EVALUATION OF COASTAL SEA LEVELS FROM JASON-2 SATELLITE ALTIMETER IN INDONESIAN REGIONAL SEAS

Maya Erika Sinurat1, Bismah Nababan2, Jonson Lumbang-Gao2, Henry Munandar Manik2, Nurul Hazrina Idris3,4, Stefano Vignudelli5

1Marine Technology Graduate Study Program, IPB University, Bogor, Indonesia
2Department of Marine Science and Technology, IPB University, Bogor, Indonesia
3Tropical Resource Mapping Research Group, Department of Geoinformation, Universiti Teknologi Malaysia, Malaysia
4Geosciences and Digital Earth Research, Research Institute for Sustainability and Environment, Universiti Teknologi Malaysia, Malaysia
5Institute of Biophysics Operating Italian National Research Council (CNR), Pisa, Italy

Introduction

- Indonesia is the largest archipelagic country and the second longest coastline in the world. Several cities in Indonesia are in low-lying coastal areas. They face serious risks due to sea level rise; therefore, the continuous monitoring of the sea level changes in Indonesia is extremely crucial.
- Unfortunately, very few tide gauges with long time series are available in Indonesia. But, sea level can be also measured with satellites using radar altimetry.
- Sea level studies in Indonesia have generally used gridded global altimetry data sets, which are too coarse and impacted by the presence of many islands (see the map below for an example).
- The aim of this study is to evaluate their performances over several Indonesian seas within 20 km from the coast by selecting the case-study of Jason-2 mission with available overlapping tide gauge measurements.

Allimetry data

20-Hz data of Jason-2, February 2011 to May 2015 from:

- SGDR
- Coastal products (PISTACH

and X-TRACK/ALES)

Re-trackers applied

MLE4, Ice4, COG3, Threshold (Thp), Improved Th (ITHp), Multi CAVRES, PISTACH

(Ice4, Oce3, Red3), X-TRACK/ALES

Study site

Pemangkat, Gebe, Sadeng, Waikelo and Saumlaki

Methodology

Figure 1. Sea level trend in Indonesia using gridded 0.2°x0.2° sea level anomaly data from 1993 to 2021 distributed by Copernicus Marine Environment Monitoring Service.

Hence, along-track data are better suited for Indonesia thanks to the possibility of re-tracking waveforms and improving processing.

There are several re-trackers that have been developed with different strategies in order to obtain the highest possible accuracy of sea level data in complex areas.

1 Available Data and Minimum Distance

Table 1. Mean percentage of available data on 123 cycles within 20 km to the coast and the minimum distance. The best results are shown in bold red.

<table>
<thead>
<tr>
<th>Re-tracker</th>
<th>Pemangkat</th>
<th>Gebe</th>
<th>Sadeng</th>
<th>Waikelo</th>
<th>Saumlaki</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE4</td>
<td>85 (7.6)</td>
<td>83 (4.2)</td>
<td>91 (4.5)</td>
<td>82 (7.6)</td>
<td>81 (7.1)</td>
</tr>
<tr>
<td>COG3</td>
<td>56 (11.9)</td>
<td>48 (12.8)</td>
<td>82 (4.5)</td>
<td>71 (13.2)</td>
<td>56 (9.3)</td>
</tr>
<tr>
<td>Ice</td>
<td>81 (8.1)</td>
<td>92 (4.2)</td>
<td>91 (4.5)</td>
<td>85 (7.3)</td>
<td>80 (7.1)</td>
</tr>
<tr>
<td>Thp</td>
<td>82 (7.6)</td>
<td>92 (4.2)</td>
<td>87 (4.5)</td>
<td>83 (7.3)</td>
<td>79 (7.6)</td>
</tr>
<tr>
<td>Thp, ITHp</td>
<td>87 (7.8)</td>
<td>92 (4.2)</td>
<td>89 (4.5)</td>
<td>85 (7.3)</td>
<td>81 (7.2)</td>
</tr>
<tr>
<td>Thp, ITHp, Red3</td>
<td>73 (9.3)</td>
<td>92 (4.2)</td>
<td>91 (4.5)</td>
<td>84 (7.3)</td>
<td>73 (7.4)</td>
</tr>
<tr>
<td>Thp, ITHp, Red3</td>
<td>93 (6.8)</td>
<td>92 (4.2)</td>
<td>88 (4.5)</td>
<td>85 (7.3)</td>
<td>79 (7.4)</td>
</tr>
<tr>
<td>Thp, ITHp, Red3</td>
<td>92 (7.6)</td>
<td>92 (4.2)</td>
<td>90 (4.5)</td>
<td>85 (7.3)</td>
<td>81 (7.3)</td>
</tr>
<tr>
<td>Thp, ITHp, Red3</td>
<td>79 (8.5)</td>
<td>92 (4.2)</td>
<td>91 (4.5)</td>
<td>85 (7.3)</td>
<td>76 (7.4)</td>
</tr>
<tr>
<td>Thp, ITHp, Red3</td>
<td>91 (7.6)</td>
<td>92 (4.2)</td>
<td>97 (5.8)</td>
<td>84 (7.3)</td>
<td>89 (5.7)</td>
</tr>
<tr>
<td>Ice4</td>
<td>83 (9.1)</td>
<td>83 (4.2)</td>
<td>86 (4.5)</td>
<td>79 (8.4)</td>
<td>83 (5.9)</td>
</tr>
<tr>
<td>Red3</td>
<td>95 (8.6)</td>
<td>92 (4.2)</td>
<td>97 (5.8)</td>
<td>71 (12.7)</td>
<td>88 (5.8)</td>
</tr>
<tr>
<td>Multi CAVRES</td>
<td>92 (7.2)</td>
<td>92 (4.2)</td>
<td>87 (4.5)</td>
<td>84 (7.3)</td>
<td>79 (7.5)</td>
</tr>
<tr>
<td>X-TRACK/ALES</td>
<td>91 (8.4)</td>
<td>92 (4.3)</td>
<td>97 (5.8)</td>
<td>84 (7.3)</td>
<td>81 (4.8)</td>
</tr>
</tbody>
</table>

2 Evaluation with tide gauge data

- Re-tracker's performance varies at each observation point within an area.
- The correlations and RMSEs in all observation regions differ for SLA and TWLE.
- Clear gap between the products used (Ice4, Oce3, Red3, and X-TRACK/ALES), which are from the coastal products (PISTACH and X-TRACK/ALES) perform much better in a cluster range than SGDR-D.
- SLAs comparison is much lower correlations (mean <0.6) than TWLEs (mean>0.8). This is explained by the current global tidal model and dynamic atmospheric correction (DAC) are insufficient in Indonesian coastal areas.
- The best performance is at Sadang while the worst is at Waikelo.

Conclusion

- X-TRACK/ALES offers the highest percentage of available data in all observation regions (up to 97%) and brings reliable data up to 3.6 km to the coast.
- The comparison to TG results confirms that re-trackers from coastal products, particularly Ice4 and X-TRACK/ALES, provide the best performance with correlation of up to 0.98 and RMSE of up to 11 cm for TWLE.
- Geophysical correction is still challenging in Indonesian coastal regions, necessitating further study.

Acknowledgments

We acknowledge:
- RMDSL scholarship, Ministry of Education and Culture, Indonesia
- AVISO
- ESA Climate Change Initiative and the Sea Level CCI
- University of Hawaii Sea Level Center (USHLC)
- National Geospatial and Information Agency of Indonesia (BIG)
- Copernicus Marine Environment Monitoring Service (CMEMS)