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Overview of project work and outcomes 

 

Non-technical summary 

 

Developing economies in Asia-Pacific, like many other such nations around the 

globe, are dependent on agriculture. In an overwhelming majority of these 

countries, the farming activities are rain-dependent, and consequently suffer from 

the recent extreme droughts/floods due to climate change.  Lack of reliable local 

climate prediction  is a serious constraint for efficeint adaptation to such challenge. 

For example, Vietnam lost ~US$110000000 due to the big drought in 2005, which 

affected ~8 million farmers.  In Philippines, 13 million hectares is typically affected 

by drought/floods.  

 

Nowadays, the Global Circulation Models (GCM) have become the main tool of 

climate studies and climate prediction/projection on a wide range of time scales 

from months to decades and hundreds of year. State-of-the-art models are able to 

quite successfully reproduce large scale atmospheric processes, particularly 

response of large scale circulation to changes in external forcings such as 

concentration of radiatively active gases, large scale surface properties, etc. To 

provide accurate information for regional applications climate prediction products 

from General Circulation Models (GCM) have to be “downscaled”. Most National 

Meteorological and Hydrological Services (NMHSs), particularly those of developing 

countries, do not have the expertise to downscale GCM outputs to local climate 

conditions. The carried out training course, which combined the lectures, sharing of 

experience, and computer lab sessions for development of downscaling tools for 

regional climate prediction, resulted in enhancement of the capacity of climate 

prediction over the Asia-Pacific region. Participants from NMHSs of the Philippines, 

Thailand, and Vietnam learned how to make downscaling predictions based on 

existing the existing APEC Climate Center  (APCC) Multi-Model Ensemble (MME) 

global seasonal forecasts. 

 

For NMHS’ use, APCC provides access to its forecasts in digital data format via 

internet, as well as access to Climate Information Tool Kit (CLIK) developed for 

climate data processing and analysis, that implies implementation of the received 

knowledge and skill in the national climate prediction institutions of the participants. 

 

Objectives 

 

-To enhance capacity of regional climate prediction within Asia-Pacific, through 



 
3 

training of specialists from NMHSs and transfer of state-of-the-art downscaling 

prediction technology 

 

-To provide basis for sustainable development of the Asia-Pacific region, especially 

for developing countries, by ensuring that participants will gain knowledge 

necessary for continuing research and development of regional climate prediction 

tools 

 

-To develop reliable tools for regional climate prediction based on global MME 

products disseminated by APCC for the use of NMHSs of Asia-Pacific countries, and 

to leverage the end value of existing APCC MME forecasts 

 

- To share knowledge and experience of the participants in climate 

prediction/projection 

 

- To develop the basis for future collaboration between the institutions represented 

by the participants 

 

Amount received and number years supported 

The Grant awarded to this project was: US$ 40,000 for 2008-09 

• Funding utilized is US$ 32000 

 

Work undertaken 

 

In advance of the training course, the specialists of APCC, Hydrometeorological 

Research Centre of the Russian Federation, and National Institute for Water and 

Atmosphere (New Zealand) prepared the lecture and seminar materials. APCC 

prepared hard- and software necessary for the course. The participants were 

appointed by the NHMSs. The training course “Regional Downscaling for Asia-Pacific 

Region using APEC Climate Center’s operational  Global rolling monthly 3-monthl 

Climate Prediction” was conducted at APEC Climate Center, Busan, Republic of 

Korea, from September 22 to November 10, 2008. The participants from the 

Philippines, Thailand, Vietnam, the Russian Federation, Republic of Korea took a 

course of lectures, seminars and, mainly, computer lab sessions. During these 

sessions participants developed their applications based on the CLIK (Climate 

Information Tool Kit) software, developed by the APCC. 

 

Results 

The main results of the Training Course can be summarized as: 

1. Theoretical knowledge in up-to-data downscaling techniques and in multi-model 
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combination. The participants acquired the latest downscaling and regional climate 

prediction technique and become able to apply these techniques in their home 

institutions.  

2. Practical experience in access to and processing of the APCC data – global model 

outputs along with practical experience in the usage of the APCC CLIK for the 

purposes of downscaling  

3. Ready to use CLIK software with internet-based access and control and 

customization for downscaling prediction customization for each participant’s region 

of interest, using global APCC MME forecast as input. 

4. Theoretical knowledge in downscaling theory provides the participants with 

capability to continue improvement of downscaling methods for their regional use 

and development of their particular region-oriented applications using CLIK. 

5. Enhancement of existing and development of new cooperation practice in the 

region. 

 

Relevance to the APN CAPaBLE Programme and its Objectives 

 

The work carried out under the project was consistent with the objectives of APN’s 

CAPaBLE Programme.  Specifically: 

 

It enhances the capacity of regional climate prediction of developing countries of 

the region by training participants form NMHSs and developing improved and more 

reliable regional climate prediction tools based on downscaling.  

It leverages the end value of existing MME seasonal prediction products freely 

distributed by APCC.  

The resulting enhanced capability for climate prediction should also lead to better 

local and regional planning and preparedness for impacts of climate extremes and 

climate variability. 

 

This project is also relevant for generating knowledge of changes of the climate 

system on short-term/seasonal timescales (including climate extremes related to El 

Nino/La Nina), for translating their impact on the local scale, and for creating a 

network for transferring and sharing climate prediction information through 

enhanced regional and international cooperation. 

 

Self evaluation 

 

Results from the project match the posted objectives. Specifically, the specialists 

from the developing countries got necessary knowledge and experience in operation 

with outputs from global circulation models and state-of-the-art downscaling tools; 
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in developing of their particular options of the downscaling software; and as a result, 

participants become able to further adjust downscaling schemes to their particular 

conditions, develop new schemes. The very important result from the course is 

opportunity for cooperative development and implementation of the downscaling 

tools. 

 

Potential for further work 

 

APCC provides free access to its data and user-friendly CLIK interface via Internet 

for the specialists from NMHSs of the Asia-Pacific region. Owing to the training 

course the participants become able to perform downscaling from the APCC 

forecasts via the Internet interface in the real-time mode (operational forecast) 

using existing methods. Within the framework of CLIK software, there is a potential 

for development and implementation of new advanced downscaling methods, which 

provides the bases for further cooperation between APCC and NMHSs – the users of 

the APCC data and software. 

 

Publications 

1. CD-ROM: Lecture and seminar materials from the Training Course 

2. Web-site: Lecture and seminar materials from the Training Course  

3. Manual on the CLIK 

4. Paper “Downscaling from the multi-model ensemble predictions for East Asia” 

(under preparation, to be submitted to GRL). 
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Introduction 

 

In the past 20 years, climate scientists have made tremendous advances in 

understanding and modeling the variability and predictability of the climate system 

since the dynamical predictability recognized (Charney and Shukla 1981; Shukla 

1981, 1985; Miyakoda et al 1986) and boundary-forced predictability broadened 

the possibility of climate prediction (Charney and Shukla 1981; Shukla 1985; 

Bengtsson et al. 1993). Prediction of seasonal-to-interannual climate variations has 

become operational since the NCEP and ECMWF started to produce operational 

ensemble forecast using atmospheric general circulation models (AGCMs) (Tracton 

and Kalnay 1993; Palmer et al. 1993). A number of meteorological centers 

worldwide have implemented routine dynamical seasonal predictions using coupled 

atmosphere-ocean-land climate models, such as ECMWF, NCEP, and Bureau of 

Meteorology Research Centre (BMRC) (Palmer et al. 2004; Saha et al. 2006; Wang 

et al. 2002). It has been also recognized that multi-model ensemble (MME) 

seasonal prediction is superior to any individual models due to effective reduction in 

inherent model errors (Krishnamurti et al. 1999, 2000; Doblas-Reyes et al., 2000; 

Shukla et al. 2000; Palmer et al. 2000, 2004; Kharin et al. 2002; Barnston et al. 

2003; Yun et al., 2003 and 2005). Now, the MME prediction has become operational 

at the European Center for Medium range Weather Forecasting (ECMWF) in Europe, 

APEC Climate Center (APCC) in Asia-Pacific region, and International Research 

Institute for Climate and Society (IRI) in USA. The APEC Climate Center is a major 

APEC science activity that was established in November 2005 during the leaders 

meeting of the Asia-Pacific Economic Forum in Busan, Korea. It produces seasonal 

and monthly forecasts of climate conditions for all seasons around the globe. Till 

2007, APCC was issuing operational seasonal forecasts four times a year. However, 

since January 2008, APCC has started issuing monthly rolling 3-month forecasts 

since January. 

 

APCC climate forecasts are based on model simulations from 15 prominent climate 

forecasting centers (See Figure 1) and institutes in the APEC region. These 

forecasts are collected and combined using state-of-the-art schemes to produce a 

statistically 'consensual' forecast. The APCC forecasts are based not just on the 

magnitude of the seasonal changes that are predicted, but also take into accounts 

their simulated probability. 
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Figure.  1 Multi-Institutional cooperation 

 

 

Original dynamical model data including forecasts and hindcasts are firstly collected 

from the model holders in APEC members. Then these data are subject to 

standardization of format. These data are stored in each file with only one variable, 

one ensemble member and one month. Next, quality check procedures are 

performed for the forecast data, and the data, which clear the quality control, are 

used for further MME procedure of hindcast, in conjunction with observed datasets 

to develop to calculate the relevant hindcast statistics/relationships, and also to 

generate the MME forecasts. 

 

APCC produces seasonal forecasts of precipitation, T850, Z500, with relevant 

hindcasts, applying five methods:  

1. Simple composite method (SCM) 

2. Probabilistic forecast (GAUS) 

3. Step-wise pattern projection (SPP) 

4. Multiple regression based blend of model ensemble means (MRG) 

5. Synthetic multi-model ensemble (SSE) 

 

The time schedule for APCC operational procedure is generally made as table 2.1. 

During the first 10 days in the month before the forecasting season, all participating 

model data are collected. From the middle of the second week, these data are 
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processed into basic data with the same format and then Quality Checks are 

conducted for these basic data. Then, from the middle of the second week to the 

middle of the third week, APCC MME forecasts are carried out. After that, two days 

are needed for APCC outlook. The outlook is published every month after prior 

consultation and discussions with the working group and SAC of APCC (see 

Appendix-I for the latest monthly 3-month forecast outlook from APCC). 

 

Nowadays, the Global Circulation Models (GCM) have become the main tool of 

climate studies and climate prediction/projection on a wide range of time scales 

from months to decades and hundreds of year. State-of-the-art models are able to 

quite successfully reproduce large scale atmospheric processes, particularly 

response of large scale circulation to changes in external forcings such as 

concentration of radiatively active gases, large scale surface properties, etc. 

However, small scale climate peculiarities are oftern limited by the global model 

coarse spatial resolution or the approximations involved in parameterizing the 

atmospheric/oceanic physical processes. Moreover, local climate conditions are 

strongly affected by local surface properties, such as relief, ground-water 

distribution, vegetation, soil, etc. since these local surface properties modulate the 

impact from the large scale circulation on the local climate. 

 

Therefore, there is a strong need in linking local climate conditions with large scale 

atmospheric processes simulated by GCMs. In general, the purpose of downscaling 

is to transfer the model simulated climatic signal from the coarse model grid to 

target station (city, town, settlement) taking into account the local surface 

properties. For some variables, poorly reproduced and predicted by the models, 

such as rainfall, downscaling appears the only way to obtain reliable 

prediction/projection. 

 

The main goal of the conducted training course on downscaling was  

-To enhance capacity of regional climate prediction within Asia-Pacific, through 

training of specialists from NMHSs and transfer of state-of-the-art downscaling 

prediction technology 

-To provide basis for sustainable development of the Asia-Pacific region, especially 

for developing countries, by ensuring that participants will gain knowledge 

necessary for continuing research and development of regional climate prediction 

tools 

-To develop reliable tools for regional climate prediction based on global MME 

products disseminated by the APEC climate Center (APCC for the use of NMHSs of 

Asia-Pacific countries, and to leverage the end value of existing APCC multi-model 

multi-ensemble (MME)  forecasts. The basis for using the APEC climate center 
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glonal prediction products to develop regional climate predictions is because it is 

now known that the multi-model multi-ensemble (MME) prediction technology, 

involving dynamic climate forecasts from several constituemt numerical model 

produces results significantly improved as compared to many of the results from 

the  individual models (See Yun et al., 2003, 2005 for details). A number of 

meteorological centers worldwide have implemented routine dynamical seasonal 

predictions using coupled atmosphere-ocean-land climate models, such as ECMWF, 

APCC, IRI etc. APCC operates the world’s biggest MME setup to issue its operational 

monthly 3-month forecasts. It has also developed expertise in statistical 

downscaling of its predictions for Korea and produces operational downscaling 

products. 

 

2. Methodology 

 

2.a. Course organization 

There were three stages of the course implementation. 

 

On the first, preparatory stage, APCC prepared and equipped with computers and 

all the necessary communication facilities the working places for the participants.  

 

Specialists from APCC prepared lectures on deterministic downscaling methods and 

seminars on the use of APCC computing system and a software kit. 

 

HMC prepared the lectures on probabilistic downscaling and multi-model approach 

to climate prediction. 

 

NIWA provided the lectures on downscaling with application of the linear algebra 

based methods. 

 

The second stage, was the training course. The training course “Regional 

Downscaling for Asia-Pacific Region using APEC Climate Center Global Seasonal 

Climate Prediction” was conducted at APEC Climate Center, Busan, Republic of 

Korea, from September 22 to November 10, 2008 (The Program of the training 

course – see Appendix I). Four participants came to Busan from the Asia-Pacific 

countries (List of participants – see Appendix II). It was opened with the seminars 

where climate peculiarities of each of the participating countries were analyzed. The 

following training course combined lectures, seminars and hand-on computer 

sessions. 

 

Lectures. The lectures cover three main topics: Theory and strategy of downscaling 
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from the GCM outputs; Deterministic and probabilistic downscaling technique; 

Multimodel approach in downscaling practice. 

 

Seminars. The nuances and peculiarities of various downscaling realizations were 

discussed and analyzed in the seminars. Special attention was paid to possible 

sources of the errors and methods allowing the developers to avoid those errors. 

Another topic also performed in a seminar form was the training in the use of the 

APCC computing system and software kit (CLIK – Climate Prediction and 

Information Toolkit (developed at APCC), NCL – NCAR Command Language, GRADS, 

Fortran). 

 

Computer sessions. The main part of the course consisted of the hand-on computer 

sessions. On the basis of the knowledge obtained in the lectures and seminars, the 

participants trained in developing their own downscaling applications using the CLIK, 

APCC model predictions and the station data from their countries. Obtained results 

were verified, analyzed, necessary corrections made and new series of experiments 

performed.  

 

The third stage was the analysis of the obtained results and report writing. 

 

2.b. Technical methodology of dynamical seasonal forecasting and downscaling 

 

2.b. 1 Simple Composite Method (SCM) 

The following pages depict the 4 deterministic and 1 probabilistic forecast and 

hindcast MME methods used in the APCC climate predictions, followed by brief 

descriptions of the statistical downscaling philosophy and, finally, the online climate 

information tools. The partyicipant trainees were provided a thorough tringing on all 

these issues. The training coverrd npot only theoretical aspects, bit also  hands-on 

operational training and also access to the the relevant softwares. 

 

Multi-model ensemble (MME) technology has been considered as one of 

efficient solution to improve the weather and climate forecasts. The basic idea of 

MME is to avoid model inherent error by using a number of independent and skilful 

models in the hope of a better coverage of the whole possible climate phase spaces. 

SCM is a deterministic forecast scheme as a simple arithmetic mean of predictions 

based on individual member models. In SCM, there is an assumption that each 

model is relatively independent and to some extent, it has the capability to forecast 

the regional climate well, therefore we can expect a well model forecast by simple 

composite of each model prediction from different models. This scheme keeps the 

model dynamics due to the simple spatial filtering for each variable at each grid 
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point. In addition, this simple scheme contains the common advantage and 

limitation of the model predictions, therefore, it could be a good benchmark used to 

evaluate other MME schemes.  

 

SCM forecast constructed with bias-corrected data is given by 

∑
=

−+=
N

i
itit FF

N
OS

1
, )(1

                 

(2.1) 

where, Fi,t is the ith model forecast at time t, iF  and O is the climatology of 

the ith forecast and observation, respectively, and N is the number of forecast 

models involved. Therefore, the SCM results are generated by the combination of 

bias-corrected model forecast anomalies. Skill improvements result from the bias 

removal and from the reduction of the climate noise by ensemble averaging. In this 

scheme, the ensemble mean assigns the same weight of 1/N to each of the N 

member models in anywhere regardless of their relative performance. 

 

 

2.b. 2 Stepwise Pattern Projection Method (SPM) 

 

The new MME method (MME-SPPM) is based on the statistical downscaling 

method, which is named the stepwise pattern projection model (SPPM). The SPPM 

technique is an improved version of the current APCC MME method, CPPM. The 

major differences between the two techniques lie in the procedure for pre-predictor 

selection and the optimal choice of posterior prediction. It is shown that MME-SPPM 

offers better skill over the regions in which the average of individual model skill is 

poor. 

 

The SPPM procedure consists of three steps: pre-predictor selection, pattern 

projection, and optimal choice of prediction. In the first step, qualified predictors 

are selected based on cross-validated correlation for the training period. The 

predictor field is reconstructed by using the selected 100 predictors at different 

grids which are best correlated with the predictand. In the second step, the 

covariance pattern is constructed between observed and reconstructed predicted 

pattern and then  prediction is obtained by projecting predicted pattern on the 

covariance pattern using the following equation: 
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where is the new predicted predictand at time t,  is the observed standard 

deviation of predictand, is the covariance pattern between observed predictand and 

reconstructed predictor field,   is the predictor at grid i and time t, and   is the 

variance of the predictor at grid i. In the final step, we determine whether or not 

the selected predictand is predictable at each grid point using double cross-

validation with a given threshold correlation skill, say 0.3. The threshold value of 

correlation skill is subjectively chosen here. Thus, the rigorous test will be needed 

to determine the value for optimal prediction. If the prediction skill of double cross 

validation with the selected predictor pattern does fall below the threshold value, 

we consider the predictand is not predictable and then give up that predictor and 

prediction at that grid point. To make a final MME prediction, we apply a simple 

multi-model composite using available prediction after applying SPPM to individual 

models. We performed sensitivity study in order to determine optimal parameters 

of SPPM package based on independent forecast experiment. We also developed the 

method to produce improved multi-model probabilistic forecast after applying SPPM 

to each model. 

 

2.b.3 Multiple Regression (MRG) 

 

The conventional multi-model superensemble forecast (Krishnamurti et al., 

2000b) constructed with bias-corrected data is given by 

)(
1

,∑
=

−+=
n

i
itiit FFaOS                                                 (2.3.) 

Where, tiF ,  is the thi  model forecast for time t , iF  is the appropriate 

monthly mean of the thi  forecast over the training period, O  is the observed 

monthly mean over the training period, ia  are regression coefficients obtained by a 

minimization procedure during the training period, and n  is the number of forecast 

models involved. The multi-model superensemble forecast in equation (2.3.1) is not 

directly influenced by the systematic errors of forecast models involved because the 

anomalies term )( , iti FF −  in the equation accounts for each model’s own seasonal 

climatology. 

 

At each grid point for each model of the multi-model superensemble the 

respective weights are generated using pointwise multiple regression technique 

based on the training period.  

 

For obtaining the weights, the covariance matrix is built with the seasonal 

cycle-removed anomaly ( 'F ), 
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Where Train denote the training period, and i  and j  the i th and j th 

forecast models, respectively. 

 

The goal of regression is to express a set of data as a linear function of input 

data. For this, we construct a set of linear algebraic equations, 

C · x = 
~

'o ,                                                              (2.5) 
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 is a ( n x 1) vector containing the covariances of the 

observations with the individual models for which we want to find a linear 

regression formula, and 'o is seasonal mean-removed observation anomaly, C is 

the ( n x n ) covariance matrix, and x is an (n x 1) vector of regression coefficients 

(the unknowns). In the convectional superensemble approach, the regression 

coefficients are obtained using Gauss-Jordan elimination with pivoting. The 

covariance matrix C and 'o  are rearranged into a diagonal matrix C’ and ''o , and 

the solution vector is obtained as 
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where the superscript T denotes the transpose. 

 

The Gauss-Jordan elimination method for obtaining the regression coefficients 

between different model forecasts is not numerically robust. Problems arise if a zero 

pivot element is encountered on the diagonal, because the solution procedure 

involves division by the diagonal elements. Note that if there are fewer equations 

than unknowns, the regression equation defines an underdetermined system such 

that there are more regression coefficients than the number of {
'

jo }. In such a 

situation, there is no unique solution and the covariance matrix is said to be 

singular. In general, use of the Gauss-Jordan elimination method for solving the 

regression problem is not recommendable since singularity problem like the above 

are occasionally encountered. In practice, when a singularity is detected, the 

superensemble forecast is replaced by an ensemble forecast. 

 

SVD is applied to the computation of the regression coefficients for a set of 

different model forecasts. The SVD of the covariance matrix C is its decomposition 
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into a product of three different matrices. The covariance matrix C can be rewritten 

as a sum of outer products of columns of a matrix U and rows of a transposed 

matrix VT, represented as 

( ) ∑
=
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T
ji VUwUWVC

1
,, ,                 

(2.7) 

Here U and V are (n x n ) matrices that obey the orthogonality relations and W 

is an ( n x n ) diagonal matrix, which contains rank k  real positive singular 

values( kw ) arranged in decreasing magnitude. Because the covariance matrix C is 

a square symmetric matrix, CT = VWUT = UWTT = C. This proves that the left and 

right singular vector U and V are equal. Therefore, the method used can also be 

called principal component analysis(PCA). The decomposition can be used to obtain 

the regression coefficients: 
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(2.8) 

 

The pointwise regression model using the SVD method removes the singular 

matrix problem that cannot be entirely solved with the Gauss–Jordan elimination 

method. 

 

Moreover, solving Eq. (2.8) with zeroing of the small singular values gives 

better regression coefficients than the SVD solution where the small values jw  are 

left as nonzero. If the small jw  values are retained as nonzero, it usually makes 

the residual | C · x 2 
~
o | larger (Press et al. 1992). This means that if we have a 

situation where most of the jw  singular values of a matrix C are small, then C will 

be better approximated by only a few large jw  singular values in the sum of Eq. 

(2.7). 

 

2.b.5 Synthetic Super Ensemble (SSE) 

 

Despite the continuous improvement of both dynamical and empirical models, 

the predictive skill of extended forecasts remains quite low. Multi-model ensemble 

predictions rely on statistical relationships established from an analysis of past 

observations (Chang et al., 2000). This means that the multi-model ensemble 

prediction depends strongly on the past performance of individual member models. 
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In the context of seasonal climate forecasts, many studies (Krishnamurti et al., 

1999, 2000a,b, 2001, 2003; Doblas-Reyes et al., 2000; Pavan and Doblas-Reyes 

2000; Stephenson and Doblas-Reyes 2000; Kharin and Zwiers 2002; Peng et al., 

2002; Stefanova and Krishnamurti, 2002; Yun et al., 2003; Palmer et al., 2004) 

have discussed various multi-model approaches for forecasting of anomalies, such 

as the ensemble mean, the unbiased ensemble mean and the superensemble 

forecast. These are defined as follows: 

∑
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Here, Eb is the ensemble mean, Ec is the unbiased ensemble mean, S is the 

superensemble, Fi is the ith model forecast out of N models, iF  is the monthly or 

seasonal mean of the ith forecast over the training period, O  is the observed 

monthly or seasonal mean over the training period, and ai is the regression 

coefficient of the ith model. The difference between these approaches comes from 

the mean bias and the weights. Both the unbiased ensemble mean and the 

superensemble contain no mean bias because the seasonal climatologies of the 

models have been considered. The difference between the unbiased ensemble and 

the superensemble comes from the differential weighting of the models in the latter 

case. A major aspect of the superensemble forecast is the training of the forecast 

data set. The superensemble prediction skill during the forecast phase could be 

improved when the input multi-model predictions are statistically corrected to 

reduce the model errors. 

 

Fig. 2. Schematic chart for the superensemble prediction system. The new 

data set is generated from the original data set by minimizing the residual 
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error variance )( 2εE  for each model 

 

Figure 2. is a schematic chart illustrating the algorithm. The new data set is 

generated from the original data set by finding a consistent spatial pattern between 

the observed analysis and each model. This procedure is a linear regression 

problem in EOF space. The newly generated set of EOF-filtered data is then used as 

an input multi-model data set for ensemble/superensemble forecast. The 

computational procedure for generating the new data set is described below. 

 

The observation data (O) and the multi-model forecast data set (Fi) can be 

written as linear combinations of EOFs, which describe the spatial and temporal 

variability: 

)()(~),( xtOtxO n
n

n φ∑=                                                  (2.10a) 

)()(~),( ,, xTFTxF ni
n

nii ϕ∑=                  

(2.10b) 

Here, )(~ tOn , )(~
, tF ni  and )(xnφ , )(, xniϕ  are the principal component (PC) 

time series and the corresponding EOFs of the nth mode for the observation and 

model forecast, respectively. Index I indicates a particular member model. The PCs 

in eqs. (2.10) represent the time evolution of spatial patterns during the training 

period (t) and the whole forecast time period (t). We can now estimate a consistent 

pattern between the observation and the forecast data, which evolves according to 

the PC time series of the training observations. The regression relationship between 

the observation PC time series and the number of PC time series of individual model 

forecast data can be written as 

)()(~)(~
,,, ttFtO ni

n
nini εα +=∑ .                                           (2.11) 

With eq. (2.11) we can express the observation time series as a linear 

combination of the predictor time series. To obtain the regression coefficients αi,n 

the regression is performed in the EOF domain. The regression coefficients αi,n are 

found such that the residual error is minimized. The covariance matrix is 

constructed with the PC time series of each model. For obtaining the regression 

coefficients αi,n, the covariance matrix is built with the seasonal cycle-removed 

anomaly. Once the regression coefficients αi,n are found, the PC time series of new 

data set is written as 

)(~)(~
,, TFTF

n
nini

reg
i ∑= α                                                   (2.12) 

The new data set is now generated by reconstruction with corresponding EOFs 
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and PCs: 

)()(~),(~
, xTFTxF n

n

reg
ni

syn
i φ∑= .                                         (2.13) 

This EOF-filtered data set generated from the DEMETER coupled multi-model 

is used as an input data set for both multi-model ensemble and superensemble 

prediction systems that produce deterministic forecasts. What is unique about the 

new data set is that it minimizes the variance of the residual error between the 

observations and each of the member models. The residual error variance is 

minimized using a least-squares error approach. 

 

2.b.5 Probabilistic Multi-Model Ensemble (PMME)  

 

Probabilistic forecast are categorized as below-, near-, and above-normal 

based on predictions obtained from each member model. Each member model 

predictions are available with different number of ensemble members. Three 

equiprobable categories are classified by using normal (Gaussian) fitting method. 

The three categories for each member model are defined from climatological chance 

of occurrence for each category is 33.3% for the hindcast period. For each category, 

the forecast probability is obtained by counting the number of individual members 

that prediction a seasonal mean in that category, and combining on the basis of full 

probability formula with the weight according to square root of ensemble size for 

each model. The more detail methodology is as following. 

Gaussian approximation is underlain by the assumption that the variable is 

theoretically normally distributed, ),(~ σμNT  and all deviations from the Normal 

distribution are occasional due to the small sample size. This approach is not new, it 

is rather traditional and has been used in numerous studies in the past (Leith, 

1973; Madden, 1976; Zwiers, 1996; Kharin and Zwiers, 2001; Kharin and Zwiers, 

2003, and many others). 

We use hindcast data for estimation of the tercile boundaries ( bx  and ax ) 

and forecast data for estimation of the probabilities associated with each of the 

tercile. Within this approach, we assume that probability distribution functions of 

both hindcast and forecast are Gaussian PDFs. 

We approximate probability distribution of the hindcast data with the 

normal one with parameters μ  and σ  estimated based on the hindcast sample 

(ensemble). The two boundaries to determine three equiprobable categories are 

defined as bx  = μ -0.43 σ  and ax  = μ +0.43 σ . Forecast data probability 

distribution is also approximated with normal one with parameters μ  and σ  

estimated based on the forecast sample (ensemble). Probabilities of the terciles are 

estimated as, 
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∫
∞−
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(2.14) 
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(2.15) 

)()(1][Pr)( NPBPxxobAP xxax −−=<=                   

(2.16) 

where )(xf  is Gaussian probability distribution function:  

)
2

)(exp(
2

1)( 2

2

σ
μ

πσ
−

−=
xxf                    

(2.17) 

and μ  and σ  are the mean and standard deviation of the forecast data 

(ensemble).  

 

Figure 3 illustrates the probabilities of observing X  in one of the three 

equiprobable categories condition. The lower and upper threshold are defined by 

33.3% and 66.7% cumulative quantiles, respectively, of a probability density 

function (PDF) fitting to climatological PDF.  

 

 

Fig. 3 (a). Definition of the tercile borderlines using the climatological PDF. 

(b). Forecast probabilities of below-normal (PB ), near-normal (PN ), and 

above-normal (PA ). 

 

For each grid point, in order to merge three category probabilistic forecasts 

(above-normal, near-normal, and below-normal) the chi-square (χ2) test is applied. 

We estimate statistic  
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iii
i

EEO /)(* 2
3

1

2 −= ∑
=

χ ,                      

(2.18) 

where O is observed frequency and E is expected frequency equal to one third of 

ensemble size. Under the Null hypothesis (uniform probability distribution – forecast 

is uncertain) this statistic has χ2 probability distribution. We set significance level at 

0.05 and treat forecast certain and associated with maximal probability out of three 

categories if Null hypothesis is rejected.  

 

The participants were also trained on the hindcast and forecast verification 

methods follwed at APCC, which are essentially the WMO’s  recoomeded level 3 

skills. 

2.b. 6 Statistical Downscaling  

 

APCC has successfully developed and implemented a regression-based statistical 

downscaling technique for Korea. It is based on multi-predictor optimal selection 

and coupled pattern projection method  (Kang et al, 2008). Since Feb. 2008, the 

predictions of precipitation and temperature based on the downscaling scheme have 

been operationally provided for 60 Korean stations for every month. 

 

Experimental probabilistic interpretation of multi-model downscaled forecasts was 

carried out for one season. APCC plans to continuously make efforts on probabilistic 

downscaling based on accounting for combined uncertainty associated with 

regression and model spread. Moreover, development of a temporal downscaling 

method based on weather generator is initiated for fine-scale temporal information 

(e.g., wet/day days, rainfall amount, etc.).  
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Precipitation Temporal ACC (1983-2003) Precipitation Anomaly in 2008JJAPrecipitation Temporal ACC (1983-2003) Precipitation Anomaly in 2008JJA

 

Fig.1 Temporal correlation coefficients of downscaled precipitation during 1983 to 

2003 JJA (left) and predictions of downscaled precipitation in 2008 JJA (right) 

 

Interactive on line climate information (CLIK) tools: In order to promote better 

utilization of climate information, APCC has recently  developed a web-based tool 

kit. This online product, named CLIK (CLimate Information tool Kit),  aids users 

in retrieving and utilizing climate prediction data and information available from 

APCC data servers in a user friendly manner.  

The data processing engines powering CLIK at the backend are built on the NCAR 

Command Language (NCL) a powerful suite of libraries for climate data 

manipulation and visualisation.  

The web interface of CLIK is built on the popular web building framework known 

as Ruby on Rails (RoR). Both RoR and NCL are powerful frameworks , includes an 

extensive API (Application Program Interface) and allows easy incorporation of 

existing Fortan/C codes.  

Both frameworks are being extensively used at APCC. The automated forecast 

system(AFS), APCC¡¯s semi-automated operational framework is built upon NCL 

and has been in operational use at APCC since January 2008.  

Ruby on Rails (RoR) is a relatively new entry into the APCC workflow. RoR is an 

open-source web framework written in Ruby. Ruby in turn is a dynamic, open 

source, object oriented programming language with a focus on simplicity and 

productivity.  
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It has an elegant syntax that is natural to read and easy to write. Ruby is a 

language of careful balance. Its creator, Yukihiro Matsumoto, blended parts of his 

favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language 

that balanced functional programming with imperative programming.  

RoR is based on the the Model-View-Control pattern of separation and provides a 

full stack web-application and persistence framework that includes everything 

needed to create databasebacked web-applications.  

It enforces good design principles, consistency of code across your organization, 

and proper release management. Rails swept to world-wide attention in the spring 

of 2005. Since then, it has become a serious and popular alternative to traditional 

web development environments such as Java and .NET. From the Ajax in the view, 

to the request and response in the controller, to the domain model wrapping the 

database, Rails gives you a pure-Ruby development environment.  

Results and Discussion 

 

The main results from the Training Course could be combined into three groups:  

1. Theoretical knowledge in downscaling theory and techniques and in multi-model 

combination. 

2. Practical experience in access to and processing of the APCC basic data – global 

model outputs. 

3. Practical experience in the usage of the APCC CLIK for the purposes of 

downscaling. 

 

1. In the theoretical part of the training course the participants were given the 

lectures and seminars on the theory of downscaling, downscaling techniques and 

peculiarities of downscaling from multi-model ensemble forecasts. Particular 

lectures cover: deterministic and probabilistic approaches to downscaling, nuances 

of statistical applications for the downscaling from the model outputs, the basics of 

multi-model climate forecasting, and many other downscaling-related matters. 

 

2. APCC provides access to its data via Internet. During the course the participants 

got the skill in downloading large volumes of model output data, perform the data 

preprocessing procedures such as quality check, estimate of ensemble mean, 

spread, bias correction, anomalies, etc. These model outputs are used as predictors 

in downscaling procedures.  

 

3. APCC developed the software, CLIK (Climate Prediction and Information Toolkit), 
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for data processing and analysis. This software provides the users with the ability to 

develop their own applications by using the toolkit. The participants experienced in 

the development of the user applications for particular downscaling methods and so, 

they become able to develop the downscaling applications by themselves. 

 

The training course has been conducted on the basis of the model simulated global 

seasonal climate prediction data. However, the results from the course are not 

restricted to only the seasonal climate prediction. Downscaling approaches and 

general downscaling procedures are the same in both seasonal climate prediction 

and multi-decadal climate change projection (IPCC FAR, 2008), with the 

requirements posted to downscaling methods in the seasonal climate prediction 

framework being more strict and methods being verified more precisely. Therefore, 

the obtained knowledge and experience can be applied in the framework of the 

regional climate change assessments. 

 

 

4. Conclusions 

 

The goal of the Training Course “Regional Downscaling for Asia-Pacific Region using 

APEC Climate Center Global Seasonal Climate Prediction” has been achieved. The 

representatives of the developing countries of the Asia-Pacific region have got the 

knowledge in the downscaling theory and techniques and experience in performing 

of the downscaling procedures in application to their country needs. Furthermore, 

the participants have got access to the APCC multimodel ensemble dataset and to 

the ready to use CLIK tools developed by the APCC science team. Thus, it was 

achieved the main goal of the CAPaBLE program, i.e., the capacity building and 

enhancement for sustainable development in developing countries. 

 

 

5. Future Directions 

 

Future directions of regional cooperation in the enhancement of capacity of climate 

prediction and adaptation imply two future directions of development. The first one 

is improvement of the reliability of the existing downscaling methods and 

development of the new methods (e.g., probabilistic). The second direction is 

development of the regional decision supporting applications based on the 

downscaled predictions, however, this direction implies much closer integration 

within the region than it is today. So, the second directions is rather a proposal for 

the future, meanwhile, the development of the first direction, actually, provision of 

the countries in the region with the improved climate prediction tools can be started 
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nowadays. 

 

APCC developed the CLIK software in 2008. APCC provides free access to its data 

and user-friendly CLIK interface via Internet for the specialists from NMHSs of the 

Asia-Pacific region. Owing to the training course the participants become able to 

perform downscaling from the APCC forecasts via the Internet interface in the real-

time mode (operational forecast) using existing methods. Furthermore, within the 

framework of CLIK software, there is a potential for development and 

implementation of new advanced downscaling methods, which provides the bases 

for further cooperation between APCC and NMHSs and between NMHSs – the users 

of the APCC data and software. 
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Appendix I – Funding outside the APN 

 

APEC Climate Center:  

Financial: In-kind contributions $100,000 (toward staff 

time, data handling costs, software development costs etc.). 
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Appendix II – The Program of the training course 

 

 

APN DETAILED PROGRAM SCHEDULE 

Course Title : Training Course on Regional Downscaling for Asia-Pacific 

Region using APEC Climate Center Global Seasonal Climate 

Prediction 

Duration : September 22(Monday) - November 10(Monday), 2008 

Place : APEC Climate Center 

 

 

Date/Time Activities Responsible Location 

Sep 22 (Mon) Lecture  APCC 

09:30-11:30 Orientation Dr. Gun-Kyo Jung  

12:00-13:00 Lunch    

13:30-15:30   Seminar  “WMO LRF framework” Dr. Vladimir Kryjov  

18:00 Dinner   

Sep 23 (Tue) Lecture   

09:30-11:30 
Country Report / brain storming on

Challenges in local climate prediction 
Dr. Vladimir Kryjov   

12:00-13:00 Lunch   

13:30-14:30 Branstorming continues Dr. Vladimir Kryjov  

14:30-15:30 Global Climate Prediction System 
 Dr. Bong-Geun 

Song 
 

15:30-16:30 APCC Seasonal Prediction System Dr. Karumuri Ashok  

16:30-17:30 Further discussion, if necessary Dr. Vladimir Kryjov  

18:00 Welcoming Party   

Sep 24 (Wed) Lecture   

09:30-11:30 APCC Computing System I (Hardware) Mr. Hanse Yi  

12:00-13:00 Lunch   

13:30-15:30 APCC Computing System II (Software) Mr. Sang-Cheol Kim  

18:00 Dinner   

Sep 25 (Thu) Lecture   

09:30-11:30 Introduction to Grads Ms. Hye-In Jeong  

12:00-13:00 Lunch   

13:30-15:30 Introduction to NCL Ms. Soo-Jin Sohn  

18:00 Dinner   

Practice class 
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Sep 26 (Fri) Lecture   

09:30-11:30 Climate Information tool Kit (CLIK) Dr. Saji N. Hameed  

12:00-13:00 Lunch   

13:30-15:30 APCC Data Service System (ADSS) Mr. Doo-Young Lee  

18:00 Dinner   

Date/Time Activities Responsible Location 

Sep 27 (Sat)    

Sep 28 (Sun)    

Sep 29 (Mon) Lecture   

09:30-11:30 
(1) Potential of downscaling techniques for

climate applications 
Dr. Vladimir Kryjov  

12:00-13:00 Lunch   

13:30-15:30 (2) Graphic tools Dr. Vladimir Kryjov  

18:00 Dinner   

Sep 30 (Tue) Lecture   

09:30-11:30 

Probabilistic climate prediction. Basics and

different approaches to probabilistic

multimodel prediction 

Dr. Vladimir Kryjov  

12:00-13:00 Lunch   

13:30-15:30 

Overview of multivariate statistical

approaches: 

EOF, SVDA, CCA analysis 

Dr. Ashok Karumuri  

18:00 Dinner   

Oct 1 (Wed) Lecture   

09:30-11:30   Introduction to Fortran    Ms. Hye-In Jeong  

12:00-13:00 Lunch   

13:30-15:30 Overview of Downscaling tools Dr. Saji N. Hameed  

18:00 Dinner   

Oct 2 (Thu) Lecture   

09:30-11:30 

Probabilistic climate prediction. Basics and

different approaches to probabilistic 

multimodel prediction 

Dr. Vladimir Kryjov  

12:00-13:00 Lunch   
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13:30-15:30 Downscaling applications 
Dr. Vladimir Kryjov 

Dr. Saji N. Hameed  
 

18:00 Dinner   

Oct 3 (Fri)   Korea National Holiday   

Oct 4 (Sat)    

Oct 5 (Sun)    

Date/Time Activities Responsible Location 

Oct 6 (Mon) Interim Report   

09:30-11:30    

12:00-13:00 Visiting  KMA   

13:30-15:30    

18:00    

Oct 7 (Tue) Interim Report   

09:30-11:30    

12:00-13:00 Visiting  KMA   

13:30-15:30    

18:00    

Oct 8 (Wed) Interim Report   

09:30-11:30 Interim Report   

12:00-13:00 Lunch   

13:30-15:30 Interim Report   

18:00 Dinner   

Oct 9 (Thu) Interim Report   

09:30-11:30 Interim Report   

12:00-13:00 Lunch   

13:30-15:30 Interim Report   

18:00 Dinner   

Oct 10 (Fri) Interim Report   

09:30-11:30 Interim Report   

12:00-13:00 Lunch   

13:30-15:30 Interim Report   
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18:00 Dinner   

Oct 11 (Sat)    

Oct 12 (Sun)    

Date/Time Activities Responsible Location 

Oct 13 (Mon) Lecture   

09:30-11:30 
Deterministic downscaling 

: Coupled Pattern selection and projection 

Dr. Hongwen Kang  

 
 

12:00-13:00 Lunch   

13:30-15:30 
Deterministic downscaling 

: Multi predictor optimal selection  
Dr. Hongwen Kang   

18:00 Dinner   

Oct 14 (Tue) Lecture   

09:30-11:30 
Research I 

(The tropical controls of the Asian monsoon) 
Dr. Ashok Karumuri   

12:00-13:00 Lunch   

13:30-15:30 
Research II 

(The tropical controls of the Asian monsoon) 

Dr. Ashok 

Karumuri  
 

18:00 Dinner   

Oct 15 (Wed) Lecture   

09:30-11:30 APCC Monitoring System Ms. Soo-Jin Sohn  

12:00-13:00 Lunch   

13:30-15:30 Supercomputing at APCC Dr. Bong-Geun Song  

18:00 Dinner   

Oct 16 (Thu) Lecture   

09:30-11:30 
Deterministic downscaling: Introduction to

downscaling methods 
Dr. Hongwen Kang  

12:00-13:00 Lunch   

13:30-15:30 Deterministic downscaling: Strategy Dr. Hongwen Kang  

18:00 Dinner   

Oct 17 (Fri) Lecture   

09:30-11:30 

Probabilistic downscaling: Uncertainty of the

forecast and its assessment; multimodel

peculiarities 

Dr. Vladimir Kryjov  

12:00-13:00 Lunch   

13:30-15:30 

Code writing and implementation for 

probabilistic downscaling for different

regions 

Dr. Vladimir Kryjov 

Ms. Young-Mi Min 
 

18:00 Dinner   
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Oct 18 (Sat)    

Oct 19 (Sun)    

Oct 20 (Mon) Lecture   

09:30-11:30 
Probabilistic downscaling: Bayes theorem:

basics, likelihood function, multivariable case  
Dr. Vladimir Kryjov  

12:00-13:00 Lunch   

13:30-15:30 
Code writing and implementation for

probabilistic downscaling for different regions 

Dr. Vladimir Kryjov 

Ms. Young-Mi Min 
 

18:00 Dinner   

Date/Time Activities Responsible Location 

Oct 21 (Tue) Lecture   

09:30-11:30 
Probabilistic downscaling: verification

methods and metrics  
Dr. Vladimir Kryjov  

12:00-13:00 Lunch   

13:30-15:30 
Code writing and implementation for

probabilistic downscaling for different regions 

Dr. Vladimir Kryjov 

Ms. Young-Mi Min 
 

18:00 Dinner   

Oct 22 (Wed) Lecture   

09:30-11:30 

Probabilistic downscaling: multimodel

probabilistic prediction methods based on

Bayes theorem 

Dr. Vladimir Kryjov  

12:00-13:00 Lunch   

13:30-15:30 
Code writing and implementation for 

probabilistic downscaling for different regions 

Dr. Vladimir Kryjov 

Ms. Young-Mi Min 
 

18:00 Dinner   

Oct 23 (Thu) Lecture   

09:30-11:30 Research III  Dr. Bong-Geun Song  

12:00-13:00 Lunch   

13:30-15:30 Research � Ms. Young-Mi Min  

18:00 Dinner   

Oct 24 (Fri) Lecture   

09:30-11:30 Research � Mr. Doo-Young Lee  

12:00-13:00 Lunch   

13:30-15:30 Research � Ms. Kyong-Hee An  

18:00 Dinner   
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Oct 25 (Sat)    

Oct 26 (Sun)    

Oct 27 (Mon) Lecture   

09:30-11:30 
Deterministic downscaling: Implementations

and code writing � 
Dr. Hongwen Kang  

12:00-13:00 Lunch   

13:30-15:30 
Deterministic downscaling: Implementations

and code writing � 
Dr. Hongwen Kang  

18:00 Dinner   

Date/Time Activities Responsible Location 

Oct 28 (Tue) Lecture   

09:30-11:30 MME Forecast with CLIK 
Dr. Saji N. Hameed  

Ms. Kyong-Hee An 
 

12:00-13:00 Lunch   

13:30-15:30 MME Forecast with CLIK 
Dr. Saji N. Hameed  

Ms. Kyong-Hee An 
 

18:00 Dinner   

Oct 29 (Wed) Lecture   

09:30-11:30 Downscaling Forecast with CLIK 
Dr. Saji N. Hameed  

Ms. Kyong-Hee An 
 

12:00-13:00 Lunch   

13:30-15:30 Downscaling Forecast with CLIK 
Dr. Saji N. Hameed  

Ms. Kyong-Hee An 
 

18:00 Dinner   

Oct 30 (Thu) Lecture   

09:30-11:30 Extending CLIK Functionality I 
Dr. Saji N. 

Hameed 
 

12:00-13:00 Lunch   

13:30-15:30 Extending CLIK Functionality II 
Ms. Kyong-Hee 

An 
 

18:00 Dinner   

Oct 31 (Fri) Lecture   

09:30-11:30 Analisys of forecast  
Dr. Ashok 

Karumuri 
 

12:00-13:00 Lunch   

13:30-15:30 Verification 
Dr. Vladimir 

Kryjov 
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18:00 Dinner   

Nov 1 (Sat)    

Nov 2 (Sun)    

 

Date/Time Activities Responsible Location 

Nov 3 (Mon) Lecture   

09:30-11:30 
Downscaling of NDJ Forecast of station

levels 
Dr. Hongwen Kang  

12:00-13:00 Lunch   

13:30-15:30 Verification Ms. Young-Mi Min  

18:00 Dinner   

Nov 4 (Tue) Lecture   

09:30-11:30 Final report 

Dr. Vladimir Kryjov 

Dr. Ashok Karumuri  

Dr. Saji N. Hameed 

 

12:00-13:00 Lunch   

13:30-15:30 Final report 

Dr. Vladimir Kryjov 

Dr. Ashok Karumuri  

Dr. Saji N. Hameed 

 

18:00 Dinner   

 Nov 5 (Wed) Lecture   

09:30-11:30 Final reports 

Dr. Vladimir Kryjov 

Dr. Ashok Karumuri  

Dr. Saji N. Hameed 

 

12:00-13:00 Lunch   

13:30-15:30 Final reports 

Dr. Vladimir Kryjov 

Dr. Ashok Karumuri  

Dr. Saji N. Hameed 

 

18:00 Dinner   

Nov 6 (Thu) Lecture   

09:30-11:30 Final reports 

Dr. Vladimir Kryjov  

Dr. Ashok Karumuri  

Dr. Saji N. Hameed 

 

12:00-13:00 Lunch   

13:30-15:30 Review and evaluation 

Dr. Woo-Jin Lee 

Dr. Vladimir Kryjov  

Dr. Ashok Karumuri  

Dr. Saji N. Hameed 

 

18:00 Dinner   
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Nov 7 (Fri) Lecture   

09:30-11:30 Review and evaluation 

Dr. Woo-Jin Lee 

Dr. Ashok Karumuri 

Dr. Saji N. Hameed  

Dr. Vladimir Kryjov 

 

12:00-13:00 Lunch   

13:30-15:30 Review and evaluation 

Dr. Woo-Jin Lee 

Dr. Vladimir Kryjov  

Dr. Ashok Karumuri 

Dr. Saji N. Hameed 

 

Nov 10 (Mon) Lecture   

09:30-11:30 Review and evaluation 

Dr. Woo-Jin Lee 

Dr. Ashok Karumuri  

Dr. Saji N. Hameed  

Dr. Vladimir Kryjov 

 

12:00-13:00 Lunch   

13:30-15:30 
Review and evaluation 

 Report writing 

Dr. Ashok Karumuri  

Dr. Saji N. Hameed  

Dr. Vladimir Kryjov 

 

18:00 Farewell Party   
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Abstract 

 

 

This paper presents the use of CLIK technique to establish the statistical 

relationship between station rainfall in the Philippines under the Type 1 climate and 

the larger-scale atmospheric circulation from GCM outputs for 4 target seasons 

(MAM, JJA, SON, DJF). The downscaling is carried out for each station in the Type 1 

climate for each model in a cross-validation manner. This downscaling technique is 

based on linear regression models and makes use of long-term GCM hindcasts data 

to derive the dynamic relationship between observations and model outputs. The 

purpose of downscaling is to obtain high-resolution detail as accurately as possible 

over the area of interest. The CLIK was designed to take only significantly 

correlated areas which are taken into account in the downscaling procedure. 

Analysis showed that downscaled GCM model outputs have significant skill in most 

of the target seasons evaluated. The improvement gained when using the statistical 

downscaling tool is significant Downscaled MME distinctly showed to have better 

prediction skill than the original one for all the target seasons.  The results indicate 

that the large-scale circulation pattern from current GCMs muti model outputs have 

the potential in predicting station-scale precipitation in the Philippines using CLIK. 

 

1.  Introduction 

 

The Philippines is situated just off the southeastern portion of the Asiatic continent 

in an almost north to south orientation.  The island extends from about 4.7oN to 

22.5oN and 117oE to 127oE in their longest and broadest dimensions. The 

complexity of terrain varies a great deal. From extensive mountainous regions in 

Luzon and Mindanao to land-sea mix in the Visayas that produces large spatial 

variability in the rainfall. The topographic features of the country play an important 

role in the seasonal variations of the climate.  The country’s climate is tropical and 



 
39 

maritime and is influenced by large-scale atmospheric patterns that bring in 

substantial amount of rains almost all year round.  It is characterized by a 

relatively high temperature, high humidity and abundant rainfall. The spatial 

distribution of precipitation varies regionally and is largely dependent on the 

direction of the moisture-bearing winds and the location of the mountain ranges. 

Mean annual rainfall varies from 965 to 4,064 millimeters annually, with the eastern 

parts of the country receiving the greatest amount of rainfall and the southernmost 

part of Mindanao receiving the less. 

 

During the summer monsoon (southwest monsoon) heavy rains are concentrated 

over the western coastal areas of Luzon and the Visayas known as the Type 1 

climate. Thus, aside from typhoons, it is responsible for about 50% of the rainfall 

during the rainy season in these areas. The southwest monsoon is characterized by 

so much variability to create periods of dry and wet spells that varies significantly 

from year to year. In winter, the climate is dominated by the winter monsoon 

(northeast monsoon).  It originates in the cold intense Asiatic Winter Anticyclone 

and spirals outward across Japan towards the Northwestern Pacific Ocean.  It 

finally reaches the country as a Northeasterly air stream.  It starts affecting the 

Philippines during the later part of October, attains its maximum intensity in 

January and gradually recedes in the later part of April. This air stream is 

responsible for the relatively cold weather spell and heavy rainfall along the eastern 

coastal regions of the country during the winter season of the year. 

 

Seasonal variability of rainfall in the Philippines is greatly influenced by the El Nino 

Southern Oscillation (ENSO) (Jose 2002). El Nino conditions lead to drier seasons 

caused by suppressed tropical cyclone activity in the western equatorial Pacific and 

weak monsoon activity which is characterized by delayed onset, dry periods or 

monsoon breaks and early termination. La Nina conditions are characterized by 

earlier to near-normal onset, above normal rainfall and longer rainy seasons. 

Abnormalities in the local climate as manifested by the ENSO phenomenon have 

both negative and positive impacts on the various sectors of the society but 

experience would show that there are more adverse impacts than the beneficial 

ones.  Not only is the relationship between ENSO and climate understood by the 

Philippine scientific community, the knowledge is being used operationally, 

especially in the context of disaster prevention and climate risk management. Thus, 

the reliability of seasonal climate forecasts is of great concern especially to the user 

community. The ability to understand and predict these variations has an immense 

value especially for the management of the agriculture and water resources sectors 

in order to anticipate and mitigate associated impacts of monsoon variability such 
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as drought and flood. Identifying and understanding the influence of the large-scale 

atmospheric circulation patterns which produce variations of rainfall in different 

time scales over the Philippines is therefore of crucial and great importance in 

seasonal forecasting in the country.  

 

Seasonal climate forecasting is essentially based on the premise that the slowly 

evolving sea surface temperature (SST) anomalies influence seasonal mean 

weather conditions (Palmer & Anderson 1994; Goddard et al. 2001). Variability in 

SST provides the main source of atmospheric predictability at seasonal time-scales. 

Therefore, estimation of the evolution of SST anomalies, which are often relatively 

predictable, and subsequently employing them as input to an atmospheric GCM, 

potentially provides the means of generating forecasts of seasonal average weather 

(Grahamet al. 2000). Seasonal forecasts are generally provided by leading global 

climate centers using General Circulation Models (GCMs). Direct application of 

output from General Circulation Models (GCMs) is often insufficient because of the 

limited representation of mesoscale atmospheric processes, topography and land-

sea distribution in GCMs [e.g. Cohen, 1990; von Storch et al., 1993]. GCMs can 

provide skillful seasonal forecast of mean circulation particularly in the tropics (e.g. 

Stockdale et al 1998; Charney and Shukla 1981) and such information may be used 

to forecast the rainfall at a certain area of interest. Local climate is greatly 

influenced by local features such as mountains, which are not well represented in 

GCMs because of their coarse resolution. Hence, seasonal forecasts from GCMs may 

have limited predictability since it cannot capture the influence of small scale 

synoptic features. It has been shown from previous studies that dynamical models 

can provide skilful seasonal forecasts, i.e. forecasts that are better than climatology, 

particularly in the tropics (Stockdale et al. 1998, Feddersen et al, 1999), but it has 

also been demonstrated that the prediction skill, particularly for precipitation, can 

be further improved using statistical techniques to correct the raw model output.  

 

The most critical variable in the Philippines that is often poorly predicted on local 

scale is precipitation which is also one of the most important variables for many 

applications One approach to improve poor predictions of precipitation is that of 

statistical downscaling (Feddersen,et al 2004). Statistical downscaling aims at 

specifying the local field (the predictand, e.g. precipitation) from a large scale field 

(the predictor) which is accurately predicted by the dynamical model. There is a 

significant skill improvement when statistical downscaling of GCMs model outputs 

were used to forecast the precipitation in selected areas in the Philippines and 

Thailand as shown in the results of Kang et al (2007). 

 

A combination of forecast of various different dynamical predictions, the so called 
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multi-model ensemble (MME)  prediction, has emerged as one of the more popular 

techniques in climate prediction (Barnston et al. 2003; Palmer et al. 2000, 2004; 

Shukla et al. 2000). The objective of multimodel ensemble prediction is to reduce 

the uncertainty in model errors by combining forecasts of various independent 

models. Kang et al (2007) showed that downscaled MME forecasts for the 

Philippines and Thailand using six GCMs were more skillful compared to any 

individually downscaled GCM forecast. The same findings were also documented in 

the downscaling of rainfall in Korea and the study of Chu et al (2008) for seasonal 

prediction of precipitation in Taiwan. 

 

2. Objective 

 

The study had two main objectives: 

 

• To obtain the statistical relationship between station rainfall in the 

Philippines and the larger atmospheric circulation. 

• To apply the use of CLIK as a downscaling tool and evaluate its ability in 

predicting seasonal rainfall in the Philippines. 

 

 

 

 

3.  Data and Methodology 

 

3.1   Data 

 

The datasets used in this study include historical hindcast data of 500 hPa 

geopotential height (Z500), sea level pressure (SLP), and zonal wind (u850 ,u200)  

from six different GCMs, with the target four seasons of DJF, MAM, JJA and SON 

which are used as predictors for statistical  downscaling. The predictor variables 

are GCM gridded output data with a  spatial  resolution  of  2.5º  latitude  x  

2.5º longitude. The observed rainfall data are taken from the Philippine 

Atmospheric   Geophysical  and  Astronomical  Services   Administration 

(PAGASA)  from 1982 -2002. Similarly, the reanalysis data also covers the same 

period. The predictand to be downscaled were observed monthly precipitation at 

selected stations over the Philippines. Their locations are shown in Figure 1.  
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Figure 1:  Stations under the Type 1 Climate 
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The descriptions of the individual model and hindcast datasets are tabulated in 

Table 1. Hindcast datasets of the GCMs include the u-component of wind at 850 and 

200 hPa, geopotential height (z500), sea level pressure (slp) and temperature at 

t850. 

 

 

 

Table 1: Description of Hndcast Data Set from participating GCM models 

 

3.2   Choice of Predictors  

 

Selecting the suitable predictors for the predictand is a fundamental part of the 

downscaling exercise. An initial set of predictor variables was chosen based on the 

following criteria: 

 

a) an assessment of which GCM are most reliable, 

b) it must have a stable relationship between the predictor and the predictand, 

c) the predictor should be well predicted by the dynamical model (Wilby et al. 

1999) 

 

In addition to identifying the best predictor, another important consideration taken 

into account is the choice of domain for which the predictor values are selected. 

One of the basis for the domain selection is that it should be large enough to 

resolve the relevant large-scale pattern and encompass corresponding observations 
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(Feddersen et al. 2005). Predictors were examined over the region 45 ºS 45 ºN and 

60 ºE 300 ºE . This is large enough to capture the large scale pattern affecting the 

Philippines during the target season. 

 

3.3    The CLIK Downscaling Scheme 

 

A statistical downscaling method developed by APCC known as the Climate 

Information Kit (CLIK) was used to empirically relate large scale atmospheric 

circulation variables with seasonal precipitation. This method is regression based 

and is constructed by deriving empirical relationships between the large-scale GCM 

predictors and the station-scale predictands. This downscaling method makes use 

of long-term GCM hindcasts data to derive the dynamic relationship between 

observations and model outputs. Downscaling techniques allow the mapping of the 

low-resolution global predictions to a high-resolution set of forecasts as accurately 

as possible for a network of stations over an area of interest. It also bridged the 

gap between the low-resolution global ensemble predictions and the high-resolution 

end-user requirements for seasonal climate prediction. 

 

Different approaches have been devised to deal with the model uncertainty problem 

(see e.g. Palmer et al., 2005): multi-model, stochastic physics and perturbed 

parameter approaches. CLIK incorporates the multi model ensemble system (MME) 

to the downscaling tool to reduce uncertainty and correct raw model outputs from 

GCMs.  The multi-model approach consists of performing simulations with different 

prediction models. It is a practical solution to the problem that can be combined 

with the ensemble method to perform multi-model ensemble simulations. This 

system produces more skilful and reliable estimates of future states of the 

atmosphere and the ocean than any single model (Palmer et al., 2004). 

3.4 Methodology 

The first step that was carried out in this study is to identify large-scale 

atmospheric predictors that drive local rainfall. This is done by two methods: The 

first one is by eyeball verification and if it is not recognizable by human eye, the 

CLIK technique was applied to get the correlation pattern for each GCM outputs. 

The choice of predictors has to be limited to the most credible fields from climate 

models. There are 6 model data sets used for statistical downscaling. Several 

predictors were tested: synoptic atmospheric fields, such as mean sea level 

pressure (MSLP), geopotential height at mid (500 hPa) levels; low level air flows 

(U850); zonal wind (U200) and thermal variables such as T850. Models with good 

performance in predicting the predictors are selected.  

  

Correlation coefficient between observed and predicted field are calculated for each 
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season before downscaling.  Correlation coefficient analysis between observed 

station precipitation and the observed predictors is carried out for each station 

under the Type 1 climate and target season in searching for the large range of 

coupled pattern. The observed pattern provide a solid basis for the choice of the 

predictor and its domain. The CLIK was designed to take only significantly 

correlated areas which are taken into account in the downscaling procedure. The 

basic idea of precipitation downscaling is that local precipitation is related to large 

scale patterns of model variables. After downscaling each model, a MME is made to 

further improve the prediction skill.                                

 

4.0   Results and Discussion 

4.1   MAM Season 

The spring season (MAM) is the transition season in the Philippines. During the 

latter part of the season farmers start plowing their fields in preparation for the 

rainy season. There are two predictors that can be used during the season. Maps 

showed that there are consistent pattern for both GCPS u850 and GDAPS_F z500 

with station rainfall under the Type 1 climate. 
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The left panel in Figure 2 shows the spatial distribution of correlation coefficient 

between Type 1 climate precipitation and GCPS u850 in MAM; right panel displays 

the result for GDAPS_F Z500.  
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Figure 2: Correlation pattern between observed rainfall and GCPS u850 and 
GDAPS_F z500 in MAM under the Type 1 climate 

corr = 0.70  corr = 0.77  

corr = 0.78  
corr = 0.71 

corr = 0.64  
corr = 0.51 

corr = 0.82 
corr = 0.81  
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Table 2 shows the summary results of correlation coefficient between observed 

rainfall and models GCPS u850 and GDAPS_F z500 for individual station under the 

Type 1 Climate during the target season MAM. It is found that GDAPS_Z500 has 

higher correlation coefficient above 90% confidence level than GCPS u850 in most 

of the stations under the Type 1 climate. However for station 637 models GCPS 

u200 and CWB z500 are the models that showed significant correlation. Raw GCM 

outputs showed good correlation in most of the stations under the Type 1 climate. 

Results also showed that after using MME downscaling technique the correlation 

between the predictand and predictor further improved. 

 

                  Table 2: Summary of correlation coefficient pattern for MAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station 

 

GCPS u850 

 

GDAPS_F 

z500 

 

MME 

222 0.52 0.56 0.58 

324 0.63 0.80 0.81 

325 0.57 0.77 0.73 

328 0.73 0.76 0.76 

330 0.70 0.77 0.75 

430 0.71 0.78 0.77 

432 0.81 0.82 0.84 

 GCPS u200 CWB z500 MME 

637 0.51 0.64 0.64 

Figure 2: Correlation pattern between observed rainfall and GCPS u850 and 
GDAPS_F z500 in MAM under the Type 1 climate 
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4. 2   JJA Season 

 

The most important season for seasonal climate prediction in the Philippines is the 

summer monsoon season. This is largely due to the fact that the Philippines is 

predominantly an agriculture country. Majority of the agricultural lands in the 

country are located in the Type 1 climate wherein the planting season starts in June. 

Predicting what will be the performance of the southwest monsoon is of great 

concern especially to the agricultural and water resources sectors during this 

season.  When monsoon rainfall fails it create great problems for these climate 

sensitive sectors.   

Correlation analysis between the observed station rainfall and the global 

predictors were carried out for this season. The spatial distribution of the 

correlation coefficients is shown in Figure 3. Results showed that geopotential 

height at 500 mb level have a strong negative (-) correlation over most parts of the 

tropics. This pattern may suggest that the decrease in geopotential height at 

500mb level in the western Pacific is associated with enhanced rainfall activity in 

the Philippines. Kang et al (2007) also found significant correlation in the observed 

rainfall in the Philippines using this predictor. Of all the seasons evaluated, JJA 

showed the most promising results in terms of the consistency of all the global 

models used most especially for z500. A combination of five  models can also be 

used for statistical downscaling for this season. Although raw GCM outputs can 

reliably simulate the observed rainfall in the Philippines there is also much 

improvement when MME technique was applied. 

Results of experiments showed that JJA can be well simulated by GCM 

outputs. A consistent pattern is depicted in all the maps for JJA using geopotential 

height (z500) for all the station evaluated.  Composite analysis of rainfall during El 

Nino years showed that above normal rainfall is observed in most parts of Luzon 

during El Nino in JJA. This large convergence area is associated with enhanced 

precipitation during the JJA season in most parts of the country during the onset of 

an El Nino. Figure 3 shows strong association of Type 1 Climate  to various global 

GCM predictor variables with geopotential height for JJA and MJJ. 
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Figure 3 shows the  correlation  pattern of Geopotential Height (z500)  and 

observed rainfall during  JJA and MJJ for station 328 (Baguio) 
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Table 3  shows the summary Correlation Pattern of different GCM and Philippine 

Rainfall   

             for JJA using different predictors from GCM outputs 

 

 

 

As shown in the table most of the GCMs model outputs such as CWB z500, NCEP 

u850, GDAPS_F FT850, GCPS slp, and GDAPS_F u200 have strong correlation with 

observed station rainfall under the Type1 climate. After MME downscaling technique 

was applied to the raw GCM outputs improvements in the skill were noted in all the 

stations evaluated. This showed that GCM outputs can reliably simulate the large-

scale circulation pattern. 

 

Stations 

 

CWB Z500 

 

NCEP 

U850 

 

GDAPS_F  

T850 

 

GCPS 

SLP 

 

GDAPS_U200 

 

MME 

222 0.78 0.78 0.74 0.59 0.60 0.76 

324 0.64 0.62 0.72 0.71 0.62 0.76 

325 0.71 0.82 0.61 0.72 0.69 0.84 

328 0.80 0.71 0.77 0.72 0.66 0.82 

430 0.65 0.69 0.62 0.72 0.65 0.72 

432 0.78 0.70 0.83 0.62 0.56 0.75 

637 0.70 0.64 0.76 0.68 0.67 0.77 

 GDAPS_F 

Z500 

GCPS 

T 850 

NCEP 

SLP 

  MME 

 

330 0.58 0.53 0.71   0.68 
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The graphs shown in Figure 4 also confirmed the results of the simulation. The El 

Nino signal was strong in the Philippines and this maybe one reason why that 

during ENSO years the models was able to simulate well the observed station 

rainfall in the Philippines.  In most  ENSO years 1982-83,1986-87, 1991-92, 1997-

98, 1998-99  the observed and predicted are well captured in most of the station 

rainfall in the Type 1 climate. 
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4. 3   SON Season 

 

Results of analysis for this season showed that observed station rainfall during this 

season has strong relationship between the three predictors namely GDAPS_F u850,  

CWB t850 and GDAPS_F u200. Results are significant above the 90% confidence 

level. Figure 5 shows the different maps showing the correlation pattern of the 

predictors for each stations under the Type 1 climate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Correlation Coefficient between observed and predicted rainfall after 
MME downscaling 

 

corr = 0.54  corr = 0.59 corr = 0.56 

corr = 0.57  corr = 0.57  corr = 0.57  

corr = 0.52 corr = 0.52 corr = 0.55 
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Figure 5  Correlation coefficient between observed rainfall and  GDAPS_F 
u850,  CWB t850 and GDAPS_F u200  

corr = 0.58  corr = 0.54  corr = 0.48  

corr = 0.52 corr = 0.55 corr = 0.56  

corr = 0.56corr = 0.57  corr = 0.57



 
57 

 

 

 

 

 

 

 

 

 

 

 

 

 

A summary of the correlation coefficient between the observed station rainfall and 

predictors from GCM outputs is presented  in Table 4 before and after downscaling. 

Results show that downscaled GCM outputs can also reliably capture the large scale 

circulation during the season. Improvements are seen after downscaling technique 

is applied in the simulations. 

 

        Table 4 

shows the summary of correlation coefficient between before and after   

        downscaling corrected prediction for each station for SON. 

 

 

 

 

 

 

 

Station 

 

GCPS u850 

 

CWB t850 

 

GDAPS_F 

u200 

 

MME 

222 0.54 0.59 0.56 0.58 

324 0.57 0.57 0.58 0.58 

325 0.52 0.52 0.55 0.54 

328 0.58 0.54 0.48 0.54 

330 0.56 0.58 0.57 0.61 

430 0.52 0.55 0.56 0.55 

432 0.57 0.58 0.59 0.59 

637 0.58 0.57 0.60 0.60 

Figure 5  Correlation coefficient between observed rainfall and  GDAPS_F 
u850,  CWB t850 and GDAPS_F u200 for SON for Type 1 climate stations 

corr = 0.60  corr = 0.52  corr = 0.58  
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The graphs (Fig 6 ) shown below present that after downscaling most of the years 

can be reliably simulated as depicted by the difference between the observed and 

predicted rainfall. Majority of the years evaluated between the observed and 

predicted rainfall gave quite satisfactory results. The 1997 El Nino year was well 

predicted in most of the stations during the season. Similar years with good 

prediction include 1983, 1987, 1988 

to name a few. 
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4.4   DJF Season 

 

The season is the peak of the northeast monsoon season. Based on earlier studies 

the impact of ENSO is often manifested during this season. GCM outputs using sea 

level pressure (slp) and zonal wind (u200) as predictors can provide good skill 

between the predictand (observed station rainfall ) during DJF.   

 

Table 5 shows the correlation pattern of different GCM models for SLP and station 

ranfall during DJF 

 

 

Station 

 

GCPS slp 

 

GDAPS_F 

slp 

 

CWB slp 

 

NCEP 

 

MGO 

222 0.57     

324 0.58  0.55  0.52 

325   0.70   

328 0.75 0.59 0.65 0.57 0.59 

330 0.66 0.68 0.63  0.52 

425      

430 0.63 0.69 0.66  0.63 

432 0.65 0.68   0.68 

637      

Figure 6  Correlation Coefficient between observed and predicted rainfall after MME 
downscaling during SON 
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Table 6 shows the correlation pattern of different GCM models for u200 and station 

ranfall during DJF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. 5   Conclusion 

 

This study demonstrated that the Multi Model Ensemble developed by APCC based 

on simple composite method can be used as a downscaling tool to translate large-

scale atmospheric anomalies into local scale rainfall anomalies. Applying statistical 

correction to downscale rainfall in the Philippines can increase the predictive skill of 

GCM outputs. Statistical downscaling done on Philippine rainfall showed strong 

correlation on observed rainfall in the Type 1 climate for all the 4 target seasons 

(MAM, JJA, SON, DJF).  The choice of predictors is dependent on the drivers of 

 

Station 

 

GCPS u200 

 

GDAPS_F 

u200 

 

CWB u200 

 

NCEP u200 

 

MGO u200 

222      

324     0.57 

325      

328 0.52 0.51 0.62 0.59 0.65 

330 0.58 0.56 0.55 0.53 0.65 

425 0.53 0.54   0.59 

430 0.58 0.52  0.59 0.58 

432     0.50 

637      
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climate for a particular season. Predictors used vary from season to season. The 

following predictors are identified to have good correlation for the different seasons:  

MAM (GCPS u850 and GDAPS_F z500), JJA (CWB z500, NCEP u850, GDAPS_F 

FT850, GCPS slp, and GDAPS_F u200) SON (GDAPS_F u850,  CWB t850 and 

GDAPS_F u200) and for DJF (GCPS slp & MGO u200). This suggests that the 

predictors used in the different seasons can capture the large scale synoptic 

features which characterize the climate over the particular area of interest.  This 

suggests that the predictors used in the different seasons can capture the large 

scale synoptic features which characterize the climate over the area of interest.  Of 

all the seasons tested JJA showed the most promising results. This suggests that 

monsoon rainfall can reliably be predicted using the MME technique. A significant 

number of predictors can be used to downscale the station rainfall during the JJA 

season.  MAM, SON and DJF is predicted as well after downscaling. Statistical 

downscaling of GCM outputs with that of station rainfall has a very good potential to 

enhance the skill of seasonal climate prediction in the Philippines. The we based 

CLIK technique when implemented can be use for operational seasonal prediction of 

rainfall in the country. 
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APN / APCC Joint Training Course 

Training Course on Regional Downscaling for Asia-Pacific Region using 

APEC Climate Center Global Seasonal Climate Prediction 

September 22 - November 10, 2008 

APEC Climate Center 

 

Mongkol  Prongsungnoen  

Climate Group, Meteorological Development Bureau,  

Thai Meteorological Department , Thailand 

 

Background 

 The Asia Pacific Network for Global Change Research (APN) and APEC 

Climate Center (APCC) conducted a joint Training Course on Regional Downscaling 

for Asia-Pacific Region using APEC Climate Center Global Seasonal Climate 

Prediction in Republic of Korea on September 22 - November 10, 2008 

 The training course provided participants with an overview of seasonal 

forecasting methods, with a focus on statistical downscaling. The central was the 

tailoring of forecast and other climate information for risk management application, 

for which practical statistic approaches were introduced. 

 The training course was hosted by APCC and the project fund sponsored by 

APN. 

 

Participants 

 The climate participants were come from three countries (Thailand, 

Philippines and Vietnam). The Experts from Russian Federation and staff of APCC 

attended the training course. Training course aimed to enhance the technical 

capacity in three countries in tailoring seasonal climate forecasts for risk 

management in important sectors such as agriculture, tropical storm, water 

resources and public health. The active participation in training course by three 

countries underlies the importance of technical expertise in this area, which is vital 

in mitigating impacts of extreme climate such as droughts and flood. 

 The 50 days training course provided participants with knowledge, skill and 

tools in seasonal forecasting methods, with a focus on downscaling of MME (CLIK) 

output to areas of interest and on customize forecasts that would allow useful 

actions to be taken to enhance national resilience in areas such as agriculture, 

water resource management and public health. 

Training Course Structure 

 Training course was lectures about hardware, software, Grads, NCL, CLIK 
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(Climate information tool Kit), how to forecast in local climate, how to used the best 

of MME for region, downscaling approaches, probabilistic climate prediction, 

downscaling application, deterministic downscaling. The participants learned about 

the available methods for tailoring forecast information and how the downscaling 

methods fit in this context. 

However, there were lectures that illustrated the use of tailored information 

in risk management in a range of sectors including agriculture and water resources. 

The participants had the opportunity to share the idea approaches to the challenge 

of provide climate information for different application. The participants also 

undertook practical exercises, in which they analyzed their own data, by applying 

some of the statistical tailoring methods that were introduced in the lectures. These 

analyses were intended to be both learning experiences for the participants. 

At the end of training course, the participants were provided presentation 

about product in each country. 
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Introduction to Thailand 

 

Thailand is located 
in the tropical area 
between  
latitudes : 

5 ° 37 ′N to 20 ° 27 ′N
longitudes : 

97 ° 22 ′E to 105 ° 37 ′E

Bangkok Metropolis 

 

Bangkok Metropolis 

Northern Part (16)

Souththern Part (16)

Eastern Part (8)

Central Part (17)

Northeastern Part (19)

Thailand is divided 
into 76 provinces 
and 5 Parts

 

 

 

.

.

Chiang Rai.

Mae Hong Son
Phayao

Chiang Mai

Mae Jo Tha Wang Pha 

Nan.

Thung Chang
Lampang.

Lamphun

Mae Sariang Phrae

Uttaradit

Si Samrong
Sukhothai

Bhumibol Dam

Tak
Doi Muser

Mae Sot

Umphang

Phitsanulok

Phetchabun

Lom Sak

Wichian Buri

Kamphaeng Phet Pichit

Nong Khai

Loei.
Udon Thani Nakhon Phanom.Sakon Nakhon.

Mukdahan
Khon Kaen

ThapraKosum Phisai
Kamalasai

Roi Et .Chaiyaphum

Ubon Ratchathani.Tha Tum

Surin.Nakhon Ratchasima
Pakchong

Chok Chai
Nang Rong

Buri Ram Si Saket

Nakhon Sawan
Takfa

Chai Nat Bua Chum

Lop Buri
Suphan Buri

Ayutthaya
Thong Pha Phum

Kanchanaburi
Kampangsan

Uthong

Bangkok Airport

Bangkok Port Bangna
Bangkok (Sirikit)

Pathum Thani

Pilot Station

Prachin Buri
Kabin Buri

AranyaprathetChachoengsao

Sa Kaeo

Chon Buri

Laem Chabang
Ko Sichang

Pattaya
Sattahip

RayongChanthaburi

Khlong Yai

Pleui

Huai Pong

Ratchaburi

Phetchaburi

Hua Hin

Nong Plub

Prachuap Khiri Khan

Chumphon

Sawi

Surat Thani.

Ko Samui

Prasang
Chawang

Nakhon Si Thammarat.

Pattalung

Songkhla
Hat Yai

Korhong
Sa Dao

Pattani

NarathiwatYala

Ranong

Takua Pa

Phuket Airport
Phuket

Ko Lanta Trang

Satun

Synoptic Station

Agrometeorological  Station

Hydrometeorological  Station

Marine Meteorological Station

Regional Meteorological Centre

Meteorological Station in Thailand 

20

100 105

20

15

10

105100

10

15

TMD  114  stations
and 4 centers
-69 Synoptic stns.
-29 Agromet. stns.
-16 Hydromet. Stns.

 

Bangkok Metropolis

Chiang Mai 

Phitsanulok
Khon kaen

Surin

Nakhon Sawan

Aranyaprathet
Prachin Buri

Narathiwat

Chumphon

Choose 10 stations 
from 5 parts to 
look for 

- good models 
- good predictors

 

 

 

Practical Training Course Results 

 For Thailand, the MME (CLIK) forecasted temperature and rainfall in each 

station, multi stations, each part, multi parts and country. Choose 10 stations for 

substitute 5 parts in Thailand. Data base used in 1982-2002 years. GCPS, GDAPS_F 

and NCEP were good model. SLP, t850, u850, v850 and z500 were good predictors. 

Example in Figures 1, 2, 3 and 4 
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 Figure 1 The correlation for each station in Thailand was shown. It used GCPS, 

GDAPS_F and NCEP for models and some predictors.   
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Figure 2 The correlation for downscaling used MME in Chiang Mai province. It was 

forecasted temperature and rainfall seasonal in 2006, 2007 and 2008  
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Figure 3 The correlation for downscaling used MME in each stations. It was 

forecasted temperature and rainfall seasonal in 2006, 2007 and 2008  
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Northern Part

 

Northeastern Part

 

Central Part

 

Eastern Part

 

Southern Part

 

Over Country

 

Figure 4 The correlation for downscaling used MME in each parts and country. It 

was forecasted temperature and rainfall seasonal in 2006, 2007 and 2008 



 
72 

 

Summary of Result 

 The results of training course are summarized as follows: 

1) The correlation of each station, each parts and country was around 

0.6-0.8. It is emphasized that skill of CLIK model is good and it can be used in 

Thailand. 

Correlation MME 

 temp rain 

Chiang Mai 0.85 0.76 

Phitsanulok 0.76 0.61 

Khon Kaen 0.81 0.61 

Surin 0.79 0.74 

Nakhon Sawan 0.66 0.67 

Bangkok 

Metropolis 
0.69 0.76 

Prachin Buri 0.77 0.65 

Aranyaprathet 0.76 0.60 

Chumphon 0.74 0.75 

Narathiwat 0.63 0.66 
 

Correlation MME 

 temp rain 

Northern Part (N) 0.81 0.73 

Northeastern Part (NE) 0.76 0.71 

Central Part (C) 0.65 0.73 

Eastern Part (E) 0.70 0.74 

Southern Part (S) 0.67 0.76 

Over Country 0.75 0.65 
 

 

2) The Compared CLIK model prediction and observed from 10 stations in 

2006 and 2007 years. The results were rather to be contented. 
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Participants 

 

Name Country 

Mongkol  Prongsungnoen Thailand 

Nguyen Dang Quang Vietnam 

Rosalina de Guzman Philippines 

 

Lecturers 

 

Name Position/Nationality 

Dr. Gun Kyo Jung 
Director of Division Management (APCC) 

Korea 

Dr. Vladimir Kryjov Russian Federation 

Dr. Karumuri Ashok Senior Research Scientist (APCC) India 

Dr. N. H. Saji Senior Research Scientist (APCC) India 

Dr. Bong Geun Song System and Operations Support team 

leader (APCC) Korea 

Mr. Hanse Yi System Management and Operations 

(APCC) Korea 

Mr. Sang Cheol Kim WebService Management and Operations 

(APCC) Korea 

Ms. Hye In Jeong Climate Model Specialist (APCC) Korea 

Ms. Soo Jin Sohn Climate Model Specialist (APCC) Korea 

Dr. Saji N. Hameed Senior Research Scientist (APCC) India 

Mr. Doo Young Lee Climate Model Specialist (APCC) Korea 

Dr. Hongwen Kang Research Scientist (APCC) China 

Ms. Young Mi Min Climate Model Specialist (APCC) Korea 

Ms. Kyong Hee An Climate Model Specialist (APCC) Korea 
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The Climate of Thailand 

 

 

1.  Geographical Situation 

 Thailand is located in the tropical area between latitudes 5 
o
 37 ′ N to 20 o 

27 ′ N and longitudes 97
 o

 22 ′ E to 105
 o

 37 ′ E.  The total area is 513,115 square 

kilometers or around 200,000 square miles. 

 The boundaries of Thailand with adjacent areas are : 

• North : Myanmar and Laos. 

• East : Laos, Cambodia and the Gulf of Thailand. 

• South : Malaysia. 

• West : Myanmar and the Andaman Sea. 

 

2.  Topography 

 According to the climate pattern and meteorological conditions Thailand 

may be divided into 5 parts i.e. Northern, Northeastern, Central, Eastern and 

Southern Parts.  The topography of each part is quite different as follows :- 

 2.1 Northern Part 

  This part is divided into 15 provinces i.e. Chiang Rai, Mae Hong Son, 

Chiang Mai, Phayao, Lamphun, Lampang, Phrae, Nan, Uttaradit, Phitsanulok, 

Sukhothai, Tak, Phichit, Kamphaeng Phet and Phetchabun.  Most areas of the part 

are hilly and mountainous which is the source of several important rivers.  These 

north-south oriented hill ridges are parallel from west to east and intersected by a 

number of major valleys, particularly those near Chiang Mai, Chiang Rai, Lampang 

and Nan provinces. The highest mountain, about 2,595 meters high above mean 

sea level, is Doi Inthanon in Chiang Mai.  Along the eastern border with the 

Northeastern Part is mountainous called central highlands.  The area in the 

southern portion between the western mountains and the central highlands is a 

central valley. 

 2.2 Northeastern Part 

  This region is naturally a high level plain called northeast plateau.  

Northwest-southeast oriented Phu Phan ridge in the northeastern portion separates 

this part into two basins.  One is a large high level plain in the west.  The another 

is smaller and slope towards the east.  This part is divided into 19 provinces i.e. 

Nong Khai, Loei, Udon Thani, Nong Bua Lam Phu, Nakhon Phanom, Sakon Nakhon, 

Mukdahan, Khon Kaen, Kalasin, Maha Sarakham, Roi Et, Chaiyaphum, Yasothon, 

Amnat Charoen, Ubon Ratchathani, Sri Sa Ket, Nakhon Ratchasima, Buri Ram and 

Surin. 
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 2.3  Central Part 

  Central Part is divided into 18 provinces i.e. Nakhon Sawan, Uthai Thani, 

Chai Nat, Sing Buri, Lop Buri, Ang Thong, Sara Buri, Suphan Buri, Ayutthaya, 

Pathum Thani, Kanchanaburi, Ratchaburi, Nakhon Pathom, Nonthaburi, Bangkok 

Metropolis, Samut Prakan, Samut Sakhon and Samut Songkhram.  This part is a 

large low level plain where the Ping, Wang, Yom and Nan Rivers originated in the 

Northern Part join together to be the Chao Phraya River at Nakhon Sawan provine.  

However the western mountains in the Northern Part extend to this part along the 

western portion. 

 

 

 

 2.4 Eastern Part 

  The south and southwest of the part is adjacent to the Gulf of Thailand.  

Farther in land, most areas are plains and valleys but there are some small hills in 

the northern, central and eastern portions.  This part is divided into 8 provinces i.e. 

Nakhon Nayok, Prachin Buri, Sra Kaeo, Chachoeng Sao, Chon Buri, Rayong, 

Chanthaburi and Trat. 

 

 2.5 Southern Part 

  The topography of this part is the peninsula between the Andaman Sea 

which is on the western side of the part and the South China Sea which is on the 

eastern side.  The long ridge of western mountains in the Northern and Central 

parts also extend to this part.   Phuket ridge along the west coast and Nakhon Si 

Thammarat ridge in the central of lower portion forming the backbone of the 

Southern Part separate this part into two regions, Southern Thailand East Coast and 

Southern Thailand West Coast.  Ten provinces from north to south which are 

Phetchaburi, Prachuap Khiri Khan, Chumphon, Surat Thani, Nakhon Si Thammarat, 

Phatthalung, Songkhla, Pattani, Yala and Narathiwat belong to Southern Thailand 

East Coast while there are 6 provinces i.e. Ranong, Phang Nga, Krabi, Phuket, Trang 

and Satun in Southern Thailand West Coast. 

 

3.  General Climatic Conditions 

 The climate of Thailand is under the influence of monsoon winds of seasonal 

character i.e. southwest monsoon and northeast monsoon.  The southwest 

monsoon which starts in May brings a stream of warm moist air from the Indian 

Ocean towards Thailand causing abundant rain over the country, especially the 

windward side of the mountains.  Rainfall during this period is not only caused by 

the southwest monsoon but also by the Inter Tropical Convergence Zone (ITCZ) and 

tropical cyclones which produce a large amount of rainfall.  May is the period of 
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first arrival of the ITCZ to the Southern Part.  It moves northwards rapidly and lies 

across southern China around June to early July that is the reason of dry spell over 

upper Thailand.  The ITCZ then moves southerly direction to lie over the Northern 

and Northeastern Parts of Thailand in August and later over the Central and 

Southern Part in September and October, respectively.  The northeast monsoon 

which starts in October brings the cold and dry air from the anticyclone in China 

mainland over major parts of Thailand, especially the Northern and Northeastern 

Parts which is higher latitude areas.  In the Southern Part, this monsoon causes 

mild weather and abundant rain along the eastern coast of the part. 

 The onset of monsoons varies to some extent.  Southwest monsoon usually 

starts in mid-May and ends in mid-October while northeast monsoon normally 

starts in mid-October and ends in mid-February. 

 

 

 

4.  Season 

 From the meteorological point of view the climate of Thailand may be 

divided into  three seasons as follows : 

• Rainy or southwest monsoon season (mid-May to mid-October).  The 

southwest monsoon  prevails over Thailand and abundant rain occurs 

over the country.  The wettest period of  the year is August to 

September.  The exception is found in the Southern Thailand East Coast 

where abundant rain remains until the end of the year that is the 

beginning period of the northeast monsoon and November is the wettest 

month. 

• Winter or northeast monsoon season (mid-October to mid-February).  

This is the mild period of the year with quite cold in December and 

January in upper Thailand but there is a great amount of rainfall in 

Southern Thailand East Coast, especially during October to November.  

• Summer or pre-monsoon season, mid-February to mid-May.  This is the 

transitional period from the northeast to southwest monsoons.  The 

weather becomes warmer, especially in upper Thailand.  April is the 

hottest month. 

 

 

5.  Surface Temperature 

 Upper Thailand i.e. the Northern, Northeastern, Central and Eastern Parts 

usually experiences a long period of warm weather because of its inland nature and 

tropical latitude zone.  March to May, the hottest period of the year, maximum 
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temperatures usually reach near 40
o
C or more except along coastal areas where 

sea breezes will moderate afternoon temperatures.  The onset of rainy season also 

significantly reduces the temperatures from mid-May and they are usually lower 

than 40 
o
C.  In winter the outbreaks of cold air from China occasionally reduce 

temperatures to fairly low values, especially in the Northern and Northeastern Parts 

where temperatures may decrease to near or below zero. 

 In the Southern Part temperatures are generally mild throughout the year 

because of the maritime characteristic of this region.  The high temperatures 

common to upper Thailand are seldom occur.    The diurnal and seasonal 

variations of temperatures are significantly less than those in upper Thailand. 

Seasonal temperatures ( 
o

C) in various parts of Thailand 

          Temperature Region Winter Summer Rainy 

          Mean North 

Northeast 

Central 

East 

South 

    - East Coast 

    - West Coast 

23.1 

23.9 

26.1 

26.4 

 

26.3 

26.8 

28.0 

28.5 

29.6 

28.9 

 

28.1 

28.3 

27.3 

27.7 

28.3 

28.1 

 

27.7 

27.4 

Mean 

maximum 

North 

Northeast 

Central 

East 

South 

    - East Coast 

    - West Coast 

30.8 

30.3 

31.7 

31.7 

 

29.9 

31.9 

35.8 

35.0 

35.5 

33.9 

 

32.8 

34.0 

32.2 

32.3 

32.8 

32.1 

 

32.1 

31.4 

Mean 

Minimum 

North 

Northeast 

Central 

East 

South 

    - East Coast 

    - West Coast 

17.1 

18.3 

21.1 

21.8 

 

22.0 

22.9 

21.4 

23.0 

24.6 

25.0 

 

23.2 

23.7 

23.7 

24.2 

24.8 

25.0 

 

23.7 

24.1 

 

Extreme maximum temperatures ( 
o

 C) in Summer 

    Region Maximum Date/Month/Yea Province 
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temperature r 

    North 

Northeast 

Central 

 

 

East 

South 

   - East 

Coast 

   - West 

Coast 

44.5 

43.9 

43.5 

 

 

42.9 

 

41.2 

40.5 

    27   Apr  

1960 

    28   Apr  

1960 

    29   Apr  

1958 

    14   Apr  

1983 

14,20  Apr  

1992 

     23  Apr  

1990 

 

     15  Apr  

1998 

     29  Mar  

1992 

    Uttaradit 

    Udon Thani  

    Kanchanaburi 

 

 

    Prachin Buri 

 

    Prachuap Khiri 

Khan 

    Trang 

Based on  1951-2005 period 

 

Extreme minimum temperatures ( 
o

 C) in winter 

    Region Minimum 

temperature 

Date/Month/Yea

r 

Province 

    North 

Northeast 

Central 

East 

South 

   - East 

Coast 

   - West 

Coast 

      0.8 

    -1.4 

     5.2 

     7.6 

 

     6.4 

   13.7 

    27  Dec  

1999 

    2   Jan  

1974 

  27   Dec  

1993 

  16   Jan  

1963 

 

  26   Dec  

1999 

  21   Jan  

1956 

    Tak 

    Sakon Nakhon 

    Kanchanaburi 

    Sra Kaeo 

 

    Prachuap Khiri 

Khan 

    Ranong 

Based on  1951-2005 period 
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6.  Rainfall 

 Upper Thailand usually experiences dry weather in winter because of the 

northeast monsoon which is a main factor that controls the climate of this region.  

Later period, summer, is characterized by gradually increasing rainfall with 

thunderstorms.  The onset of the southwest monsoon leads to intensive rainfall 

from mid-May until early October.  Rainfall peak is in August or September which 

some areas are probably flooded.  However, dry spells are commonly occur for 1 to 

2 weeks or more during June to early July due to the northward movement of the 

ITCZ to southern China. 

 Rainy season in the Southern Part is different from upper Thailand.  

Abundant rain occurs during both the southwest and northeast monsoon periods.  

During the southwest monsoon the Southern Thailand West Coast receives much 

rainfall and reaches its peak in September.  On the contrary, much rainfall in the 

Southern Thailand East Coast which its peak is in November remains until January 

of the following year which is the beginning of the northeast monsoon. 

 According to a general annual rainfall pattern, most areas of the country 

receive 1,200 - 1,600 mm a year.  Some areas on the windward side,  particularly 

Trat province in the Eastern Part and Ranong province in the Southern Thailand 

West Coast have more than 4,000 mm a year.  Annual rainfall less than 1,200 mm 

occurs in the leeward side areas which are clearly seen in the central valleys and 

the uppermost portion of the Southern Part.      

Seasonal rainfall (mm) in various parts of Thailand 

     Region Winter Summer Rainy Annual rainy days 

     North 

Northeast 

Central 

East 

South 

   - East 

Coast 

   - West 

Coast 

      105.5 

        71.9 

      124.4 

      187.9 

 

      759.3 

      445.9 

     182.5  

     214.2 

      187.1 

      250.9 

 

      249.6 

      383.7 

       952.1 

    1,085.8 

       903.3 

    1,417.6 

 

       707.3 

    1,895.7 

123 

117 

113 

131 

 

148 

176 

Based on  1971-2000 period 

 

7.  Relative Humidity 

 Thailand is covered by warm and moist air in most periods of the year 

except the areas farther in land the relative humidity may significantly reduces in 

winter and summer.  For example, the extreme minimum relative humidity values 
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shows only 9 % at Loei and Chiang Rai on 23 March 1983 and 23 April 1990, 

respectively.  In the Southern Part which is maritime characteristic the humidity is 

relatively higher. 

Relative humidity ( % ) in various parts of Thailand 

     Region Winter Summer Rainy Annual 

     North 

Northeast 

Central 

East 

South 

   - East Coast 

   - West Coast 

74 

69 

70 

71 

 

80 

78 

64 

66 

69 

75 

 

77 

76 

81 

80 

79 

81 

 

79 

84 

75 

73 

75 

76 

 

79 

80 

Based on  1971-2000 period 

 

8.  Cloudiness 

 Cloud cover is normally less from November to March.  Perfectly clear skies 

are generally found that is a reason why extreme temperatures usually occur.  Most 

clouds in this period are high clouds but cumulus and cumulonimbus may be seen 

on some occasions.  During the southwest monsoon, most clouds in the sky are 

convective clouds.  Clear skies are seldom occur in this period except during June 

which have a few days. 

 

9.  Thunderstorms 

 Thunderstorms in upper Thailand often occur in the period from April to 

October while those in the Southern Part will occur in March to November.  The 

maximum frequency of thunderstorms in upper Thailand is in May.   Convection 

and the confluence of two different air streams, cold and warm, are the main factor 

of thunderstorms.  The afternoon and evening thunderstorms occur from the 

convection while the other from the confluence of winds of different airstreams. 

 

10.  Surface Wind 

 The pattern of surface wind directions is characterized by the monsoon 

system.  The Prevailing winds during the northeast monsoon season are mostly 

north and northeast in upper Thailand and east or northeast in the Southern Part 

while they are south, southwest and west over the country during the southwest 

monsoon.   In summer, prevailing wind are mostly south, especially in upper 

Thailand. 

 

11.  Tropical Cyclones 
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 Tropical cyclone affecting Thailand usually moves from the western North 

Pacific Ocean or the South China Sea.  Considering its strength it may be 

characterized by wind speed as follows : 

*  Tropical Depression : the maximum 

sustained winds less than 34 knots 

   (63 kilometers per hour) 

*  Tropical storm : the maximum sustained 

winds up to 34 and less than 

  64 knots (63 and less than 118 kilometers per 

hour) 

*  Typhoon : the maximum sustained winds 64 

knots and above 

   (118 kilometers per hour and above) 

 Thailand normally receives the effect of tropical depressions because of its 

location farther in land and some mountain ranges which obstruct and decrease the 

wind speed before moving into Thailand except the Southern Part has a relatively 

high risk of tropical storms and typhoon.  For instance, the tropical storm 

“HARRIET” hit Nakhon Si Thammarat province in October 1962 and the typhoon 

“GAY” hit Chumphon province in November 1989 and the latest one was the 

typhoon “LINDA” which hit Prachuap Khiri Khan province in November 1997 as it 

was tropical storm.  By considering the annual mean, tropical cyclones usually 

move across Thailand about 3 - 4 times a year.  During January to March, Thailand 

has never received the effect.  According to the historical data, it can be seen that 

April is the first month which tropical cyclone move across Thailand.  The relatively 

higher frequencies are found from May, particularly September and October.  They 

usually pass through the Northern and Northeastern Parts in early southwest 

monsoon season and will move across the southern Thailand from October to 

December. 

 

The frequency of tropical cyclones moving through Thailand 

during 56 years (1951 - 2007) 

              Region Jan Feb Mar Apr May Jun Jul Aug Se

p 

Oct Nov Dec Total 

North 

Northeast 

Central 

East 

South 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

1 

5 

1 

2 

1 

- 

2 

6 

1 

1 

- 

9 

4 

1 

1 

- 

17 

17 

- 

- 

- 

25 

29 

7 

3 

3 

15 

23 

9 

12 

15 

1 

4 

2 

2 

23 

- 

- 

- 

- 

9 

74 

84 

22 

20 

51 
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Statistical downscaling over the Vietnam: Application of APCC/Climate 

Information tool Kit (CLIK). 

 

Nguyen Dang Quang 

Researcher, Division of Research and Development 

Vietnam National Center for Hydrometeorological Forecastings 

 

This report introduces a statistical downscaling method for temperature 

seasonal prediction in Vietnam by using CLIK. Monthly 2-metres temperature at 

eleven stations was used in this study. The strategy for multi-model output 

downscaling prediction is described as two steps: first is choice of predictor and 

second is downscaling. One procedure for selecting suitable predictor has been 

implemented and stable lead predictors have been found as the result. For stations 

having stable predictor those can have good forecast. JJA temperature forecast 

shows better than that of DJF. This web-based CLIK result can be used toward to 

operational seasonal prediction at National Hydro-Meteorological Services such as 

Vietnam, Thailand and Philippines. 

 

1. Introduction 

Located in the centre of two main tropical monsoon areas, the South and the 

East Asia monsoon, Vietnam is extremely affected by natural disasters, such as 

flood, drought, cold surge, typhoon… In summer, Vietnam climate is dominated by 

the South Asian monsoon those hot and wet summer in the South, in winter, 

climate is affected by the East Asian monsoon those cold and dry in the North and 

Central. The coastal line extending more than 3000kms, from 8.4N to 21.5N, 

complex non-homogeneous geographical are formed several sub-regional climate 

regions.  

Seasonal prediction is one of the most challenge issues in a developing country 

like Vietnam. Since information provided by General Circulation Models (GCM) is 

insufficient based on its coarse grid resolution, the approach of using statistical 

downscaling was carried out in this study. Statistical downscaling methods establish 

an empirical statistical relationship between the atmospheric circulation and 

predictands (in the current study, predictands is temperature in both JJA and DJF), 

and then infer local changes by means of sensibly projecting the large scale 

information on the local scale [Zorita and von Storch, 1999]. Kang et al. [2007] 

showed potential skill in rainfall prediction at Philippines and Thailand stations.  

Toward the goal of capacity building for exchange and utilization of climate 

information, the Asia Pacific Economic Cooperation Climate Center (APCC) has been 
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developing a web-based tool, called CLIK (Climate Information tool Kit), which 

allow retrieving data and make predictions. In this report, we limit at the part of 

using CLICK for seasonal climate prediction. 

The focus of this study is the application of statistical downscaling for climate 

prediction over Vietnam. Specifically, CLIK downscaling result based on various 

GCM hindcast experiment will be preliminary analysed. Section 2 introduces the 

models data and the method of downscaling. Analyses and results are described in 

section 3. Some conclusions are presented in section 4. 

 

 

2. Data and Methodology 

 

2.1 Data 

The observed station monthly temperature used in this research was taken 

from Vietnam National Center for Hydrometeorological Forecastings (NCHMF); these 

were collected during the period from 1971 to 2007. Statistically, from North to 

South, nine sub-region climates were built by distribution of temperature, rainfall, 

topography, sunny hours and land surfaces; hence, excepting two island stations, 

last nine selected stations have representative character of nine sub-regional 

climates over Vietnam. 

 

APCC’s CLIK uses hindcast and forecast data from several institutions around 

the world. They are Central Weather Bureau (CWB) of Chinese Taipei, Japan 

Meteorological Agency (JMA); Global Climate Prediction System (GCPS) of the Seoul 

National University, Korea; Global Data Assimilation and Prediction System (GDAPS) 

of Korea Meteorological Administration, Korea; Russian Federal Service for 

Hydrometeorology and Environmental Monitoring, Main Geophysical Observatory 

(MGO) of Russia and National Centers for Environmental Prediction (NCEP) of USA. 

The predictors are taken from these six operational seasonal model outputs. The 

hindcast data cover the period of 21-year from 1983 to 2003 and have the spatial 

resolution of 2.5o x 2.5o.  
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2.2 Methodology 

There are two main steps in multi-model outputs downscaling prediction for 

temperature:  

a. Choice of Predictors 

CLIK offers two options, one based on correlation analysis, the other based on 

pattern analysis which shows correlation of station with observed predictor and 

correlation of station with simulated predictor. In this part, we can also modify the 

optimal area of study. For the current study, we choose area from 60S-60N, 60E-

60W. This domain contains the large scale circulation information from the whole 

Pacific Ocean, East of India Ocean, Tibet permanent high pressure and Asia-

Australia monsoon area.  

In addition, our approach is searching as much as possible predictor(s) in 

models which have the consistent stable correlation with local station variable.  The 

detail is described as below. We will choose models, e.g. six models, with one 

predictor; if both these six models show a good correlation then we can select that 

predictor as the most suitable predictor. Unfortunately, none of predictor satisfied 

all models. Our concept is just only predictor(s) show good results in at least haft of 

selected models, in this study is three per six models,  will be chosen. Moreover, 

first leading predictor is the predictor having most suitable with the sign of 

observed anomaly, and we also put priority on general circulation variable such as 

SLP, Z500 in the procedure of predictor selection. 

 

b. Statistical Downscaling Method 

The prediction scheme in CLIK based on pointwised regression method. The 

detail of the method of downscaling can be found in Kang et al. [2007]. Shortly, 

suppose the predictand and predictor are Y(t) and X(I,j,t), respectively.  Y(t) is 

observed station precipitation and X(i, j, t) is model predicted large-scale variable.  

                                   βα += )()( tXtY p  

Where Xp(t) is the projection of the predictor in the selected area 

),,().,()(
,

tjiXjiCORtX
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p ∑=         

The correlation coefficient is obtained as: 
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Where N is the training year, the subscript m is the average of the average of the 

variable during the training period, σ is the variance. Regression coefficient α, β are 

calculated in training period.  
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3. Results 

3.1 Selection predictors 

The table 1 shows prevail predictor(s) which is founded by CLIK. The predictand 

is temperature in summer (JJA) and winter (DJF). There are three per six models 

show the consistent predictor(s). For the purpose of operational forecast, such 

stable leading predictors can be used in Vietnam.  

 

Table 1: Lead predictor for 11 stations in CWM, GCPS and GDAPS_F models, region: 

60S-60N, 60E-120W 

Station name and ID 
JJA DJF 

Predictor 1 Predictor 2 Predictor 1 Predictor 2 

Lai Chau   (48800) T850 V850 /////////// /////////// 

Ha Giang   (48805) V850 Z500 SLP T850 

Lang          (48820) Z500 V850 Z500 T850 

Phu Lien   (48826) Z500 V850 Z500 T850 

Vinh          (48845) Z500 V850 SLP T850 

Da Nang    (48855) /////////// /////////// T850 /////////// 

Plei Ku      (48866) Z500 V850 Z500 V850 

Quy Nhon   (48870) V850 Z500 T850 /////////// 

Phu Quoc   (48917) Z500 V850 V850 T850 

Chau Doc   (48909) /////////// /////////// T850 /////////// 

Bach LV     (48839) V850 U850 Z500 SLP 

 

Interestingly, while most of stations have at least one stable predictor some 

of them show nothing. The similar thing has occurred in studying on downscaling 

stations in Philippines and Thailand. Therefore we can assume that there are two 

types of stations, type one is those that has downscaling predictability and the type 

two is the rest. The reasonable explanation for the type two can be solved on its 

local characteristic such as topography and climate regime. Take Danang (48855) 

station as an example. It located in the south of White Horse Mountain; Danang has 

a special climate condition. Typically, White Horse Mountain has been used as the 

climate frontier between the North and the South in Vietnam. A coherent contrast 

temperature in summer between the south and north mountain sides is recorded in 

observed data. The Laichau station (48800), it located in 243m high altitude above 

sea level in the Northwestern region. In general, winter temperature in Laichau is 

much less colder than that of in the Northeastern region because of blocking of the 

highest mountain, named HoangLienSon, in the East. The winter then shows great 
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effect by cold surges from the South China within ridge, trough and valleys around 

station (Figure 2, Appendix 1). The ChauDoc (48909) station, is beside the Delta 

Mekong, the biggest river in the Indochina region, has an agreeable temperature in 

summer; it normally keeps at about 27.5oC year by year. Overall, in such complex 

areas, correlation analysis probably may not have skill in predictor detect-ability. 

 

3.2 Forecast and some preliminary assessment. 

After selecting the predictor, the downscaling procedure is carried out at each 

station for each model. In general, correlation coefficient of downscaling and 

observed reaches at 0.7, the root mean square error varies from 0.15 to 0.3oC. 

Figure 1 is the prediction for the station 48820 (Lang or HaNoi station). By using 

regression equations for seasonal prediction, we would be better to look at the sign 

of anomaly than that of quantity. For stations those have predictor, the tendency 

training skill of CLIK is at 85%. This skill is simply calculated by the number of 

wrong predictions in the training period. 

 

 

 

As the rest part of study, we performed some preliminary assessment for 

predictions. In figure 1, two right blue columns are forecasts for 2006 and 2007. 

Combination of climatology temperature, real-time observed temperature in 2006, 

2007 and the downscaling forecast at stations, we can find out some significant 

features (Appendix 3). 

In winter, forecast skill just stands at level of about 50%, five correct forecasts 

per ten stations. In summer 2007, only one forecast failed at station 48839 and the 

percentage of correct forecast is 90%. However, summer 2006 showed an abnormal 

less-skill in most stations. This is an interesting result because when we look back 
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to the climatology summary in summer 2006 that was the most active Pacific 

hurricane season since the 2000 season. The 2006 season started by the typhoon 

Chanchu (Caloy) on 5 May, ended by the typhoon Trami (Tomas) on 19 December 

and there were total 23 typhoon/tropical storm activating in South West pacific 

region [JMA, 2006]. Obviously, this extreme season had huge impact to the 

temperature and rainfall distribution in the study area; hence it should be an 

important source to explain the failed forecasts in temperature in JJA 2006. 

 

 

4. Conclusions 

In this study, downscaling technique has been accomplished for two-metres 

temperature prediction in eleven stations in Vietnam. In particular, finding prevail 

predictor then making prediction for each station are carried out. Of lead predictor 

as general circulation variables, Z500 and SLP, CLIK show the ability in studying 

phenomena like ENSO.  

By using CLIK, this is the first time seasonal forecast at station scale in Vietnam 

has been performed and this allows us have hopes toward on operational forecast 

in the near future.  

However, there are still some remain questions. Why DJF downscaling shows 

less good quality than that of in JJA? How to improve forecast in extreme typhoon 

seasons (a case study from 2006 season)? Studying in rainfall as the predictand, 

working with as much as possible number observed stations also need be carried 

out in the next studies.  
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Appendix 1: Vietnam topographical and 11 selected stations 

 

 

Figure 1: Eleven stations and Vietnam topography. 
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Figure 2: Laichau station (48800) geographical position. Photo copyright by 

Google Earth. 
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Appendix 2: Correlation maps  

Station 48820 (Hanoi): Correlation maps of Z500 in models with T2m. 
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Station 48855 (DaNang): Correlation map of SLP in models with T2m. 
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Station 48855 (DaNang): Correlation map of Z500 in models with T2m. 
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Station 48800 (LaiChau): Correlation map of T850 in models with T2m (JJA) 
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Station 48870 (QuyNhon): Correlation map of V850 in models with T2m. 
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Station 48866 (PleiKu): Correlation map of Z500 in models with T2m (DJF). 
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Appendix 3: 2006-2007 forecast assessment summary 

 

A. Forecast results 

 Station 48845 (Vinh): JJA 

 

Station 48870 (QuyNhon): JJA 
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Station 48805 (HaGiang): JJA 

 

 

Station 48826 (PhuLien): DJF 
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Station 48839 (BachLongVy): DJF 

 

 

Station 48909 (ChauDoc): DJF 
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B. 

Table 2: 2006, 2007 forecast assessment summary 

Station 

name 

and ID 

JJA DJF 

Correct Wrong Correct Wrong 

Lai Chau  

(48800) 

2006, 2007  //////////////////// //////////////////// 

Ha 

Giang     

(48805) 

2007 2006 2006 2007 

Lang      

(48820) 

2007 2006  2006, 2007 

Phu Lien  

(48826) 

2007 2006 2006 2007 

Vinh      

(48845) 

2007 2006 2006 2007 

Da Nang  

(48855) 

/////////////////// /////////////////// 2007 2006 

Plei Ku  

(48866) 

2007 2006 2007 2006 

Quy 

Nhon     

(48870) 

2006, 2007  2007 2006 

Phu 

Quoc     

(48917) 

2007 2006 2007 2006 

Bach LV  

(48839) 

2006 2007 2006 2007 

ChauDoc  

(48909) 

/////////////////// /////////////////// 2007 2006 
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Appendix 4: 2006 NorthWest Pacific typhoon season summary 

 

Source: 

http://en.wikipedia.org/wiki/Image:2006_Pacific_typhoon_season_summary.jpg 

http://sharaku.eorc.jaxa.jp/ADEOS2/JAXA_TYP_DB/TYP_DB_COMMON/ytrack/all_2

006s_WPh.gif 
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Introduction 

 

Seasonal climate prediction for the extratropical areas is one of the greatest 

challenges of the modern meteorology and climatology. The skill of the raw model 

seasonal forecasts for the most of the extratropical area is quite poor nowadays. 

The skill of the forecasts, based on the statistical relationships between the objects 

of synoptic climatology, also hardly exceed the skill of climatological forecasts and 

only for restricted areas. Many NMHSs of extratropical countries, and NMHS of 

Russia among them, restrict practical long range forecasting to the only monthly 

forecast with zero lead time. 

 

 The possible way of the improvement of the seasonal prediction skills for 

the extratropical regions resides in finding of the robust relationships, expressed in 

a statistical form but underlied by physical dependencies, between the target 

variables at the target region and model predictions of the variables which 

prediction is skillful and which are physically related to the target variables. The 

mostly reasonable is to find linear dependencies and assess them with ordinary 

linear correlations. 

 

 The main problem of finding of the predictors resides in multiplicity of the 

performed correlations and, consequently, in the large probability of occasional 

obtaining of significant correlations. Particularly, the model output fields expressed 

on the 2.5o by 2.5o grid consist of more than 10000 grid-points. It means that at 

more than 500 grid-points the correlation coefficients significant at the 5% level 

may be obtained just by chance. Therefore, in the performed analysis the main 

attention was paid to the significance of the obtained relationships and robustness 

of the regression equations. 
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 A number of hydrometeorological stations were selected for the tests of the 

downscaling methods for the development of the station seasonal forecast based on 

the global model outputs. These stations mainly represent the Far Eastern region of 

the Russian Federation because of two considerations. The first consideration 

resides in the Asia-Pacific regionality. The second consideration has more scientific 

basis. The climate of the Far Eastern region of the Russian Federation is affected by 

the El-Nino/Southern Oscillation phenomenon more strongly than any other part of 

Russia. The seasonal integrations of the global circulation models are governed by 

the boundary conditions mainly associated with the phase of the El-Nino/Southern 

Oscillation. Therefore, there is larger opportunity that the robust relationships 

between the observed variables and model outputs may be found just for the Far 

Eastern stations. 

 

 In Fig. 1 it is shown the first pair of the singular vectors from the maximum 

covariance analysis between rainfall and wind components at the 850 hPa surface. 

The tri-pole pattern shows the connection between the low troposphere wind 

components in the tropics, well predicted by the state-of-the-art global circulation 

models, and the rainfall in the Far Eastern regions of the Russian Federation. Such 

connection provides the hope on the success of the downscaling for this region from 

the global model outputs. However, it should also be noted that the fraction of the 

total rainfall variance, which is associated with the rainfall pattern shown in Fig. 1, 

is less than 30%. It means that even if the prediction of the pattern is quite 

successful, prediction of the station rainfall may contain large errors. 
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Fig. 1. The first pair of the coupled singular vectors from the maximum covariance 

analysis between rainfall and wind components at the 850 hPa surface. 

 

 

Downscaling Experiments 

 

A downscaling procedure consists of three stages. The firs stage is a searching for 

the potential predictors. In this stage, the correlation maps between a predictand 

(usually, a series of the target variable at a target station) and various model 

outputs are being constructed. Then, assessment of the statistical significance of 

the obtained dependencies with potential predictors is performed and, as a result of 

the first stage, selection and a list of potential predictors is formed.  

 

 In the second stage, the regression equation is being derived and assessed 

(significance of the regression coefficients, confidence intervals of the predictions, 

serial correlation in residuals, etc.) using the “dependent” series, that is the data 

from the training period. 

 

 The third stage for the real-time prediction is an estimation of the forecast 

using the model predicted variables as predictors and the derived regression 
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equation. 

 

 APCC has developed a specialized Climate Information Tool Kit software 

which provides the users with the climate data processing and analyzing tools. The 

downscaling procedures have been written by the CLIK tools and implemented as a 

part of the CLIK software. The downscaling for the Far Eastern stations of Russia 

described below have been performed using the CLIK software. 

 

 We have constructed correlation maps between the series of seasonal mean 

temperature and precipitation at a number of stations and the model output fields. 

Significance of the maps was assessed by means of the field significance test based 

on the Monte Carlo method, with significance of both local and global tests being 

set at the 10% level.  

 

 Results from the tests appear not too optimistic. For most of the stations 

and model output fields the correlation maps have not passed the field significance 

test, even with the 10% significance level having been set. Examples of such 

correlation maps are shown in Fig. 2. The spots of “significant” correlations are 

randomly dispersed throughout the globe, with the number of the grid-points which 

feature “significant” correlation being too small to be non-occasional. 

 

 The best results have been obtained for summer temperature and 

precipitation predictions for Vladivostok station. Examples of the correlation maps 

for this station are shown in Fig. 3. It should be specially noticed that the areas of 

significant correlations between Vladivistok JJA temperature and model predicted 

Z500 for GCPS, GDAPS_F and NCEP models almost coincide with the areas of 

significant correlations with observed Z500. 

 

 Based on these correlation maps, the forecast methods have been 

developed. These methods have been assessed on well cross validated data from 

the period of the model historical forecasts. Year by year, one year data have been 

withheld, regression equations have been derived on the rest of the series and 

prediction for the withheld year has been performed. Then, the skill of the method 

has been assessed using these predicted and observed temperature and 

precipitation values. 
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Fig. 2. Example of the correlation maps between DJF temperature at Habarovsk and 

observed Z500 and model simulated Z500. 
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Fig. 3 Example of the correlation maps between JJA temperature at Vladivostok and 

observed Z500 and model simulated Z500. 
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Results from the prediction and prediction assessments are shown in Figs. 4 

and 5. 
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Fig. 4. Observed and forecast summer (JJA) temperature anomaly at Vladivostok. 

 

 

Precipitation. Vladivostok. Corr=0.54
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Fig. 5. Observed and forecast summer (JJA) precipitation anomaly at Vladivostok. 

 

 

 The obtained results strongly outperform raw model predictions for the 

station which suggest that downscaling from the model seasonal predictions to the 

stations may improve the forecasts. However, the level of the skill of the improved 

(downscaled) forecasts remains rather low. It is much lower than that for the 

tropical area. 
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 The performed downscaling is a deterministic one. That is, the forecast is 

formulated in terms of anomalies. It is reasonable for the tropical regions, for which 

downscaling from the model outputs provide quite skillful forecasts. However, for 

the extratropical areas the skill even of the state-of-the-art models remains low and 

even downscaling improves the skill up to not too high level. So that, for the 

extratropics it reasonable to develop probabilistic forecast methods and probabilistic 

downscaling methods, which allow the users of the forecast to assess the 

uncertainty of the predicted values. 

 

As a pilot project, we have developed a probabilistic downscaling method 

with optimization scheme based on the ignorance score (please see Lecture 4 given 

by V. Kryjov at the course). Assessment of the cross-validated probabilistic 

downscaled forecasts is shown in Fig. 6. The method outperforms climatological 

predictions and it outperforms the raw model forecasts. However, there are seven 

years of 23 when forecasts were not successful. Nevertheless, the results from this 

first experiment can be considered as promising. The method is planned to be 

upgraded and implemented in the CLIK software. 
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Fig. 6. Ignorance skill score for summer (JJA) temperature in Vladivostok.  

 

 

Conclusions 

 

The individual model forecasts as well as multimodel ensemble forecasts for the 

extratropical regions, particularly for North Eurasia, are rather poor. Their skill is at 

the same level as that of the statistical prediction methods.  
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 Improvement of the forecast skill and reliability may be achieved by means 

of downscaling from the model predictions of the large scale circulation pattern 

down to station variables. However, the success of the downscaling methods is 

conditioned on the physical relationships between the large scale circulation 

patterns, which models are able to predict successfully, and the station variables. 

Therefore, actual forecast skill and reliability improvement by downscaling from the 

model outputs is restricted to the regions strongly affected by the large scale 

circulation patterns which models are able to predict. 

 

 Taking into account not high skill of the seasonal forecasts for extratropics 

even after downscaling, it is reasonable to develop probabilistic downscaling 

methods. One possible approach realized during the training course shows 

optimistic results. However, for the essential improvement of the method the 

further studies and works are necessary 

 

 The APCC developed software, CLIK, provides convenient user-friendly 

tools for processing and analyzing of the global model outputs, particularly, for the 

development of the statistical downscaling methods, both deterministic and 

probabilistic. 
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