000

Landsat-8 OLI 30
LC08_L2SP_133027_20200926
LC08_L2SP_133028_20200926
LC08_L2SP_134027_20200917

0.1
3.2
0.1

2020

Landsat-9 OLI-2 30
LC09_L2SP_133027_20240812
LC09_L2SP_133028_20240812
LC09_L2SP_134027_20240819

0.0
0.7
0.0

2024

Considering the seasonal changes in grasslands, we selected the summer season in
September. To minimize the effects of cloud, datasets with less than 5% cloud coverage were
acquired for the period from 1990 to 2024. We computed a mosaic of three Landsat scenes
using ArcGIS Pro’s Mosaic Dataset tool to cover the study area by applying histogram
matching for relative radiometric normalization to ensure consistent radiometric properties,
such as brightness, contrast, and reflectance values, across the input images.

The Advanced Land Observing Satellite Digital Surface Model (DSM) at a horizontal
resolution of 30 m was used to map vegetation changes in grassland ecosystems within the

https://earthexplorer.usgs.gov/
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study area (https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/index.htm, accessed on
1 October 2024).

2.3. Methods
2.3.1. Generation of Training and Validation Datasets for the Study Area

Ground-reference data points were selected through an initial visual spectral inspec-
tion of the very high spatial resolution images in Google Earth Pro (2024). Field surveys
conducted in the study area in 2023 and 2024 were used to assess the spectral signatures of
each land cover type identified through the visual inspection of multiple band compositions.
Ground-reference points were located in the field using a Garmin handheld GPS with an
accuracy of ±2 m. At each reference point, the grass species present and their relative
abundances were estimated and recorded.

For each class, the reference points guided the digitization of training samples. To en-
hance the spectral variability of class signatures, at least 500 samples were digitized for
each class in the immediate vicinity of the ground reference locations. We employed the
Segment Anything Model (SAM), which is an innovative segmentation model by Meta
AI [33], to assist in the selection of training sets for past images. This toolset is available in
QGIS as suggested by Ha et al. [34].

In this study, the training and the validation data were obtained from very high
spatial resolution images in Google Earth Pro (2024), as suggested by [27], combining
with visual interpretation after running the SAM. A total of 56,209 points were randomly
selected. Table 2 shows the number of land cover classes and ground reference data samples
digitized for creating the training and validation sets in the study area. We have adopted
12 classifications as the land use cover categories necessary in assessing ecosystem services
in Mongolia. Specifically, classifying the five types of grassland is crucial in monitoring
changes in the ecosystem of the target area and making policy recommendations.

Table 2. Vegetation classes determined from ground reference data and the number of digitized
training samples using the SAM.

Class Name Number of Samples

Barren 972
Cropland 4045
Urban/residential areas 143
Meadow grass 2491
Montane (Stipa + Sedge + Artermisia) 3496
Mix grasses (Stipa + Artermisia + Leymus) 4773
Tall grass (Achnaterum) 2453
Shrubland (Caragana microphylla) 1728
Forest 1645
Open forest 6315
Bogland 1935
Water bodies 4538

2.3.2. Computation of Spectral Indices

We computed three vegetation indices using Landsat (5/8/9) images as suggested
by [2]. They are the Normalized Difference Vegetation Index (NDVI) (Equation (1)), Soil--
Adjusted Vegetation Index (SAVI) (Equation (2)), and Normalized Difference Water Index
(NDWI) (Equation (3)). The equations for the spectral indices are listed below:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/index.htm
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SAVI = (1 + L)× ρnir − ρred
ρnir + ρred + L

(2)

L = 0.5 in most conditions
NDWI =

ρswir1 − ρnir
ρswir1 + ρnir

(3)

where ρred, ρgreen, and ρnir are the surface reflectances for the red (band 3 for TM or band 4
for OLI and OLI-2), green (TM band 2 or OLI/OLI-2 band 3), and near-infrared (NIR: TM
band 4 or OLI/OLI-2 band 5) bands, respectively.

2.3.3. Machine Learning Algorithm Development

We developed a machine learning model, which integrates six multispectral bands,
three spectral indices, and DEM into the supervised extreme gradient boosting (XGB)
algorithm, to automatically monitor vegetation ecosystems in Mongolia.

Extreme gradient boosting (XGB) [35] is currently the most widely used boosting
method that employs ensemble-based decision tree learning and works effectively for both
classification and regression problems. The XGB algorithm uses the theory of boosting
techniques and belongs to the ensemble-based decision tree learning family. Initially
introduced by Chen and Guestrin [6], XGB has been effectively applied in both classification
and regression tasks in supervised learning domains [36].

In the XGB model, the two regularization terms L1 and L2 were added to the cost
functions to improve generalization, optimize performance, and reduce the overfitting
problem. For the XGB benchmark, several hyperparameters such as the booster type, a
maximum depth, a minimum child weight, the number of trees, and a learning rate had
to be set and tuned beforehand. The hyperparameters that were ultimately selected for
the XGB model included the GBTREE booster, a learning rate of 0.01, a maximum depth
of 5, a minimum child weight of 1, and a total of 1000 estimators (trees). Additionally,
the subsample ratio and column sample by tree were both set to 0.8. The regularization
parameters were specified as L1 = 0.01 and L2 = 1.0. We optimized hyperparameter for the
XGB algorithm using a GridSearch with 5-fold cross-validation as suggested by [36].

To evaluate the effectiveness of the proposed model, we compared its performance
with other ensemble learning algorithms, including Random Forests (RFs) [37] and Light
Gradient-Boosting Machine (LGBM) [38]. Model development and comparison were
conducted using Python 3.6 in a Jupiter Notebook environment. The machine learning
models were implemented using libraries from Scikit-learn [39] and the LGBM package,
available at https://lightgbm.readthedocs.io/en/stable/, accessed date 1 October 2024.

The hyperparameters for the RF model were optimized, including 1000 trees, a maxi-
mum depth of 10, and a maximum of 10 features. For the LGBM model, the boosting type
was set to GBTREE, the learning rate was 0.05, the maximum depth was −1, the number of
leaves was set to 100, and the number of trees was 500.

2.3.4. Decadal Maps of Vegetation Changes

We propose a framework that integrates multisource remote sensing datasets with
advanced machine learning algorithms to map vegetation and grassland ecosystems and
detect changes using time-series Landsat images from 1990 to 2024, as shown in Figure 2.

Change detection was conducted using pixel-based approaches through the standard
confusion matrix tool in the ArcGIS Pro version 3.2 [40]. Analyzing the changes in the pairs
of classified maps between 1990 and 2000 and between 2000 and 2024 using confusion
matrix shows the loss, gain, and lack of change in grassland and other land use types.

https://lightgbm.readthedocs.io/en/stable/
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2.3.5. Accuracy Assessment

To ensure the reliability of classification models, we ran a procedure 5 times with
5-fold cross validation (CV) using 1000 trees and 10 features as inputs for three ensemble
learning algorithms. The model produces data for the overall accuracy (OA) and Kappa
coefficient, together with the F1 score, precision, and recall. The model also performs the
variable importance to assess the prediction accuracy and indicate the contribution of each
variable. The overall accuracy (OA) and Kappa coefficient, together with the F1 score,
precision, and recall, were computed using the cross-validation procedure to evaluate the
model performance.

A number of standard metrics, including the overall accuracy (OA) (Equation (4)),
Kappa coefficient (κ) (Equation (5)), precision (Equation (6)), recall (Equation (7)), and
the F1 score (Equation (8)), were used to evaluate the effectiveness of the supervised
classification [41,42].

OA
(

y, ypred

)
=

1
nsamples

∑
nsamples−1
i=0 1

(
ypredi = yi

)
(4)



Remote Sens. 2025, 17, 400 8 of 18

in which

ypred is the predicted value;
yi is the corresponding true value;
nsamples is the total number of validation samples.

κ =
po − pe

1 − pe
(5)

in which

po is the observed agreement;
pe is the expected agreement.

P =
(TP)

(TP) + (FP)
(6)

R =
(TP)

(TP) + (FN)
(7)

F1 = 2 × P × R
P + R

(8)

in which

TP is a true positive;
FP is a false positive;
FN is a false negative.

2.3.6. Analysis and Statistical Method

The vegetation distribution maps and the grassland statistical areas for the study sites
were computed using ArcGIS Pro Version 3.2 software to calculate the spatial distribution
of grasslands in Mongolia.

3. Results
3.1. Performance of the RF, XGB, and LGBM Models Using Ground Truthing Data for 2024 Data

Table 3 compares the performance of three ensemble-based decision tree learning
algorithms for mapping vegetation in Mongolian grasslands. All three algorithms demon-
strated satisfactory results across standard matrices, including the overall accuracy (OA),
Kappa coefficient (K), precision (P), recall (R), and F1 score. The XGB model performed
well and outperformed both the RF and the LGBM models, with an F1 score reaching
0.95, an OA exceeding 94.92%, and a K of 0.92, indicating superior accuracy assessment in
grassland classification. The RF model slightly underperformed compared to the LGBM
model, achieving an OA of 94.17%, a K of 0.91, and an F1 score of 0.94.

Table 3. Model performance for grassland detection at Ugii Lake, Mongolia.

Model Overall Accuracy (%) Kappa Coefficient P R F1

RF 94.17 0.91 0.94 0.94 0.94
XGB 94.92 0.92 0.95 0.95 0.95

LGBM 92.60 0.88 0.92 0.93 0.92

As XGB performed best, it was employed to make classification maps for the years
1990, 2000, 2020, and 2024.
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3.2. Vegetation Classification and Accuracy Assessment

Our proposed approach, which integrated multisource Earth observations into the
XGB algorithm, demonstrates superior overall accuracy in vegetation monitoring in Mon-
golia grasslands, achieving exceptional classification results, with an OA exceeding 94%
and K coefficients greater than 0.92 (Table 4). As can be seen from Table 4, Landsat-9 OLI-2
produced slightly better results than Landsat-8 OLI, highlighting the success of the recently
launched Landsat mission.

Table 4. Comparison of accuracy in monitoring vegetation in grasslands in the study area.

Year Overall Accuracy (%) Kappa Coefficient

1990 (Landsat-5 TM) 96.96 0.95
2000 (Landsat-5 TM) 96.66 0.96
2020 (Landsat-8 OLI) 94.08 0.92

2024 (Landsat-9 OLI-2) 94.92 0.92

Table 5 shows the classification results for each class between 1990 and 2024. Overall,
the XGB algorithm successfully classified meadows, montane grasslands, tall grass types,
and shrubs, including various dominant species such as sedge, Artemisia Stipa, Artemisa,
Leymus, and Caragana spp., achieving F1 scores greater than 0.9.

Table 5. Classification results for each class from 1990 to 2024 using multi-source data with the
XGB algorithm.

Class Name

1990 2000 2020 2024

P R F1
Score P R F1

Score P R F1
Score P R F1

Score

Barren 0.89 0.79 0.84 0.94 0.82 0.88 0.91 0.72 0.80 0.91 0.78 0.84

Cropland 0.99 1.00 1.00 0.99 1.00 0.99 0.97 0.99 0.98 0.98 0.99 0.99

Urban 0.94 0.90 0.92 0.95 0.83 0.89 0.90 0.69 0.78 0.94 0.68 0.79

Meadow grassland
(sedge + Artemisia) 0.94 0.88 0.91 0.95 0.93 0,94 0.95 0.85 0.89 0.94 0.90 0.92

Montane grassland 0.92 0.95 0.94 0.94 0.97 0.96 0.88 0.90 0.89 0.86 0.85 0.85

Grassland
(Stipa + Artemisa + Leymus) 0.93 0.90 0.92 0.96 0.96 0.96 0.91 0.90 0.90 0.88 0.88 0.88

Tall grass (Achnaterum) 0.94 0.96 0.95 0.97 0.97 0.97 0.94 0.97 0.95 0.90 0.87 0.89

Shrubland
(Caragana microphylla
+ Caragana pygmane)

0.96 0.93 0.94 0.95 0.96 0.95 0.91 0.87 0.89 0.87 0.86 0.87

Forest 0.90 0.83 0.87 0.93 0.87 0.90 0.90 0.75 0.82 0.80 0.60 0.62

Open forest 0.90 0.93 0.91 0.93 0.96 0.94 0.87 0.94 0.91 0.86 0.95 0.90

Bog 0.97 0.97 0.97 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.98 0.97

Water bodies 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 1.00 1.00 1.00

The results underscore the effectiveness of advanced machine learning classification-
based approaches for detailed land use analysis and grasslands dynamics, emphasizing the
importance of Landsat-time series data, particularly the new Landsat-9 OLI-2, in mapping
vegetation in grasslands in semi-arid and arid regions.

3.3. Vegetation Dynamics from 1990 to 2024

Figure 3 shows the spatial distribution of vegetation and grassland ecosystems in the
Ugii Lake watershed area, Mongolia, over the 34 years between 1990 and 2024.
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The analysis of land cover changes over the period 1990–2024 highlights significant
spatial and temporal transformations in various land cover classes. The cropland class
experienced a sharp decline from 18.8% in 1990 to 7.0% in 2000, followed by recovery to 9.9%
in 2020 and 13.3% in 2024. The class of montane grassland remained relatively stable until
2020 (36.7% in 1990 to 38.3% in 2020) but showed a significant reduction to 32.1% by 2024.

Figures 4 and 5 illustrate that urban areas grew steadily from 0.2% in 1990 to 0.7%
in 2020, before declining to 0.3% in 2024, suggesting a reversal in urban sprawl or the
reclassification of land. Grasslands (mainly composed of Stipa spp., Artemisia spp., and
Leymus spp.) increased significantly from 16.5% in 1990 to 24.6% in 2000, followed by a
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reduction to 19.1% in 2020 and recovery to 20.6% in 2024, reflecting fluctuations in ecological
or anthropogenic drivers. The change analysis showed that from 1990 to 2000, dramatic
shifts were observed, particularly in cropland (−11.8%) and grassland (+8.1%), suggesting
significant land use changes during this period. From 2000 to 2020, moderate recovery was
evident in cropland (+2.9%), while montane grassland (+2.1%) exhibited slight growth,
potentially due to improved management practices. From 2020 to 2024, montane grassland
declined sharply (−6.2%), indicating accelerated degradation, whereas meadow grassland
showed slight recovery (+1.7%).
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Figure 6 illustrates the spatial vegetation dynamics from 1990 to 2024 in the Ugii Lake
watershed area, Mongolia.
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Overall, the period reflects contrasting trends, with montane grassland declining and
other grassland types increasing, indicating the redistribution of ecosystems. Despite initial
urban growth, the overall changes in urban areas were minimal, likely due to limited urban
expansion in the study area. Cropland demonstrated resilience, rebounding from early
losses, possibly due to shifts in land use policies or agricultural intensification. The decline
in montane grassland and the stability of barren land highlights pressures from ecological
degradation or human activities.
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4. Discussion
4.1. Advanced Machine Learning Approach to Vegetation Mapping in Grasslands
and Change Detection

Our proposed approach, which integrates multisource Earth observation data from
multispectral bands, spectral indices, and DEM into an advanced ensemble decision tree
learning technique, achieved superior classification results for vegetation mapping in
Mongolian grasslands, with overall accuracies exceeding 94% and Kappa coefficients
greater than 0.92. Our results show that the XGB algorithm yielded the highest performance
and outperformed other ensembled decision learning algorithms, i.e., the RF and the LGBM
models. One possible reason is that XGB uses the boosting technique and implements both
L2 and L1 regularization to prevent overfitting and ensure robustness, whereas RF lacks
explicit regulation, relying more on bagging for variance reduction [28].

Our results surpass recent grassland classification efforts, such as using the RF algo-
rithm with Landsat-8 OLI data with an accuracy of 88.3 [12], MODIS NDVI data with an
overall accuracy of 72.17% [10], and 20 years of MODIS datasets with accuracies ranging
from 81% to 91% [9], as well as surpassing the overall accuracy ranging from 80% to 95%
achieved using PlanetScope data [3].

Our results underscore the effectiveness of advanced machine learning-based ap-
proaches for the detailed classification of various dominant species, including sedge,
Artemisia Stipa, Artemisa, Leymus, and Caragana spp., achieving F1 scores greater than 0.9.
This highlights the importance of Landsat time-series data over 24 years (1990–2024), par-
ticularly the new Landsat-9 OLI-2, for mapping grassland ecosystems in semi-arid and arid
regions. Importantly, up-to-date grassland statistics were obtained with high precision and
reliability by combining Landsat data with the XGB algorithm.

Our study further highlights that selecting point samples using the SAM Segmentation
algorithm, with boundary constraints for similar grasslands, cropland, and forests, is key
in achieving high accuracy when ground truthing data are limited. The effectiveness of the
SAM algorithm has also been corroborated by recent studies [33,43].

4.2. Drivers of Vegetation Changes from 1990 to 2024

The observed changes in land cover are likely influenced by a combination of ecologi-
cal and anthropogenic drivers. For example, the decline in cropland during the 1990s aligns
with economic and policy transitions following Mongolia’s move to a market economy,
which disrupted traditional agricultural practices [6]. The subsequent recovery of cropland
by 2024 may reflect the impact of targeted agricultural intensification programs [44]. Simi-
larly, the increase in grasslands during the 1990s could be attributed to land abandonment
and ecological succession, a trend observed in post-Soviet states [8]. However, the sharp de-
cline in montane grasslands after 2020 is likely driven by overgrazing, desertification, and
climatic stressors, such as reduced precipitation and rising temperatures [5]. Urban expan-
sion, although modest, underscores the gradual shift toward infrastructure development in
rural areas, a pattern also evident in other arid and semi-arid regions worldwide [45].

The vegetation change dynamics in grasslands observed in the Ugii Lake region of
Mongolia align with broader trends reported in Mongolian and global studies. The signifi-
cant decline in montane grasslands (−6.2% from 2020 to 2024) reflects findings reported
by Hilker et al. [5], who attributed widespread grassland degradation in Mongolia to
overgrazing and precipitation variability, exacerbated by climate impacts such as increas-
ing temperatures and aridity, as highlighted in the Mongolia Assessment Report on Climate
Change [46].

Fluctuations in cropland, characterized by a sharp decline from 1990 to 2000 (−11.8%)
followed by partial recovery by 2024 (+6.3%), reflect broader land use changes in post-
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Soviet states, driven by policy shifts and changing agricultural priorities. Urban dynamics,
showing modest growth followed by a decline, suggest limited urban expansion in rural
Mongolia, likely due to the predominantly nomadic lifestyle. Overall, these trends under-
score the interplay between anthropogenic factors, such as overgrazing and agricultural
practices, and climatic drivers, including temperature increases and precipitation variabil-
ity. These findings are consistent with Addison et al. [45], who critically reviewed land
degradation assumptions and emphasized the significant influence of socio-economic and
ecological pressures in Mongolian rangelands.

Importantly, our results provide reliable database for assessing the current status of
grasslands in the Ugii Lake region of Mongolia and offer valuable insights into leveraging
multisource Earth observation data and machine learning for grassland monitoring in
semi-arid and arid land regions.

4.3. Implications for Sustainable Grassland Conservation and Management in the Context
of Climate Change

Our results have significant implications for grassland conservation and management
in the context of climate change. The decline in montane grasslands underscores the
urgent need for targeted interventions, such as sustainable grazing practices and habitat
restoration, to mitigate land degradation. Grasslands are vital carbon sinks and biodiversity
reservoirs; their degradation threatens ecosystem services while exacerbating the impacts
of climate change [45].

The recovery observed in certain vegetation classes, such as meadow grasslands, high-
lights opportunities for adaptive management strategies that harness natural regenerative
processes. Policymakers should prioritize the integration of ecological monitoring tools
into conservation planning to enhance resilience in grassland ecosystems [47]. Further-
more, incorporating remote sensing data for large-scale monitoring into decision-making
processes can significantly improve the precision of conservation efforts, particularly in
regions with limited field data availability [48,49].

4.4. Current Limitations and Future Research Directions

Although this study achieved high accuracy in mapping vegetation dynamics using
30 m temporal Landsat time-series data, several limitations remain. First, reliance on
satellite imagery introduces potential biases due to atmospheric effects, such as cloud cover
and haze, as well as the radiometric calibration of mosaic images using histogram matching,
which can affect image quality [50,51]. Incorporating alternative data sources, such as SAR
imagery from Sentinel-1 and ALOS PALSAR, could help mitigate these challenges, enhance
temporal coverage, and enable the phenology-based monitoring of grasslands.

Second, the study’s dependence on field-based ground truth data meant that it was
constrained by accessibility in remote regions. Since ground truth data collection is time-
consuming and costly, particularly for large grassland areas in semi-arid and arid lands,
future research should focus on the development of advanced machine learning techniques,
such as self-supervised [52,53] and semi-supervised learning [54,55], to reduce dependency
on extensive ground truth data.

Finally, although this study focused on Mongolian grasslands, the proposed method-
ology has broader applicability to semi-arid and arid regions worldwide. Expanding this
approach to other regions could offer valuable comparative insights and validate its robust-
ness across diverse ecological contexts. Future studies should also consider integrating
geographical, socio-economic, and institutional variables to better understand the drivers
of vegetation dynamics and support integrated land management strategies in the context
of changing climates.
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5. Conclusions
In this research, we integrated multisource Earth observation data into advanced

ensemble decision tree learning techniques to map and detect vegetation changes in Mon-
golian grasslands. We compared three ensemble-based decision tree learning algorithms
for supervised classification. Our results showed superior accuracy for all techniques, with
the XGB model outperforming the others, achieving an overall accuracy of 94.92% and
precision, recall, and F1 scores of 0.95.

We applied the XGB model to multi-temporal Landsat data to detect grassland cover
types over a 34-year period from 1990 to 2024 in the Ugii Lake region. Our analysis revealed
notable changes in grasslands, including a decline in montane grasslands and an increase in
other grassland types. This study provides valuable insights that can support sustainable
grassland conservation and management efforts in Mongolia in the context of climate change.
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