Resilience in socio-ecological production landscapes and seascapes (SEPLS)

- **SEPLS**: Areas where **production activities** help to maintain **biodiversity** and **ecosystem services** in various forms while sustainably supporting the **livelihoods** and **well-being** of local communities (UNU-IAS and IGES eds. 2015)

- Harmonious human-nature interactions in the **dynamic mosaics** have allowed for **high-level resilience**
- But no guarantee that SEPLS will continue to be capable to absorb and adapt to the pressures associated with **new challenges** (e.g., climate change)
- A resilience approach is useful, considering the potential to maintain, revitalize and rebuild SEPLS in the new contexts
Indicators of Resilience in SEPLS

- A set of 20 indicators for communities to assess the social-ecological resilience of production landscapes and seascapes
 - Include qualitative and quantifiable indicators -- based on observations, perceptions and experiences of local communities
 - Capture different aspects of key systems (i.e., ecological, agricultural, cultural, social, economic)
 - Define spatial scale depending on how local community members identify the area (e.g., administrative, geographic boundaries).
Insights into planning and programming locally-led adaptation

- Being tested and applied in various sites to help measure social and ecological resilience of land/seascapes

- A tool for engaging local communities in adaptive management of land/seascapes:
 - Understand resilience in SEPLS
 - Enhance communications among stakeholders
 - Support development and implementation of resilience-strengthening strategies
 - Empower communities in decision-making processes and adaptive management

- Periodic use enables monitoring and evaluation and identification of priority actions for adaptive management.

(Dublin and Natori 2020)
Challenges to climate adaptation

Case studies from 71 mountain locations
Drivers, impacts, and responses assessed

Community-based responses for tackling environmental and socio-economic change and impacts in mountain social-ecological systems

Himangana Gupta, Maiiko Nishi, Alexandros Gasparratos
<table>
<thead>
<tr>
<th>Approaches for sustainability IPBES</th>
<th>Community responses to achieve sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote inclusive governance through stakeholder engagement</td>
<td>Case studies</td>
</tr>
<tr>
<td>- Engaging local community in forest management</td>
<td></td>
</tr>
<tr>
<td>- Supporting local organisations to improve environmental governance</td>
<td></td>
</tr>
<tr>
<td>- Creating legal framework for indigenous community-based forest management</td>
<td></td>
</tr>
<tr>
<td>Practice informed governance</td>
<td>- Creating local biocultural, traditional knowledge, and biodiversity databases</td>
</tr>
<tr>
<td>- Integrating traditional knowledge and practices into community-based conservation</td>
<td></td>
</tr>
<tr>
<td>- Providing technical support for traditional agriculture</td>
<td></td>
</tr>
<tr>
<td>Promote adaptive governance and management</td>
<td>- Establishing community protected areas</td>
</tr>
<tr>
<td>- Participatory community-based land use planning</td>
<td></td>
</tr>
<tr>
<td>- Coping traditionally - preservation of seed varieties; promotion resilient crop varieties</td>
<td></td>
</tr>
<tr>
<td>Conserve, manage effectively and sustainably use terrestrial landscapes</td>
<td>- Sustainably collect non-timber forest products from community forests</td>
</tr>
<tr>
<td>- Reforming grazing practices and implementing soil conservation measures</td>
<td></td>
</tr>
<tr>
<td>- Restoring watersheds</td>
<td></td>
</tr>
<tr>
<td>Improve sustainability of financial systems</td>
<td>- Improving market for sustainable forest products and local agricultural products</td>
</tr>
<tr>
<td>- Adopting payment of ecosystem services like schemes</td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td>Environment</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>KINNAUR, INDIA</td>
<td>HAKUSAN, JAPAN</td>
</tr>
<tr>
<td>Traditional knowledge loss</td>
<td>Climate and snow cover change</td>
</tr>
<tr>
<td>Single source of livelihoods</td>
<td>Impact of dam construction</td>
</tr>
<tr>
<td>Lack of decision making power</td>
<td>Loss of water resources</td>
</tr>
</tbody>
</table>

- Impact of dam construction
- Loss of apple production
- Loss of local knowledge
- Impact of construction
- More construction companies
- Loss of water resources
- Traditional livelihoods lost
- Depopulation
- Landslides

- Community speak
- Social
- Environment
- Economic
- Social
- Environment
- Economic

- KINNAUR, INDIA
- HAKUSAN, JAPAN
Community response

Climate change

KEY STAKEHOLDERS
- City/local government
- Academia
- Private sector
- Local NGOs
- Local people

KINNAUR, INDIA
- **KEY INDICATORS**
 - Landscape diversity
 - Food system diversity
 - Socio-ecological mobility
 - Income diversity

HAKUSAN, JAPAN
- **KEY INDICATORS**
 - Ecological interactions
 - Food system diversity
 - Ecosystem dependent livelihoods
 - Socio-ecological mobility

COMMUNITY SOLUTIONS
- New apple variety
- Documenting traditional knowledge
- Community-based decision making
- Preserving medicinal plant use culture

- Promoting sustainable tourism
- Youth entrepreneurship/volunteering
- Nature activities - Hiking, Marathons
- Passing down of traditional knowledge

ADAPTATION

SCIENCE
- Vulnerability
- Impact

POLICY
- Preservation
- Tourism

PRACTICE
- Community engagement
- Entrepreneurship