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• A novel semi-supervised framework for 
reconstructing sediment concentration 
data

• The effective solution for extremely 
missing sediment data in the Mekong 
River Basin

• The proposed framework exploits other 
hydro-climate data as supporting 
sources.

• The proposed method can dramatically 
boost the performance of all models at 
the studied stations.
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A B S T R A C T

The Mekong River Basin (MRB) is crucial for the livelihoods of over 60 million people across six Southeast Asian 
countries. Understanding long-term sediment changes is crucial for management and contingency plans, but the 
sediment concentration data in the MRB are extremely sporadic, making analysis challenging. This study focuses 
on reconstructing long-term suspended sediment concentration (SSC) data using a novel semi-supervised ma-
chine learning (ML) model. The key idea of this approach is to exploit abundant available hydroclimate data to 
reduce training overfitting rather than solely relying on sediment concentration data, thus enhancing the ac-
curacy of the employed ML models. Extensive experiments on daily hydroclimate and SSC data obtained from 
1979 to 2019 at the three main stations (i.e., Chiang Saen, Nong Khai, and Mukdahan) are conducted to 
demonstrate the superior performance of the proposed method compared to the state-of-the-art supervised 
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techniques (i.e., Random Forest, XGBoost, CatBoost, MLP, CNN, and LSTM), and surpasses existing semi- 
supervised methods (i.e., CoReg, ⊓ Model, ICT, and Mean Teacher). This approach is the first semi-supervised 
method to reconstruct sediment data in the field and has the potential for broader application in other river 
systems.

1. Introduction

The Mekong River is a trans-boundary river in Southeast Asia, 
flowing from the Tibetan Plateau through China, Myanmar, Thailand, 
Laos, Cambodia, and Vietnam. It has an estimated length of approxi-
mately 5000 km with 795,000 km2 drainage area, is home to significant 
biodiversity with over 20,000 plant species, 2500 animal species, and 
850 fish species (MRC, 2005, 2007). However, the Mekong River Basin 
(MRB) faces severe threats from climate change (e.g., droughts, floods, 
or sea level rise) and human activities (e.g., deforestation, sand mining, 
ground water extraction, and dam constructions), leading to issues such 
as sediment starvation, salinity intrusion, and reduced water levels 
(Tuan and Chinvanno, 2011; Piman and Shrestha, 2017; Kondolf et al., 
2014). Sediments and its attached nutrients are crucial for the MRB's 
ecosystem, as it supports soil nutrition, fisheries, and agriculture (Manh 
et al., 2014; Piman and Shrestha, 2017). However, sediment transport in 
the downstream MRB has drastically reduced, with estimates a decrease 
of 74.1 % (2012–2015 period) compared to pre-dam periods (Binh et al., 
2020a), potentially reaching a 96 % reduction if all the planned dams 
would be successfully completed (Kondolf et al., 2014). This poses sig-
nificant risks to the MRB's ecosystem and the livelihoods of millions. 
Historical sediment concentration data is essential for analyzing the 
impacts of human activities, providing significant information for 
further understanding about morphological changes, salinity intrusion 
and coastal erosion. Unlike other factors such as discharge, which has 
been collected daily for a long time, sediment data in the MRB are 
relatively sporadic, even missing data for the whole months or years in 
different stations (Lu and Siew, 2006). Thus, there is a need to recon-
struct missing sediment concentration values to provide a long-term and 
reliable continuous sediment data for further studies of sediment 
transports in the MRB.

Most of existing works to reconstruct the long-term sediment data in 
the MRB rely on traditional sediment rating curves, which are a fitted 
relationship between suspended sediment concentration (SSC) and river 
water discharge (Q) (Binh et al., 2020a; Wang et al., 2011; Lu et al., 
2014). However, this method is highly biased, especially during extreme 
events (droughts and floods) or under changing hydrological conditions 
(Warrick, 2015; Walling, 1977). The sediment transport models (e.g., 
Soil and Water Assessment Tool (SWAT), Telemac, Coupled Ocean-
–Atmosphere–Wave–Sediment Transport Modeling system (COAWST), 
Delft3D) was used to estimate sediment transport in the MRB (Sam and 
Khoi, 2022; Binh et al., 2022; Xue et al., 2012; Thanh et al., 2019), but 
require many different inputs (e.g., hydroclimate data, soil map, land 
cover, topographic, etc.), which are not available at all sites, extensive 
expert knowledge, and experiences to fine-turn them (Xu and He, 2022). 
Additionally, remote sensing techniques, which have been studied for 
other areas like Mississippi River (Umar et al., 2018), would also be 
adapted for reconstructing the sediment data. However, satellite data 
have its own limitations because the complicated climate (i.e., rainy or 
cloud coverage) and geography in the MRB can affect its operations and 
spatiotemporal data availability. The machine learning (ML) has been 
emerged as a tempting alternative for SSC estimation due to many 
attractive benefits, e.g., relying only on historical data for building 
models without any simulation assumption, do not need excessive 
amount of data, less biased by experts, or require less computational 
power than conventional models (Essam et al., 2022; Kaveh et al., 2021; 
Khan et al., 2016; Nguyen et al., 2023b). The ML techniques are very 
diverse, e.g., classification and regression tree (CART), Artificial Neural 
Networks (ANNs), multi-layer perceptron (MLP) neural network, 

Support Vector Machine (SVM), and long short-term memory (LSTM), 
which are used to predict sediment in the Haraz watershed (Iran), 
Mississippi River (the North American continent), Schuylkill River 
(USA), Ramganga River (India), and Bhagirathi river (Himalaya) 
(Choubin et al., 2018; Shadkani et al., 2021; Meshram et al., 2021; 
Kaveh et al., 2021; Singh and Khan, 2020; Khan et al., 2019a,b). The 
MLP, SVM, and LSTM are widely applied to predict daily or monthly 
sediment, and the high model performance is found in Shadkani et al. 
(2021); Meshram et al. (2021); Kaveh et al. (2021). Choubin et al. 
(2018) compared the accuracy of the CART model with the most 
commonly ML models (i.e., MLP and SVM) to estimate the monthly 
suspended sediment load, showing the best performance of the CART 
model. Singh and Khan (2020) and Khan et al. (2019a, 2019b) used the 
ANNs model to predict the SSC in India, indicating the superior of the 
proposed model with high values of coefficient of determination. These 
above-mentioned models can be used for reconstructing sediment data. 
However, a large amount of available sediment data is also required for 
effectively training them, which are currently unavailable for the MRB 
(for example, 93.96 % data in Mukdahan station is missed from 1979 to 
2019 (c.f. Section 2)). This makes accurately predicting/reconstructing 
SSC in the MRB a very challenging task.

In this paper, a novel and effective Deep Learning (DL)-based 
framework to reconstruct SSC data for the MRB, which can overcome the 
current data scarcity problem and can provide long-term continuous and 
reliable SSC data to support further research, is introduced. Concretely, 
the contributions are summarized as the following. First, contrary to all 
existing works, which are supervised-based methods and need long-term 
continuous sediment data for training their models, e.g., Darabi et al. 
(2021); Essam et al. (2022), the proposed semi-supervised DL frame-
work (SSL) is specifically designed to significantly enhance the SSC 
reconstruction performance, especially under data scarcity. The key idea 
of this algorithm is that rather than ignoring all data related to missing 
sediment values (e.g., daily precipitation and discharge) during the ML 
training process, they are exploited as an additional source to aid the 
learning process of the selected ML model to improve the prediction 
accuracy. The proposed approach is to construct two separate ML 
models. The first model, called the classification model or classifier, 
attempts to predict the concentration ranges of sediments and is trained 
using available sediment data (i.e., observed data). The second model, 
called the regression model or regressor, is initially trained with 
observed sediment data, then it will be updated using unobserved data 
under the guidance of the classifier by minimizing disagreement be-
tween them. By this way, input hydroclimate data with missing sedi-
ment values can be exploited to enrich the training data, thus avoiding 
overfitting problems and improving the final prediction accuracy. To the 
best of our knowledge, SSL is the first semi-supervised approach for 
reconstructing sediment data in the field. Second, a wide range of state- 
of-the-art supervised machine learning techniques are utilized to esti-
mate the missing SSC data at many MRB's mainstream stations, 
including linear regression (LR), Support Vector Regression (SVR), 
Random Forest Regression (RF) (Ho, 1995), XGBoost (Chen and Guest-
rin, 2016), CatBoost (Prokhorenkova et al., 2018), Multi-Layer Percep-
tron (MLP), Convolutional neural network (CNN) (Gu et al., 2018), and 
Long short-term memory (LSTM) (Hochreiter, 2010). Furthermore, 
various state-of-the-art semi-supervised learning methods, that have not 
been studied before in the sediment reconstruction task, are also 
employed including CoReg (Zhou et al., 2005), ⊓ Model (Laine and Aila, 
2016), ICT (Verma et al., 2022), and Mean Teacher (Tarvainen and 
Valpola, 2017). These methods are used as baselines for assessing 
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performance of this framework. Third, though this study focuses on the 
MRB, sediment data sparsity is a very common problem in many other 
river systems worldwide (Asselman, 1999; De Vente et al., 2007). The 
proposed approach can also be applied to these rivers for efficient 
sediment forecasting/reconstruction. The rest of the paper is organized 
as follows. In Section 3, the proposed semi-supervised approach is pre-
sented. Extensive experiments are conducted in Section 4 to demon-
strate the performance of the proposed method, and conclusions are 
drawn in Section 5.

2. Study area and data

2.1. The Mekong River Basin

The MRB is characterized by a complex orography, which is covered 
by high mountains in the north, while lowland and floodplain are 
dominated in the south MRB. Originating at approximately 5000 m 
above the mean sea level in the Tibetan Plateau (China), the MRB spans 
over 795,000km2 of China, Myanmar, Thailand, Laos, Cambodia, and 
Vietnam. It ends in the Vietnamese Mekong Delta with elevations mostly 
below 2 m above the mean sea level. The MRB is divided into the upper 
and lower basins. The upper part covers an average of 189,000km2 (24 
%), and the lower part has an area of 606,000km2 (76 %) (Lu and Siew, 
2006). The upper Mekong (about 2000 km) has elevations from 500 m to 
4500 m with an average slope of 2 m/km (Lauri et al., 2012). The lower 
Mekong River (about 2900 km) has elevations between several meters 
above the mean sea level to 500 m, with an average slope of 0.25 m/km 
from Chiang Saen to Kratie and 0.03 m/km from Kratie to the East Sea 
(Lauri et al., 2012). The Mekong River runs through bedrock and alluvial 
alternately from its source to its sink. The bedrock ravines start from 
China territory down to 5 km upstream of Vientiane in Laos, continuing 
to Kratie (Rubin et al., 2014), from which the Mekong River enters the 
downstream alluvial portion with a spacious Mekong Delta in Cambodia 
and Vietnam, characterized by dense river network with mild riverbed 
slopes.

The MRB's climate is influenced by tropical monsoon, resulting in 
two distinct seasons, including the wet season (May–October) and the 
dry season (November–April). The entire MRB has latitudes roughly 
from 10◦N to 35◦N (c.f. Fig. 1a), which encompasses high-altitude 
continental and temperate in the upper basin to tropical monsoon in 
the lower basin. This results in remarkable variations of annual pre-
cipitation between the upstream and downstream MRB (Binh et al., 
2020b). For instance, at Mukdahan station (from 1979 to 2019), the 
precipitation from May to October constitutes 92.63 % of the annual 
total rainfall, peaking in August (Fig. 1b), and the flood season spans 
from June to November (Fig. 1c), contributing 77.2 % of the total annual 
discharge.

2.2. Sediment starvation problem in the MRB

The sediment starvation of the Mekong river and its basin mentioned 
in Section 1 is strongly linked to human activities, in particular dam 
building (Binh et al., 2020a; Räsänen et al., 2017). From 1965 to 2019, 
more than 100 dams were built in the MRB. Many others are expected to 
be built in the near future, especially in Laos (WLE, 2020). Large dams in 
the Mekong tributaries were built in the early 1990s, and the boom for 
hydropower development in the MRB peaked with the operationaliza-
tion of the two largest dams, Xiaowan and Nuozhadu, completed in 2010 
and 2014 in China, respectively. The construction of large dams in the 
upstream MRB has led to the significant alteration of flow regimes and 
reduction of sediment in the downstream MRB (Binh et al., 2020a, 
2020b; Räsänen et al., 2017). The total sediment load in the downstream 
MRB is estimated at around 167 Mt./yr (Binh et al., 2020a; Lu et al., 
2014) before 1992. However, it was reduced by 74 %, valued at 43.1 
Mt./yr from 2012 to 2015. Particularly, six large mainstream dams in 
the upstream (including Manwan, Dachaoshan, Xiaowan, Jinghong, 
Nuozhadu, and Gongguoqiao) have accounted for 40.2 % of that 
reduction of SSC in the downstream regions (Chua and Lu, 2022; Kon-
dolf et al., 2014).

Fig. 1. (a) The Mekong River Basin and gauging stations, (b) mean monthly precipitation, and (c) mean monthly discharge at Mukdahan from 1970 to 2019.
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2.3. Data

In this study, the daily discharge (Q) and suspended sediment con-
centration (SSC) are collected from the Mekong River Commission at 
main gauging stations (i.e., Chiang Saen, Nong Khai, and Mukdahan as 
shown in Fig. 1) from 1979 to 2019. These three stations are located in 
areas of dense dam constructions, and are used to estimate the sediment 
load in previous studies (Wang et al., 2011; Binh et al., 2020a). The 
discharge values are on a daily time scale. However, the SSC values are 
very sporadic, and have been collected from 0 to 12 times per month. 
The sediment data is obtained from the hydrological data set (HYMOS), 
which produced by the Mekong River Commission (MRC). The HYMOS 
data set is developed using the depth-integration method, which is 
measured at several vertical profiles in a cross section (Binh et al., 
2020a). The daily precipitation data (P) are obtained from the Climate 
Prediction Center from 1979 to 2019, having a spatial resolution of 
0.25◦×0.25◦. These data are also used for MRB's studies (Irannezhad and 
Liu, 2022; Nguyen et al., 2023a, 2023b; Vu et al., 2018). All gridded data 
are re-gridded to match with the locations of MRB's meteorological 
stations by using the bilinear interpolation method, which is successfully 
adopted in (Dang et al., 2020; Hoang et al., 2016; Nguyen et al., 2023a).

Fig. 2 illustrates the daily precipitation, discharge, and SSC collected 
from the Mukdahan station from 1979 to 2019. As can be seen, while 
other data are fully available, the SSC data is very sparse with only 905 
values collected during 41 years, i.e., 6.04 % available data or 93.96 % 
missing data. The data are entirely missing in 1983, 2008, and 
2016–2017 due to many different reasons such as lacking of technology, 
political unrest, or financial limitation. The same situations are observed 
on Chiang Saen and Nong Khai stations with only 687 (4.59 %) and 879 
(5.87 %) available data values, respectively. These huge amounts of 
missing data make daily SSC prediction/reconstruction a very chal-
lenging task for any approach.

3. Methodology

In this section, a brief overview of the problem setup is first provided. 
Then, the new semi-supervised approach to handle highly missing 
sediment data is presented.

3.1. Problem setup

Given a set of N observed samples denoted as D o =

{(x1, y1), (x2, y2),…, (xN, yN)}, where xi includes discharge (Q) and 
precipitation (P) and yi corresponds to the SSC value. This approach 
aims to build an efficient model F to predict the SSC value yi from the 
input xi as shown in Eq. (1). 

yi ≈ ŷi = F (xi) (1) 

where ŷi denotes the output prediction of the model F . Far apart from 
the observed dataset D o, the unobserved (missing) dataset D u =

{z1, z2,…, zM} contains M unobserved samples, where zj includes Q and 
P values, the number of samples of D u is much larger than D o (i.e., 
M≫N). There is no corresponding SSC value for each zj in the dataset 
D u.

All existing works like (Tao et al., 2021; Choubin et al., 2018; Kaveh 
et al., 2021; Essam et al., 2022; Meshram et al., 2021) employ different 
supervised learning methods to predict the sediment values, i.e., they 
use the D o dataset to train the model and totally ignore the dataset D u. 
Hence, when the numbers of observed data are small as in the cases of 
the MRB (i.e., small values of N), overfitting may happen and thus 
significantly reduce the overall performance. To overcome this draw-
back, it is essential to exploit more information from D u to improve the 
model's generalization and avoid overfitting.

3.2. The proposed semi-supervised approach

To exploit more information from unobserved data, the proposed 
approach contains two steps: training a classification model (classifier) 
and training a regression model (regressor) as illustrated in Fig. 3.

3.2.1. Step 1: Training a classification model (classifier)
Instead of training a regression model on the observed dataset D o, 

the first step of this approach is to construct a classification problem to 
classify ranges of sediment values. To do this, the range of SSC values 
from the observed data is found and is divided into K disjoint ranges (i. 
e., classes). For example, if the SSC ranges from 0 to 3800 and K is equal 
to 50, that means the proposed method divides the range into 50 parts, 
and the magnitude (V) of each part is 76 (V = 3800/50). As a result, the 
range of class 0 is set from 0 to 76, the range of class 1 is set from 77 to 
153, the range of class 2 is set from 154 to 230, etc., and the range of 
class 49 is set from 3723 to 3799. Assume that at a data point, the SSC 
value is of 1000, and the class index of the SSC value of 1000 corre-
sponds to 1000/76 = 13. Hence, the class index of a data point can be 
calculated as follows: 

class index =

[
SSC value

V

]

(2) 

where V = (maximum value of SSC + 1)/K, and K is a hyper-parameter. 
After performing this conversion, the proposed method has transformed 
a regression task into a classification task with K classes. Let denote D t 
as the new dataset generated from D o, i.e., D t = {(x1, q1), (x2, q2),… 
, (xN, qN)} where xi is kept the same value as in D o meanwhile qi cor-
responds to the class index of the yi value. In this framework, a classi-
fication model G is built to address this task as follows: 

pi = G γ(xi)

q̂i = argmax(pi)
(3) 

where pi denotes the predictive distribution output from the classifica-
tion model G G and q̂i are the predicted classes with the highest dis-
tribution score. To train the model G , the difference between the 
prediction and the observation value is minimized by using cross- 
entropy (CE) (De Boer et al., 2005) as follows: 

L CE(qi, pi) = −
1
n
∑n

i=1
qilog(pi) (4) 

where n denotes the batch size and note that qi is converted to the 
K-dimensional one-hot vector1 and pi is the predictive distribution from 
the network G . The pseudo-code of training the classification model is 
illustrated in Algorithm 1. The classification is one of the key differences 
between this algorithm and existing semi-supervised regression 
methods. Due to very limited observations for sediment data as pre-
sented in Section 2, directly training the regression model would be very 
inefficient due to the continuous nature of the sediment data. So, the 
proposed approach is to convert the continuous sediment values into 
range labels and use the classifier to recognize them. First, it reduces the 
prediction space from indefinite to finite sets of labels, thus making it 
easier for the learning algorithms to recognize them. Second, the prob-
ability of class labels can be exploied from DL outputs to select those 
with high confident range values to enrich the training data in Step 2, 
which is now the regressor to produce continuous sediment prediction as 
described in detail below. 

1 Note that, in supervised learning, the one-hot vector is a way to present the 
label of the data sample. All the elements are 0 except for one element, which is 
set to 1. The index of the value 1 in the one-hot vector is equal to the class 
number of the data point. For example, in the 3-class classification problem, 
each sample will be assigned to one of three classes: 0, 1, and 2. The one-hot 
vector of class 0 is [1,0,0], class 1 is [0,1,0], and class 2 is [0,0,1].
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Algorithm 1. The pseudo-code of the training classification model 
(Step 1). 

Algorithm 2. The pseudo-code of the training regression model (Step 

2) 

3.2.2. Step 2: Training a regression model (regressor)
Different from traditional regression methods, in this proposed 

Fig. 2. Precipitation, discharge and SSC values at the Mukdahan station.

observed
dataset

classification
model

class
prediction CE loss

unobserved
dataset

classification
model

observed
dataset

regression
model

class
prediction

generate SSC
value

SSC
prediction

SSC value to class index

Frozen weight

RMSE loss

SSC value

Step 1

Step 2

Fig. 3. Overview of the proposed semi-supervised approach (SSL). The black line is the forward path and the blue line denotes back-propagation. There are two loss 
functions in this approach including Cross Entropy Loss (CE Loss) and Root Mean Square Error Loss (RMSE Loss). The hyperparameter c is the confidence factor.
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framework, both observed and unobserved data are used during the 
training regression network. Specifically, the proposed method trains a 
regression model F on observed data via conventional L RMSE loss 
function as follows: 

L RMSE(yi ŷi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(5) 

where ŷi = F γ(xi) denotes the output prediction SSC value from the 
network F and γ is the set of the trainable parameters of the network F . 
To estimate the SSC values on unobserved data, this method utilizes the 
classification model G that is pre-trained in the previous Step 1. The 
model G is first used to predict the class index and softmax scores on 
unobserved data in Eq. (6) as follows: 
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pj = G θ
(
zj
)

(6) 

In Eq. (3), the predicted class q̂j is calculated by argmax
(

pj

)
. The 

proposed method then utilizes these outputs to generate the pseudo-SSC 
value for unobserved data in D u. The pseudo-SSC value is calculated as 
follows: 

ỹj =

(
q̂j × V

)
+
((

q̂j + 1
)
× V

)

2
(7) 

where ỹj illustrates the pseudo SSC value generated from pre-trained 
classification model G with input as zj. Note that the range of q̂j 

values is from 0 to K − 1. The upper bound and the lower bound of SSC 
values are determined by components (q̂j × V) and (q̂j + 1) × V. The 
average value between two points (the most negligible bias probably 
point) is suitable for representing the SSC number for this duration. Let 
denote ŷj as the predictive SSC value from the regression model (i.e., 
ŷj = F γ

(
zj
)
). The pseudo SSC value will be utilized to guide the training 

of the network F by minimizing the loss function in Eq. (8)

L
'
RMSE

(
ỹj, ŷj; pj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

j=1
1
(

max
(

pj

)
≥ c

)
×
(

ỹj − ŷj

)2
√
√
√
√ (8) 

where 1 equals to 1 if the unobserved data zj has the pseudo SSC value ̃yj 

with max
(

pj

)
≥ c. Specifically, in Eq. (8), the proposed SSL approach 

only retains the pseudo-SSC value ỹj with max
(

pj

)
≥ c where c is a 

hyper-parameter denoting the confidence factor, and the low- 

confidence predictions (max
(

pj

)
< c) will be ignored. Combining two 

loss functions Eq. (5) and Eq. (8), the final objective function in this 
proposed approach (semi-supervised-based deep neural networks 
(SSDNN)) is defined as follows: 

L SSDNN = αL RMSE + βL ʹ
RMSE (9) 

The pseudo-code of training the regression model is illustrated in 
Algorithm 2.

4. Results and discussion

4.1. Experimental settings

In this study, 85 % and 15 % of the data are used for training and 
testing, respectively. The training and testing data set are selected to 
represent all kinds of flow events, ranging from flood events (e.g., 2001 
and 2011) and dry events (e.g., 1997 and 2010), and the period of dam 
impacts (2012–2019) is included in the training and testing phase. Such 
a consideration guarantees the balance between the two data sets 
regarding extreme values. The construction of mega dams (e.g., Manwan 
(1993), Xiaowan (2010), Nuozhadu (2014)) may change the nature of 
sediment transport (i.e., dams trap sediment in the reservoirs) (WLE, 
2020), thus affecting the learning ability of the machine learning models 
if not well trained. Therefore, the SSC data before and after the con-
struction of dams need to be included in the training data set to provide 
plausible ranges of data values for the models to learn.

4.1.1. Pre-processing
The correlation coefficient method is applied to find independent 

variables (i.e., P, Q) that have significant correlations with the depen-
dent variable (i.e., SSC). The temporal correlation for time series with 
different time lags is determined and suggested as dominant inputs for 
ML models. The model inputs for discharge were similar at Chiang Saen, 
Nong Khai, and Mukdahan, at time t, t − 1, t − 2, and t − 3, while those 
for precipitation were at time t − 4, t − 5, t − 6, t − 7 at Chiang Saen and 
Nong Khai, and t − 1, t − 2 at Mukdahan. In this case, t is the selected 

time, and t − 1, …, t − 7 are 1-day, …, 7-day lagged times. Notably, the 
fact that the precipitation at Mukdahan has a different time lag can be 
explained based on the orography and geographical distance. The 
terrain in Mukdahan consists of a combination of plains and small hills. 
Due to the flat terrain, Mukdahan tends to receive more concentrated 
rainfall compared to Chiang Saen and Nong Khai, which have higher 
mountainous terrain.

4.1.2. Normalization
All input variables are rescaled into a range of [0,1] using the Min- 

max scaler before feeding them to the ML models to avoid range value 
differences (Singh and Singh, 2020), as shown in Eq. (10). 

xʹ =
x − min(x)

max(x) − min(x)
(10) 

where x is the feature that should be normalized, and max(x) and min(x)
are the maximum and minimum values of the observed data, respec-
tively.

4.1.3. Evaluation criteria
The models' performances were evaluated by the Nash–Sutcliffe ef-

ficiency coefficient (NSE) (Gupta et al., 2009) and the traditional root 
mean square error (RMSE) measure. NSE values range from − ∞ to 1, 
where 1 indicates a perfect match between the results from models and 
the observed data, and smaller NSE shows less association. In contrast, a 
lower RMSE value presents better models' performance. The NSE is 
calculated as follows: 

NSE = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (11) 

where yi is the observed data, ŷi is the predicted data from the models 
and y is the mean of the observed data.

4.1.4. Parameter optimizations
For MLP, CNN, and LSTM, all of these models are optimized by Adam 

optimizer with an initial learning rate of 0.001, β1 of 0.9, and β2 of 0.99. 
The weight decay is set to 1× 10− 4. The mini-batch of 256 samples was 
used and training is done in 200 epochs. The learning rate is adjusted by 
the cosine scheduler with a warmup of 10 epochs. SVM for regression (C 
= 1.0, epsilon = 0.2), Random Forest (max_depth = 2, random_state =
0), and XGBoost (n_estimators = 1000, max_depth = 7, eta = 0.1, sub-
sample = 0.7, colsample_bytree = 0.8). Other hyperparameters are set 
by default values. The network architectures for these models can be 
found in the appendices.

4.2. Performance evaluation

4.2.1. Performance comparisons
Table 1 shows performances of SSC-Q rating curves, traditional ML 

techniques, state-of-the-art semi-supervised methods, and the proposed 
semi-supervised model (with different ML models as the classifier and 
regressor) based on the test data for all three stations Chiang Saen, Nong 
Khai, and Mukdahan in the MRB.

The SSC-Q rating curve has been successfully used in the MRB (Wang 
et al., 2011; Lu et al., 2014; Darby et al., 2016; Binh et al., 2020a) to 
estimate the SSC. Despite its simplicity, SSC-Q rating curves acquire 
better performance than LR, SVR, and RF in major cases. For example, it 
outperforms LR and SVR by both RMSE and NSE at the Chiang Saen, 
Nong Khai, and Mukdahan stations. It also performs better than RF at the 
Nong Khai and Mukdahan stations. Barberena et al. (2023) estimated 
the SSC from turbidity, and indicated that more variables should be 
included to estimate the SSC. According to the authors, this conclusion is 
specifically applicable to small and medium basins which should be 
different from a large basin like the MRB. The SSC in the Vietnamese 
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Mekong Delta can be estimated using the turbidity-SSC rating curve with 
very high coefficients of determination of up to 0.9945 (Binh, 2019), 
thus this method could be applied to predict the SSC in the MRB. The 
extreme data sparsity problem in these stations might be a reason. With 
too little data to train the models like in this case, ML models tend to be 
overfitted to train data and thus reduce their overall forecasting per-
formance. XGBoost, with its ability to handle data sparsity, acquires 
significantly better performance than SSC-Q rating curves at Chiang 
Saen station but still fails to overcome SSC-Q rating curves at the other 
two stations. On the other hand, CatBoost dominates XGBoost and RF, 
and it also performs better than LR, SVR, and SSC-Q rating curves at two 
over three stations including Chiang Saen and Mukdahan.

Deep learning-based methods including MLP, CNN, and LSTM 
outperform SSC-Q rating curves at all stations. However, CatBoost still 
has better performances than MLP, CNN, and LSTM at Chiang Saen. 

Though MLP and CNN has better accuracy than LSTM in major cases, 
those are only slightly better than CatBoost with comparable perfor-
mances at Chiang Saen and Mukdahan while being better at Nong Khai.

Though there is no existing semi-supervised approach for sediment 
reconstruction before, some state-of-the-art semi-supervised regression 
techniques are also employed as baselines for assessing the performance 
of the proposed method including CoReg, ⊓ Model, ICT, and Mean 
Teacher. As shown in Table 1, though these methods with the exception 
of CoReg have better results than SSC-Q, they are not better than Cat-
Boost, MLP, CNN, or LSTM overall.

With its ability to exploit unobserved data using combined classifi-
cation and regression models, the proposed semi-supervised approach 
helps to boost the performances of all its employed ML methods in most 
of cases. For instance, the NSE increases from 0.4 to 0.55 at Chiang Saen 
station for LSTM, while RMSE decreases from 201.13 mg/l to 196.56 

Table 1 
Performances of different approaches for sediment reconstruction at all stations. SSMLP, SSCNN and SSLSTM are the results of the proposed SSL frameworks using 
MLP, CNN and LSTM as the main classifier/regressor, respectively. STD denotes for standard deviation. The best results are shown in bold.

Models/method Chiang Saen Nong Khai Mukdahan

RMSE (STD) NSE (STD) RMSE (STD) NSE (STD) RMSE (STD) NSE (STD)

SSC-Q rating curves 592.16 (0) 0.3 (0) 265.78 (0) 0.36 (0) 213 (0) 0.46 (0)
Linear Regression (LR) 611.97 (0) 0.12 (0) 214.97 (0) 0.19 (0) 246.63 (0) 0.41 (0)
SVR (SVM) 782.38 (0) − 0.44 (0) 203.53 (0) 0.27 (0) 309.07 (0) 0.08 (0)
Random Forest (RF) 443.66 (2.1) 0.54 (0.005) 252.84 (1.62) − 0.12 (0.013) 258.84 (0.74) 0.36 (0.005)
XGBoost 420.80 (16.21) 0.58 (0.033) 256.81 (7.71) − 0.16 (0.071) 236.04 (9.39) 0.46 (0.044)
CatBoost 396.73 (4.66) 0.63 (0.01) 257.85 (2.43) − 0.17 (0.023) 225.12 (1.97) 0.51 (0.01)
MLP 400.91 (10.23) 0.60 (0.019) 181.50 (6.62) 0.51 (0.037) 201.66 (13.44) 0.61 (0.054)
CNN 406.36 (6.62) 0.59 (0.014) 181.98 (9.21) 0.51 (0.049) 201.13 (6.94) 0.61 (0.027)
LSTM 490.62 (2.98) 0.40 (0.008) 174.27 (9.05) 0.54 (0.045) 207.91 (2.69) 0.57 (0.001)
CoReg 475.43 (13.61) 0.47 (0.028) 261.05 (5.69) − 0.20 (0.052) 250.04 (2.28) 0.40 (0.013)
⊓ Model 399.32 (5.19) 0.62 (0.008) 232.32 (2.2) 0.05 (0.017) 227.36 (2.2) 0.50 (0.008)
ICT 399.81 (3.27) 0.62 (0.008) 232.15 (2.25) 0.05 (0.019) 227.45 (1.69) 0.50 (0.008)
Mean Teacher 398.82 (3.85) 0.62 (0.008) 231.96 (2.01) 0.05 (0.018) 227.76 (1.65) 0.50 (0.007)
SSMLP 378.96 (12.23) 0.64 (0.022) 181.08 (13.33) 0.52 (0.073) 201.28 (13.74) 0.61 (0.057)
SSCNN 406.15 (21.55) 0.59 (0.04) 184.19 (17) 0.49 (0.098) 196.56 (2.43) 0.62 (0.01)
SSLSTM 423.29 (12.37) 0.55 (0.027) 193.55 (9.48) 0.44 (0.056) 210.78 (4.07) 0.57 (0.016)

Fig. 4. Performance of the proposed semi-supervised approach with respect to different core ML algorithms at all stations.
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mg/l at Mukdahan station for CNN. When using MLP as its core 
component, that semi-supervised approach, denoted as SSMLP, out-
performs all other methods (including MLP itself) at all stations. 
Particularly, its RMSE are 378.96 mg/l, 181.08 mg/l, and 201.28 mg/l 
at Chiang Saen, Nong Khai, and Mukdahan, respectively, while its NSE 
values ranged from 0.52 to 0.64 at three main stations.

Fig. 4 illustrates the performance of the proposed SSL framework 
with respect to different core ML algorithms including MLP, CNN, and 
LSTM at all three stations using scatter plots between observed and 
predicted values. The results are consistent with Table 1, SSMLP has the 
best performance in all stations.

For the rest of this paper, the performances of the proposed semi- 
supervised approach using MLP as a core ML model, denoted as 
SSMLP, will be further studied unless otherwise stated.

4.2.2. Performance of SSMLP in dry and flood seasons
The performances of SSMLP, the best-performing method, in the dry 

and wet seasons at three main stations are illustrated in Table 2. The 
SSMLP obtains better results in the dry seasons than those in the flood 
seasons. For example, the NSE in the dry seasons are 0.7, 0.71, and 0.67 
at Chiang Saen, Nong Khai, and Mukdahan, respectively, while those 
range from 0.35 to 0.48 at all main stations in the flood seasons. It can be 
explained that the heavy rains during the flood seasons significantly 
increase the sediment loads, thus making it harder to predict due to high 
fluctuations of values. The model performed better in the dry months 
because most of the SSC values in the time series used in the model were 
low and medium, which occurred mostly in the transitional and dry 
months. For instance, the SSC values of 0–1000 mg/l (14.24 % - 83.68 
%) dominate other ranges as shown in Fig. 7. Thus, the proposed model 
has more data of low and medium values to learn and produces more 
reliable results. Although not being examined, if we use the data only in 
the dry months to estimate the SSC, the results should be worse because 
the number of data for the ML models to learn is very limited. In that 
case, the model may not get enough information to learn to produce 
reliable results. Thanh et al. (2022) found that by establishing the ML 
models for the dry and flood seasons separately, the estimation of the 
discharge at a hydrological station in the Mekong basin became worse 
compared to using all the year-round data. They explained that such a 
result happened because the number of data for the ML models to learn 
became half for which the ML models could not leverage sufficient in-
formation to learn.

4.2.3. Performance of SSMLP in dry and flood years
Fig. 5 illustrates the reconstructed daily SSC values produced by 

SSMLP in comparison with observed data in 1997 (left) and 2001 (right) 
at Nong Khai station. Years 1997 and 2001 were the extreme drought 
and flood years and coincided with the occurrences of strong El Niño and 
La Niña that resulted in severe economic losses and reductions in agri-
cultural productions (Cosslett and Cosslett, 2018). The reconstructed 
SSC in the dry season (c.f., Fig. 5a) shows a good fit between observed 
data and prediction one than that in the flood season (Fig. 5b). Partic-
ularly, the results from SSMLP almost cover the peak values in the flood 
months and low values in the dry months in 1997, while the predicted 
results are underestimated in both dry and wet seasons in 2001. The 
results indicate that SSMLP produces better results to predict SSC in the 
dry months than those in the flood months. The same reason can be 
explained by the above study in the wet and flood seasons.

4.3. Ablation studies

4.3.1. Effects of the confidence factor c
Fig. 6a shows the performances of SSMLP compared to different 

values of the confidence factor c (c.f. Section 3). When c increases from 
0.1 to 0.9, the performance of SSMLP increases until it reaches a peak at 
0.5 and then starts to decrease. Too low confidence values can lead to 
many uncertain data being placed in the training data, thus lowering the 
overall performance. On the other hand, too high confidence values 
would reduce the number of new data to be put into the training set. 
Hence, this does not help to reduce the overfitting problem to improve 
the result. A default value of c = 0.5 is suggested.

4.3.2. Effects of the number of classes K
Fig. 6b shows the effects of the parameter K on the performance of 

this proposed method. When K is too small, the classification range is too 
big, which leads to the loss of important information and lowers the 
performance of the proposed algorithm. On the other hand, when K is 
too large, it reduces the performance of the classification model (Model 
1) due to many class labels, thus reducing the performance of the whole 
algorithm consequently. The model performances with different K 
values are not significant different. For all three stations, the best values 
are acquired when K is between 30 and 70 for RMSE and NSE. For all 
three stations, the best values are acquired when K = 50 for RMSE and 
NSE.

4.3.3. Effects of different training data on SSMLP
For all ML models, having good training data without noisy/ 

abnormal samples would help to improve the learning process and the 
overall prediction performance. Hence, in this part, the performance of 
SSMLP with respect to different training data is evaluated by adding/ 
removing some years with extreme events to/from the original training 
data. Overall, four cases are studied as follow: 

• Case 1: excluding extreme flood years (2000 and 2011) (Cosslett and 
Cosslett, 2018)

• Case 2: excluding extreme drought years (1997 and 2006) (Cosslett 
and Cosslett, 2018)

• Case 3: excluding years of dam impacts (2010–2019) (Binh et al., 
2020a; Lu and Chua, 2021)

• Case 4: including extreme flood years, extreme drought years, and 
years of high-dam impacts.

The results, shown in Fig. 6c, indicate that the performances of 
SSMLP are improved significantly with the contribution of all kinds of 
flow events, ranging from flood years to drought years and the period of 
high-dam impacts in the training phase (Case 4). For Cases 1 and 2, 
without extreme flood and drought years in the training data, the per-
formance of SSMLP is not significant different at Chiang Saen and 
Mukdahan, but it performs worse at Nong Khai. For example, the NSE 
values is 0.45 and 0.44 at Nong Khai for Case 1 and Case 2, respectively. 
For Case 3, the influences of dams are clearly observed after the 
completion of mega dams (e.g., Manwan (1993), Xiaowan (2010), 
Nuozhadu (2014)). Hence, the period of high dam impacts was not taken 
into account in the training data set, from which the performance of 
SSMLP is slightly better compared to Case 1 and Case 2. For Case 4, the 
training data set includes extreme flood and drought events and years of 
dam impacts, resulting in the best results. Particularly, NSE values are 
0.64, 0.52, and 0.61 at Chiang Saen, Nong Khai, and Mukdahan, 
respectively. Overall, the SSMLP produces the best model performance 
when the model is trained with all extreme cases (including drought, 
flood, and dam impact years).

4.3.4. Should each station to be trained separately?
Fig. 6d shows the performances of SSMLP in two different training 

scenarios. In the first scenario (Case A), SSMLP is trained separately for 

Table 2 
The performances of SSMLP at mainstream stations in the dry and flood seasons.

Stations Dry season Flood season

RMSE NSE RMSE NSE

Chiang Saen 179.55 0.70 484.37 0.48
Nong Khai 80.17 0.71 207.83 0.36
Mukdahan 78.42 0.67 254.87 0.35
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three stations. NSE values are 0.57, 0.57, and 0.45 at Chiang Saen, Nong 
Khai, and Mukdahan. In the second scenario (Case B), SSMLP is trained 
using data from all stations. As can be seen, the acquired results are 
better than those in the first scenario. Particularly, the NSE values range 
between 0.52 and 0.64 at Chiang Saen, Nong Khai, and Mukdahan, 
respectively. Overall, by aggregating data from all stations to train 
SSMLP, the proposed approach can enrich the training data and reduce 
overfitting, thus enhancing its performance.

5. Conclusion

Reconstructing missing SSC data plays an important role in the MRB 
to have long-term reliable SSC data for further research, such as 
assessing the impacts of climate change and human activities on sedi-
ment load in global river basins. However, it is a non-trivial task due to 
severe sediment data sparsity. The proposed semi-supervised DL 
framework provides a unique way to cope with this challenge by 

exploiting existing climate data to enrich the training process, thus 
enhancing the overall prediction accuracy. In addition, the perfor-
mances of many different supervised ML methods and especially existing 
semi-supervised learning techniques, which have not been employed for 
sediment reconstruction before, are thoroughly studied. This will pro-
vide a comprehensive view on the performances of different approaches 
and play an important role for researchers to select suitable models for 
their works in other locations. Extensive experiments conducted on data 
collected from 1979 to 2019 at three main stations in the Mekong River 
including Chiang Saen, Nong Khai and Mukdahan show that CatBoost 
and MLP acquire better accuracies than the SSC-Q rating curves and 
other state-of-the-art ML models like Random Forest, XGBoost, CNN, 
and LSTM. More importantly, the proposed semi-supervised framework 
can dramatically boost the performance of all employed ML models at all 
stations. Compared to state-of-the-art semi-supervised methods like 
CoReg, ⊓ Model, ICT, or Mean Teacher, the proposed SSL approach also 
acquires much better reconstruction accuracy. Deep studies show that 

Fig. 5. Reconstructed daily SSC values by SSMLP with respect to observed data at Nong Khai station in (a) dry year (1997) and (b) flood year (2001).

Fig. 6. Ablation studies: (A) Effects of the confidence factor c; (B) Effects of the number of classes K; (C) Effects of training data on the performances of SSMLP; and 
(D) The performances of SSMLP when being trained for each station separately.
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the proposed SSL framework can predict SSC during the dry periods 
better than during the flood ones. Moreover, the more diverse data are 
included in the training process (i.e., dry years, flood years, and dam 
impact years), the better the acquired performance.
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Appendix A 

Networks Architectures. The MLP network architecture is shown in Table 3. In which, FC, BN, and ReLU denote Fully Connected, Batch 
Normalization, and ReLU activation layers, respectively. The unit means the number of units in each FC layer. The CNN network architecture is shown 
in Table 4 where Conv denotes the convolution layer with f as the number of filters and k as kernel size. Table 5 presents the architecture of the LSTM 
network, in which, unit in each LSTM layer denotes the number of LSTM cells.

Table 3 
The MLP network architecture.

Layer Specification Output size

Input 10
FC unit = 8192 8192
BN, ReLU 8192
Dropout droprate = 0.5 8192
FC unit = 4096 4096
BN, ReLU 4096
Dropout droprate = 0.5 4096
FC unit = 2048 2048
BN, ReLU 2048
Dropout droprate = 0.5 2048
ReLU 2048
FC unit = 1 1

Table 4 
The CNN network architecture.

Layer Specification Output size

Input 10
Conv f = 256,k = 3 256
BN, ReLU 256
Conv f = 512,k = 3 512
BN, ReLU 512
Conv f = 1024,k = 3 1024
BN, ReLU 1024
Flatten 1024
Dropout droprate = 0.5 1024
FC unit = 1 1

Table 5 
The LSTM network architecture.

Layer Specification Output size

Input 10
LSTM unit = 512, layers = 3,bidirectional = True 512
LSTM unit = 512, layers = 3,bidirectional = True 512

(continued on next page)
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Table 5 (continued )

Layer Specification Output size

LSTM unit = 1024, layers = 3,bidirectional = True 1024
Flatten 1024
Dropout droprate = 0.5 1024
FC unit = 1 1

Fig. 7. Data distribution of SSC values across different gauging stations.

Extensive experiments are conducted to evaluate the model's performance with different test sizes. The test years include all extreme flow events 
(e.g., flood and drought years), and years of dams' impact. In Tables 6 and 7, the results of MLP and SSMLP are compared with test size ranging from 5 
% to 25 %. Results are highlighted in bold indicate SSMLP outperforms MLP, and vice versa. As can be seen, SSMLP helps to boost the performance of 
its barebone MLP in most cases (24/30 cases). That proves the effectiveness of the proposed semi-supervised learning framework.

Table 6 
Model performance of MLP with different test sizes.

Test sizes Chiang Saen Nong Khai Mukdahan

RMSE NSE RMSE NSE RMSE NSE

5 % 168.59 − 4 97.72 − 5.64 187.02 0.31
10 % 392.24 0.64 179.44 0.52 211.11 0.57
15 % 400.91 0.60 181.50 0.51 201.66 0.61
20 % 399.14 0.57 197.65 0.32 210.42 0.49
25 % 423.26 0.44 197.22 0.18 226.98 0.35

Results are highlighted in bold indicate MLP outperforms SSMLP.

Table 7 
Model performance of SSMLP with different test sizes.

Test sizes Chiang Saen Nong Khai Mukdahan

RMSE NSE RMSE NSE RMSE NSE

5 % 151.17 ¡3.07 77.65 ¡3.00 212.38 0.13
10 % 387.45 0.65 189.13 0.47 200.33 0.61
15 % 378.96 0.64 181.08 0.52 201.28 0.61
20 % 375.16 0.62 192.06 0.36 218.65 0.45
25 % 421.78 0.45 194.69 0.20 225.65 0.35

Results are highlighted in bold indicate SSMLP outperforms MLP.

Data availability

Daily precipitation and temperature were retrieved from CPC data-
sets, available at https://www.cpc.ncep.noaa.gov. The daily discharge 
and suspended sediment concentration at mainstream stations were 
obtained from the Mekong River Commission (https://portal.mrc
mekong.org/home). All these data are publicly available and were 
accessed in December 2022. 
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