FINAL REPORT FOR APN-FUNDED PROJECT

Project Reference Number: CBA2013-17NSY-Bodeker SPARC (Stratosphere-troposphere Processes And their Role in Climate) General Assembly 2014

The following collaborators worked on this project: Dr Greg Bodeker, Bodeker Scientific, New Zealand, greg@bodekerscientific.com Emma Scarlet, Bodeker Scientific, New Zealand, emma@bodekerscientific.com

Project Reference Number: CBA2013-17NSY-Bodeker

SPARC (Stratosphere-troposphere Processes And their Role in Climate) General Assembly 2014

Final Technical Report Submitted to APN

©Asia-Pacific Network for Global Change Research

Overview of Project Work and Outcomes

1. Non-technical Summary

The SPARC (Stratosphere-troposphere Processes And their Role in Climate) 2014 General Assembly was held from 12 to 17 January 2014 in Queenstown, New Zealand. It was the fifth gathering of SPARC scientists from around the globe, and attracted nearly 300 delegates. General Assemblies are opportunities for SPARC to take stock of what has been achieved, where gaps in the portfolio of research undertaken by SPARC need to be filled, and to define where SPARC needs to be moving to remain responsive to the needs of both its members and the users of SPARC research products.

Keywords (Five Maximum Keywords):

- Capacity development
- Stratosphere-troposphere
- Climate

2. Objectives

The main objectives of the project were to:

- Support the attendance of PhD students and early career scientists from developing countries and countries with economies in transition in the Asia-Pacific region to the 5th SPARC General Assembly, and by doing so...
- 2. Entrain regional research capability,
- 3. Foster regional engagement in SPARC research (e.g. SPARC has a growing interest in processes linking tropospheric and stratospheric change in the tropical Western Pacific), and
- 4. Ensure that SPARC is cognizant of the research needs of communities in the Asia-Pacific region.

3. Grant Received and Number of Years Supported

The grant awarded to this project was: USD 20,000. This was to support the attendance of four scientists at the 5th SPARC General Assembly, i.e.: no ongoing financial support was requested.

4. Activities Undertaken

The 5th SPARC General Assembly was held in Queenstown, New Zealand from 12 to 17 January 2014.

5. Results

The proposal for APN funding was submitted by the applicants on 9 August 2013. On 30 August 2013 the applicants were told that the outcome of the application for APN funding would be made known on 1 or 2 October 2013. This was confirmed in an email on 27 September and the applicants proceeded, on the basis of that assurance, to make plans for

funding selected PhD students to attend the conference. On 2 October 2013 the applicants were asked to 'submit a full proposal' which was done within 24 hours. On 30 October the applicants were told that 'The results will be with us very soon'. On 11 November, two months prior to the conference, the applicants were told 'The money is waiting; we had to get official review done by our CDC. Is it possible for you to front 20,000USD until this process is complete?' On 19 November 2013 there applicants were told 'The contract document is almost ready to send, I only need to get APN director signature. Unfortunately, our director will be back on office in 29 November. Therefore your contract document will be sent to you on 29 November via FedEx'. It was also on this date that APN agreed to the list of recipients of funding that had been earlier proposed. The applicants were instructed by APN to proceed with informing the recipients, which was immediately actioned. On 1 December, 6 weeks prior to the start of the conference, the applicants were told 'I would like to inform you that APN have finished preparing the contractual documents for your CAPaBLE project entitled SPARC (Stratosphere-troposphere Processes And their Role in Climate) General Assembly 2014 with the project reference number: CBA2013-17NSY-Bodeker'. The applicants finally received the contract on 12 December 2013, 1 month prior to the conference. The applicants immediately signed and returned the contract.

As a result of the delays in APN procedures documented above, and the resultant delay in the recipients of the APN funding applying for visas, one of the four recipients (Mizanur Rahman) was not able to attend the conference at all, while a second (Negar Banan) was able to attend only part of the conference. Non-refundable air tickets had already been purchased and so these expenses could not be reclaimed. Fortunately two of the recipients of this funding were able to attend the entire conference while a third was able to attend half of the conference. We believe that all three APN funded attendees benefitted significantly from their attendance.

6. Relevance to the APN Goals, Science Agenda and Policy Processes

SPARC is one of four core projects of the World Climate Research Programme (WCRP) and this General Assembly was strongly supported and endorsed at the May 2013 meeting of the Joint Scientific Committee (JSC) of the WCRP in Brasilia.

In the prelude to the implementation of the Global Framework for Climate Services (GFCS), SPARC aimed to engage with scientists active in stratospheric and climate change research in the Asia-Pacific region, and in particular with those from developing countries in the region to ensure that GFCS serves regional communities.

Attendance of such scientists at the SPARC General Assembly provided an opportunity to strengthen regional and international working relationships and to develop regional capability in climate science. The conference profiled the latest research results on relevant areas of societal concern, including climate change and climate variability. One focus of this meeting was to also provide research that is tailored to address the needs of policymakers who, in turn, use this research to guide the development of international policy for the protection of the climate system and to ensure a sustainable global environment.

7. Self-evaluation

The 5th SPARC General Assembly, by all accounts, was one of the most successful held to date. There were no major problems in the running of the meeting and all stated objectives were achieved. The applicants for this APN funding did everything in their power to ensure

that the recipients of the APN funding were fully supported in making their travel arrangements, applying for visas etc.

8. Potential for Further Work

At the time of the SPARC General Assembly 2014, SPARC was in the process of defining its capacity development activities. Initial discussions at SPARC Scientific Steering Group meetings revealed that there is a need in different parts of the world to develop scientific expertise in SPARC-related ongoing and emerging activities, which are mostly linked to climate predictions and the roll-out of climate services.

The SPARC Scientific Steering Group together with the SPARC Office organised a lunchtime Capacity Building Workshop during the SPARC General Assembly 2014. This workshop was organised with the aim of shaping SPARC's strategy in capacity development. The workshop speakers, originating from different continents, presented their views on the following questions:

- What is your definition of capacity development with respect to your country or region?
- What activities are going on in your country or region that are SPARC related; if only little is going on what can SPARC do?
- Why should SPARC get involved in capacity development?
- What type of capacity development activities should SPARC support; and what would be the added values of these activities to national-level activities?
- How do you think SPARC could link with local/domestic structures?

One of the outcomes of the workshop was a clear indication of the need for capacity building in SPARC. The SPARC Project Office is now conducting an online survey amongst participants of the SPARC General Assembly to further develop this activity.

9. Publications

A brief summary of the 5th SPARC General Assembly was published in the January 2014 edition of the SPARC Newsletter, which is available on the SPARC website at http://www.sparc-climate.org/publications/newsletter.

A more in-depth report was published in the July 2014 edition of the SPARC Newsletter which is also available via the SPARC Website.

10. References

Not applicable.

11. Acknowledgments

WCRP Joint Planning Staff

SPARC International Project Office

• J. Staehelin

- C. Arndt
- L. Revell
- F. Tummon
- A. Witten

Local Organising Committee:

- G. Bodeker
- E. Scarlet
- K. Kreher
- S. Kremser

Scientific Organising Committee:

- V. Eyring
- A. Scaife
- J. Arblaster
- D. Fahey
- J.-F. Lamarque
- M. Santee
- K. Sato
- P. Young

Our Sponsors:

- Platinum WCRP
- Gold WMO, WIGOS, GAW, WWRP, NSF, APN
- Silver CSA, ARC, NIWA, ESA, SPARC Project Office
- Bronze Antarctic New Zealand, COSPAR, Tofwerk, Aerodyne Research, Bodeker Scientific, Macquarie University, and the University of Otago

TECHNICAL REPORT

Preface

From 12-17 January 2014, nearly 300 scientists from around the world participated in the 5th SPARC General Assembly. Held in picturesque Queenstown, New Zealand, the conference provided a unique platform for interdisciplinary exchange of science related to 'Stratosphere-troposphere Processes And their Role in Climate'.

Thanks to generous sponsorship from APN, the following PhD students from the Asia-Pacific region received financial support to attend the General Assembly:

- Negar Banan, Malaysia
- Ette Krishna, India
- Yuli Zhang, China
- Mizanur Rahman, Bangladesh

Unfortunately, Mizanur Rahman was unable to obtain a visa in time, and was therefore not able to attend the conference.

Table of Contents

Pre	face	. 1
Tab	le of Contents	. 2
1.	Introduction	. 3
2.	Methodology	.3
3.	Results & Discussion	.4
4.	Conclusions	24
Ref	erences	24
Арр	endix	25

1. Introduction

The SPARC 2014 General Assembly was a 5½ day international conference that was held in January 2014 in Queenstown, New Zealand. This conference provided an opportunity to improve SPARC engagement with researchers from developing countries in the Asia-Pacific region and foster links with the regional WCRP community. SPARC's growing interest in climate processes in the tropical Western Pacific and role in delivering action oriented research through the GFCS creates an imperative to establish research collaborations with scientists in the region.

SPARC aims to engage with scientists active in stratospheric and climate change research in the Asia-Pacific region, and in particular with those from developing countries in the region to ensure that GFCS serves regional communities. Attendance of such scientists at the SPARC General Assembly provided an opportunity to strengthen regional and international working relationships and to develop regional capability in climate science. The conference profiled the latest research results on relevant areas of societal concern, including climate change and climate variability. One focus of this meeting was to also provide research that is tailored to address the needs of policymakers who, in turn, use this research to guide the development of international policy for the protection of the climate system and to ensure a sustainable global environment.

The main objective of the APN funding application was to support the attendance of PhD students and early career scientists from developing countries and countries with economies in transition in the Asia-Pacific region to the 5th SPARC General Assembly. This was done with the goal of entraining regional research capability, fostering regional engagement in SPARC research (e.g. SPARC has a growing interest in processes linking tropospheric and stratospheric change in the tropical Western Pacific), and ensuring that SPARC is cognizant of the research needs of communities in the Asia-Pacific region.

Entraining PhD students and early career scientists from developing countries and countries with economies in transition in the Asia-Pacific and South Pacific regions in SPARC's core activities is not only highly motivating for such scientists, but also ensures that when SPARC conducts research in the region e.g. measurement campaigns, that these activities are not conducted in isolation but rather link to local communities of scientists who have the skills and expertise to make a material contribution to SPARC research.

Regional capacity development also ensures that as the WCRP delivers research through the GFCS, that research products can be appropriately assimilated by regional communities in decision making processes. By supporting the attendance of young and enthusiastic researchers from the Asia-Pacific and South Pacific regions to this conference, we have helped to ensure that the necessary links and collaborations are formed to produce these expected outcomes.

2. Methodology

Scientists from the Asia-Pacific and South Pacific regions were able to seek funding to attend the SPARC General Assembly at the time of abstract submission. The conference scientific organising committee, together with the General Assembly management team, determined acceptance of abstracts and rated the applications for travel support based on the following criteria:

1. Scientific excellence based on SPARC-set criteria that meet the objectives of the activity.

- 2. Candidate has a PhD preferably, masters minimum.
- 3. Early career scientist (preferably under 40, but if the scientist can demonstrate that he/she received his/her PhD/Masters after 2008 then they would be considered early-career).
- 4. From an APN developing member country and regional balance preferred: Bangladesh, Bhutan, Cambodia, China, Fiji, India, Indonesia, Lao PDR, Malaysia, Mongolia, Nepal, Pakistan, Philippines, Russia (far-east preferred), Sri Lanka, Thailand, Viet Nam. Partial funding may be considered for developed-country scientists who meet all the other criteria: Australia, USA, New Zealand, Republic of Korea and Japan.
- 5. Approved developing countries may also be considered: Myanmar, Maldives, Pacific Islands.
- 6. Developing country members must be considered first.

A set of selected attendees and their financial requests, matching the total funding commitment from APN, was then forwarded to APN for approval which occurred on 29 November 2013.

3. Results & Discussion

The three delegates supported by APN funding attended the following oral presentations:

Surname	First Name	Presentation Title
Chao Li The hiatu		The hiatus in global surface warming over 1998-2011
Collins	William	Near-term Climate Forcing
English	Jason	Aerosol size distributions after large volcanic eruptions evolve in a complex manner
Keeble	James	The impact of polar stratospheric ozone loss on southern hemisphere stratospheric circulation and surface climate
Langematz	Ulrike	Pre-1980 Antarctic ozone depletion in chemistry-climate models and observations
Neely	Ryan	Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol
Neu	Jessica	Ozone response to variability in the stratospheric circulation: The role of ENSO and the QBO and relationship to long-term changes
Pyle	John	Atmospheric Halogens: Model simulations of VSLS and long-lived ODS
Reichler	Thomas	Chemical/dynamical interactions and consequences for climate
Schmidt	Hauke	Stratospheric implications of climate engineering through solar radiation management
Stephens	Graeme	Cloud/aerosol Interactions inferred from Satellite Observations
Tummon	Fiona	Separating the influences of climate and chemistry on future lifetimes of ozone-depleting substances: no indication of much shortened lifetimes

Theme 1 - Atmospheric Chemistry, Aerosols and Climate

Surname	First Name	Presentation Title
Baldwin	Mark	The Stratospheric Plunger
Bitz	Cecilia	Fast and slow response of sea ice and the Southern Ocean to ozone depletion
Butler	Amy	Reconsidering the traditional definition for stratospheric sudden warmings
Gerber	Ed	Understanding and Predicting the Brewer-Dobson circulation
Karpechko	Alexey	Modeling Tropospheric Impacts of the Arctic Ozone Depletion 2011
Krüger	Kirstin	Do Large Tropical Volcanic Eruptions influence the SAM?
Murphy	Damian	Inertial Gravity Waves in the Antarctic Stratosphere
Nishii Kazuaki Blockings and Upward Planetary-Wave Pro		Blockings and Upward Planetary-Wave Propagation into the Stratosphere
Shaw Tiffany Dynamical coupling between the stratosphere an		Dynamical coupling between the stratosphere and troposphere
Smith	Doug	Role of the Stratosphere in Seasonal and Decadal prediction
Son	Seok-Woo	Interannual variation of the Antarctic ozone hole and its implication for seasonal prediction
Waugh	Darryn	Changes in the ventilation of the southern oceans due to stratospheric ozone depletion

Theme 2 - Stratosphere-Troposphere-Ocean Dynamics and Predictability of Regional Climate

Theme 3 - Coupling to the mesosphere and upper atmosphere

Surname	First Name	Presentation Title
Funke	Bernd	Solar Impacts on Climate
Manney	Gloria	Satellite Observations of Extreme Events In the Polar Middle Atmosphere
McLandress	Charles	Constraining gravity wave drag parameterizations using a chemistry climate model nudged to reanalysis data
Smith	Anne	Dynamical Coupling Between the Middle Atmosphere and Lower Thermosphere
Vincent	Robert	Studies of Stratospheric Gravity Waves Using Superpressure Balloons

Theme 4 - Observational datasets, reanalyses, and attribution studies

Surname	First Name	Presentation Title
Compo	Gilbert	Developing the 20th Century Reanalysis version 3 (1850-2013)
Fujiwara	Masatomo	Global Response to the Major Volcanic Eruptions in 9 Reanalysis Datasets
Karoly	David	Detection and Attribution Studies of the Role of the Stratosphere in Recent Climate Changes
Rosenlof	Karen	Long-Term Changes in Stratospheric Constituents
Stiller	Gabriele	The SPARC Water Vapor Assessment II Quality assessment of water vapor data records from satellites
Stolarski	Richard	The Search for Ozone Recovery Using 36 years of SBUV

		Satellite Data
Tarasick	David	A Re-Evaluated Canadian Ozonesonde Record: Changes in the Vertical Distribution of Ozone Over Canada from 1966 to 2012
Weber	Mark	Ozone Trends and Variability in a Changing Climate

Theme 5 - Tropical Processes

Surname	First Name	Presentation Title
Bunzel	Felix	Long-term changes in the Brewer-Dobson Circulation: the role of the residual circulation and mixing
Fueglistaler	Stephan	The relation between water entering the stratosphere and the strength of the diabatic residual circulation
Gettelman	Andrew	Representation of Tropical Clouds, Dehydration and the Tropopause Layer in global models
Johansson	Erik	The Cloud Radiative Heating in the Upper Troposphere Lower Stratosphere over the Indian Subcontinent
Kim	Ji-Eun	Benefits of a New Wave Scheme for Trajectory Modeling of Stratospheric Water Vapor
Legras	Bernard	Transport across the TTL
Mohanakumar	Keasava	The Relationship of the Asian Summer Monsoon to the Tropical Upper Troposphere and Lower Stratosphere
Nath Debashis Debashis Debashis		Decadal changes in PV intrusion events and its impact on deep convection over the tropics from climate change perspective
Schofield	Robyn	Mass Fluxes and Detrainment Rates Over the Maritime Continent: Implications for Stratospheric Composition
Taguchi	Masakazu	Tropical and extratropical connections associated with QBO and ENSO

Theme 6 – Emerging and Outstanding Research of Relevance to SPARC

Surname	First Name	Presentation Title
Jakob	Christian	Long-Standing Errors in Climate Models
Meehl	Gerald	IPCC AR5: Projections, Predictions and Progress Since AR4
Sausen	Robert	Impact of Aviation on Atmospheric Composition and Climate
Seidel	Dian	Temperature Trends: Our Evolving Understanding
Shepherd	Ted	Polar Climate Predictability
Sherwood	Steven	Dynamical Cloud Feedback Mechanisms

In addition, they had the opportunity to view the following poster presentations:

Surname (of 1 st author)	First Name	Title	Presented By
Akiyoshi	Hideharu	A nudged CTM simulation for chemical constituent distribution during the stratospheric sudden warming observed by SMILES in 2010	
Belter	Christopher	A Bibliometric Analysis of Climate Engineering Research	Dian Seidel
Berthet	Gwenael	Effect of the 2009 Sarychev volcano eruption on chemistry of the lower stratosphere: balloon-borne observations and model calculations	
Bodeker	Greg	A semi-empirical model of the stratosphere in the Antarctic climate system	
Bozem	Heiko	Unaccounted ozone source in the upper troposphere	
Brühl	Christoph	Stratospheric aerosol including volcanoes simulated with the EMAC model: effects on radiation, dynamics and heterogeneous chemistry	
Butchart	Neal	The Chemistry-Climate Modelling Initiative: Evaluation and preliminary projections from HAdGEM3 simulations	
Cameron- Smith	Philip	The Impact of Methane Clathrate Emissions on the Earth System	
Coulon	Ancelin	What are the drivers of interannual fluctuations of atmospheric methane	
Dessler	Andrew	The stratospheric water vapor feedback	Karen Rosenlof
Eckman	Richard	Enhancing Integrated Earth Observations of the Composition of the Atmosphere: The Role of the CEOS Atmospheric Composition Constellation	
Engel	Ines	Heterogeneous Formation of Polar Stratospheric Clouds - Nucleation of Ice on Synoptic Scales	
Hansen	Ayoe Buus	Analysis of precipitation data from the NIWA-UKCA climate runs	
Hasebe	Fumio	Update on the Soundings of Ozone and Water in the Equatorial Region (SOWER) through the Year 2014	
Holmes	Christopher	Where is the equator? The geography of atmospheric chemistry	
Hoyle	Christopher	Heterogeneous Formation of Polar Stratospheric Clouds - Nucleation of Nitric Acid Trihydrate (NAT) in the Arctic Stratosphere	Ines Engel
Jaroslawski	Janusz	50 Years of Measurements of Tropospheric Ozone at Northern Midlatitude Site (51.83°N, 20.78°E) - Belsk, Poland; Dobson	

Poster Session A: Atmospheric Chemistry, Aerosols & Climate

		Limicahr Data Dasalaulatad by the Naural	
		Umkehr Data Recalculated by the Neural Networks Method	
Jégou	Fabrice	Volcanic SO2 emissions in the stratosphere from 1979 to 2009	
Jiang	Zhe	Impacts of Model Errors on Global Estimates of CO and CH4 inferred from MOPITT and TES datasets	
Kadowaki	Masanao	Relationship between Ozone Chemical Forcing and Wave Activities for the Period 1990-2011 using the MICROC3.2 nudged CTM	
Karpechko	Alexey	The Link between Springtime Total Ozone and Summer UV Radiation in Northern Hemisphere Extratropics	
Lenton	Andrew	Modulation of Southern Hemisphere climate drivers by large-scale geoengineering	Steven Phipps
Li	Qian	Distribution and variation of biomass burning tracers CO, HCN, and CH3CN in UTLS	
Lopez-Comi	Laura	Assessment of Short-Lived Unobserved Radicals at Lauder Using a Photochemical Steady-State Single-Column Model	
Mann	Graham	Whole-atmosphere aerosol microphysics simulations of the Mt. Pinatubo eruption: evaluation of simulated aerosol properties, assessment of radiative effects and uncertainty quantification via Gaussian emulation	
McLandress	Charles	Quantifying the radiative impacts of CFCs on past changes in temperature and dynamics in the UTLS using a chemistry- climate model	
Meul	Stefanie	Attribution of Ozone Changes: Nonlinear Interactions between Ozone Depleting Substances and Greenhouse Gases	
Nakajima	Hideaki	Relationship between PSC types and ozone destruction rate quantified from CALIPSO and MLS data	
Oberländer	Sophie	Unravelling impact factors for past changes of the Brewer-Dobson Circulation from simulations with the CCM EMAC	
Oman	Luke	The impact of new estimates of mixing ratio and flux- based halogen scenarios on ozone evolution	Darryn Waugh
Orbe	Clara	Seasonal Ventilation of the Stratosphere: Robust Diagnostics from One-Way Flux Distributions	
Osprey	Scott	The climate response following injection of aerosol into the tropical stratosphere: The role of a well-resolved stratosphere	
Park	Mijeong	Global Trends of CHCIF2 (HCFC-22) and CCI3F (CFC-11) estimated from ACE-FTS, HIPPO and WACCM4	
Patra	Prabir	Simulation of major GHGs and ODSs using chemistry-transport model	

Pitts	Michael	Radiative Forcing of Polar Stratospheric Clouds: Seasonal and Interannual Variability of PSC Optical Depth	
Portmann	Robert	Stratospheric water vapor in coupled models: assessing the feedback strength	
Reichler	Thomas	Stratosphere-Ocean Coupling	
Revell	Laura	How will air pollution and climate change impact global tropospheric ozone in the 21st century?	
Rex	Markus	Is There a Hole in the Global OH Shield Over the Tropical Western Pacific Warm Pool?	
Rex	Markus	The SPARC Stratospheric Sulfur and Its Role in Climate (SSiRC) Activity	
Ricaud	Philippe	Chemical Climate Evolution above the Mediterranean Basin	
Ricaud	Philippe	Variability of Tropospheric Methane above the Mediterranean Basin inferred from Satellite and Model Data	
Riese	Martin	On the relationship between age-of-air changes and changes in residual circulation and eddy mixing	
Sakazaki	Takatoshi	Diurnal variations in stratospheric O 3 and HCI as observed by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)	
Schwartz	Michael	High water vapor and associated signatures from MLS in the mid-latitude summer lowermost stratosphere: Implications for posited ozone destruction	Michelle Santee
Seidel	Dian	Detection of Climate Engineering Activities by the Global Observing System Is Limited by Earth System Variability	
Sekiya	Takashi	ENSO variability and future change of ozone in troposphere and lower stratosphere	
Shang	Lin	Direct and Indirect Effects of Solar Variations on Stratospheric Ozone and Temperature	
Sheng	Jianxiong	Global Sulfur Budget and Sensitivity Studies of Anthropogenic SO2 Emissions: Results from a Coupled Sulfate Aerosol-Chemistry- Climate-Model	Thomas Peter
Sheng	Jianxiong	Impact of Coagulation Efficiency in Simulations of Mt Pinatubo Eruption Using a Coupled Sulfate Aerosol-Chemistry- Climate-Model	Thomas Peter
Shiotani	Masato	Middle atmospheric sciences using data from the Superconducting Submillimeter- Wave Limb-Emission Sounder (SMILES)	Makoto Suzuki
Sugita	Takafumi	Lower stratospheric correlation between O3 and HCI as observed by SMILES in the southern high latitudes	
Sukhodolov	Timofei	Representation of the solar signal by radiation codes of the ECHAM family	Thomas Peter

Sukhodolov	Timofei	Validation of the photolysis rate response to the solar irradiance variability	Thomas Peter
Suzuki	Makoto	VSLS Bry Estimation from JEM/SMILES BrO Observation	
Tegtmeier	Susann	The role of oceanic halogen and sulfur compounds for the middle atmosphere	
Thölix	Laura	FinROSE chemistry transport model simulations of the variability and trends of water vapour in the Arctic stratosphere	Alexey Karpechko
Toohey	Matthew	The dynamical response to volcanic aerosol: climate model sensitivity to prescribed volcanic forcing set	Kirstin Krueger
von Hobe	Marc	Polar Stratospheric Ozone in a Changing Climate: Closing the Knowledge Gaps	
Williams	Jason	Multi-model assessment of the sensitivity of the tropical upper troposphere ozone towards regional biogenic emissions estimates	Guang Zeng
Wohltmann	Ingo	How is chlorine activation affected by the composition of Polar Stratospheric Clouds and background aerosol particles?	Markus Rex
Woiwode	Wolfgang	Studies on mesoscale chemical and dynamical structures in the Arctic winter/spring 2010 UTLS region with MIPAS-STR	Hermann Oelhaf
Woodhouse	Matthew	Introduction and evaluation of the ACCESS- UKCA chemistry-climate model	
Xiang	Bin	Recent Global Emission Patterns of Refrigerants HCFC-22 and HFC-134a	Prabir Patra
Zeng	Guang	Multi-model assessment of the impact of biogenic emissions on the composition of the troposphere in the Southern Hemisphere	
Ziska	Franziska	Global VSLS Emission Estimates based on in-situ Measurements for the Past and Future	Kirstin Krueger

Poster Session B: Stratosphere-Troposphere-Ocean Dynamics and Predictability of Regional Climate

Surname	First name	Title	Presented by
Albers	John	Gravity Wave Effects on Polar Vortex Geometry During Split-Type Sudden Stratospheric Warmings	
Alexander	M. Joan	Missing Gravity Waves and Southern Hemisphere Wind Biases in Climate Models: What can observations tell us?	
Alexander	Simon	Sources, variability and wave mean-flow interactions of tropospheric gravity wave activity at Davis, Antarctica (69S, 78E)	
Anstey	James	Relations between tropospheric blocking and the stratospheric polar vortex in an ensemble of climate models	

Arblaster	Julie	Untangling the role of ozone versus GHGs	
Alblaster	June	in SH climate change	
Ayarzagüena	Blanca	The relevance of blocking highs for	
		stratospheric variability in a changing	
Bal	Sourabh	climate Influence of Sudden Stratospheric	
Dai	Sourabii	Warmings on the Indian Summer Monsoon	
Barodka	Siarhei	Observational and Modelling Studies of the	Aliaksandr
		Short-Term Climate Influences of the Ozone	Krasouski
		Mechanism	
Bushell	Andrew	Representation of convectively forced	
		gravity waves and their impact on the upper	
		troposphere and stratosphere of the Met Office GCM	
Calvo	Natalia	Differences in Ozone Recovery and its	Anne Smith
		Climate Impact under different	
Charlton-	Andrew	The Stratospheric Network for the	Greg Roff
Perez	XA /	Assessment of Predictability (SNAP)	
Chen	Wen	Solar Cycle Modulation of the ENSO Impact on the Winter Climate of East Asia	
Choi	Wookap	Determining the Date of the Polar-Vortex	
Onor	Wookap	Breakup in the Stratosphere	
Das	Siddarth	Responsible mechanisms behind the short	
	Shankar	scale Stratosphere- troposphere exchange	
· · ·		associated with cyclonic weather conditions	-
de la Torre	Aledjandro	Wave activity at ionospheric and	Torsten
		tropospheric-stratospheric heights above the Andes Mountains detected from	Schmidt
		FORMOSAT-3/COSMIC GPS radio	
		occultation data	
Dennison	Fraser	Annular Modes and Stratosphere-	
		Troposphere Coupling in Chemistry-	
Dinh	Tra	Climate Models Cirrus, transport, and mixing in the tropical	
Diiii	Па	upper troposphere	
Domeisen	Daniela	Assessing seasonal predictability from	
		stratospheric variability in a seasonal	
-	–	prediction system	
Foust	William E.	Quantifying the Uncertainty in Simulated	
Garfinkel	Chaim	Trends in the Stratospheric Circulation Connections between the Spring Breakup of	
	<u></u>	the Southern Hemisphere Polar Vortex,	
		Stationary Waves, and Air-Sea Roughness	
Gray	Lesley	A Lagged Response to the 11-year Solar	
		Cycle in Observed Winter Atlantic /	
Haase	Sabine	European Weather Patterns The Importance of the Stratosphere for	Rémi
	Cabine	Atlantic Climate Variability	Thiéblemont
Hansen	Felicitas	Quantifying the Effects of Natural and	Rémi
		Anthropogenic Factors on the NH Polar	Thiéblemont
	01	Winter Stratosphere	
Hardiman	Steven	The Interaction Between Stratospheric Sudden Warmings and Ozone	
Hitchcock	Peter	The deterministic tropospheric response to	
		a zonally-symmetrically induced	

		stratospheric sudden warming	
Hoffman	Lars	Stratospheric Gravity Wave Climatologies	
		from AIRS and IASI Observations	
Hood	Lon	The Surface Climate Response to 11-Yr Solar Forcing: Observational Analyses, Comparisons With GCM Simulations, and Tests of the Stratospheric (UV-Ozone) Forcing Mechanism	
Hu	Jinggao	The Boreal Spring Stratospheric Final Warming and Its Interannual and Interdecadal Variability	
Hu	Yongyun	Eastward phase-shift of Southern- Hemisphere planetary waves in the lower stratosphere	
Hung	Ho Yeung	An Improved Idealized General Circulation Model for the Study of Stratosphere- Troposphere Coupling and the Seasonal Cycle of Tropical Upwelling	Edwin Gerber
Hurwitz	Margaret	Extra-Tropical Atmospheric Response to ENSO in the CMIP5 Models	
Hurwitz	Margaret	Modelling the Impacts of HFCs on Climate and Stratospheric Ozone: First Results	
Jrrar	Amna	Leading modes of variability in Antarctic climate: Covariance of ozone and sea-ice in AO-UMUKCA control integration	
Jucker	Martin	Importance of the radiative base state for the dynamical variability of the stratosphere	
Kohma	Masashi	Simultaneous Occurrence of Polar Stratospheric Clouds and Upper- tropospheric Clouds Caused by Blocking Anticyclones in the Southern Hemisphere	
Kozubek	Michal	Long term trends of middle latitude stratospheric winds from NCEP/NCAR	
Kuroda	Yuhji	Modulation of the Southern Annular Mode through UV change -a chemistry climate model simulation-	
Li	Feng	Impacts of Ocean-Atmosphere Coupling on Southern Annular Mode	Clara Orbe
Lubis	Sandro	Investigation of Reflective and Absorptive Winters and Their Impact on Ozone Levels in CESM-WACCM	Rémi Thiéblemont
Mahmood	Sana	Impact of the representation of the stratosphere on tropospheric weather forecasts	Andrew Bushell
Manzini	Elisa	Northern winter Climate Change: Uncertainty in CMIP5 projections related to Stratosphere - Troposphere coupling	
Misios	Stergios	Mechanisms mediating the 11-yr solar cycle influence on climate in the CMIP5 historical simulations	Dann Mitchell
Mitchell	Dann	The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate	
Morgenstern	Olaf	Recent Antarctic Climate Change and Its Relation to Stratospheric Ozone Depletion	

and Increases on Long-lived Greenhouse GasesNegarBananComparison of Surface Ozone Concentrations at Two Different Population Density Areas in Malaysian PeninsulaOelhafHermannProbing the UTLS from 55°s to 80°N with GLORIAOmraniNour- Eddine EddineStratosphere key for wintertime atmospheric response to warm Atlantic decadal predictability of incrementing stratosphere vertical resolution in climate modelsRémit ThiéblemontOsmanMarisolImpacts on SH tropospheric circulation predictability of incrementing stratosphere vertical resolution in climate modelsShigeo Yoden Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesShigeo Yoden Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesShigeo Yoden Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesShigeo Yoden Tropopause Inversion Layer during Stratospheric and tropospheric Compause Inversion Layer during Stratospheric and tropospheric circulation and its relationship to the Tropopause Inversion Layer during asymmetric ozone field (ERA40) of the boreal stratosphere circulation and its rendsMartin RiesePetersDieterCharacteristic of gravity waves resolved in and Antarctic sea iceMartin Riese EGMWP Fanaylist dataPreussePeterCharacteristic of gravity waves resolved in and Antarctic sea iceMartin Riese EGMWP Fanaylist dataScottRichardA new interpretation of the relation between OBI vortex displacement and splitting events<				
OchicationConcentrations at Two Different Population Density Areas in Malaysian PeninsulaOelhafHermannProbing the UTLS from 65°S to 80°N with GLORIAOmraniNour- EddineStratosphere key for wintertime atmospheric conditionsRémi Thiéblemont conditionsOsmanMarisolImpacts on SH tropospheric circulation predictability of incrementing stratosphere vertical resolution in climate modelsShigeo YodenOtsukaShigenoriA Numerical Experiment on Formation of Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesShigeo YodenParimisettyVishnuA Climatological study on LiDAR observations of middle atmosphericShigeo YodenPeeveyTanyaAn analysis of Double Tropopause formation and its relationship to the Tropopause Inversion Layer during Stratosphere-Troposphere ExchangeMartin RiesePetersDieterStratosphere io a conally asymmetric ozone field (ERA40) of the boreal stratosphereMartin RiesePreussePeterCharacteristic of gravity waves resolved in and Antarctic sea iceMartin RieseScaifeAdamSolar-Variability Effects on Extratopical Surface ClimateSurface ClimateSolar VariabilityA practical method to identify stratospheric planeatry wave reflectionPeter HitchcockStratospheric KingAn envirtement cone field (ERA40) of the boreal stratosphereSolar-VariabilityPreussePeterCharacteristic of gravity waves resolved in and Antarctic sea iceMartin RieseScaife <t< td=""><td></td><td></td><td>and Increases on Long-lived Greenhouse Gases</td><td></td></t<>			and Increases on Long-lived Greenhouse Gases	
OelhafHermannProbing the UTLS from 65°S to 80°N with GLORIAOmraniNour- EddineStratosphere key for wintertime atmospheric conditionsRémi 	Negar	Banan	Concentrations at Two Different Population	
Eddineresponse to warm Atlantic decadal conditionsThiéblemont conditionsOsmanMarisolImpacts on SH tropospheric circulation predictability of incrementing stratosphere vertical resolution in climate modelsShigeo YodenOtsukaShigenoriA Numerical Experiment on Formation of Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesShigeo YodenParimisettyVishnuA Climatological study on LiDAR observations of middle atmosphericShigeo YodenPeeveyTanyaAn analysis of Double Tropopause formation and its relationship to the Tropopause Inversion Layer during Stratosphere-Troposphere ExchangeStratosphere-PetersDieterStratospheric and tropospheric circulation changes in response to a zonally asymmetric ozone field (ERA40) of the boreal stratosphereMartin RiesePreussePeterCharacteristic of gravity waves resolved in ECMWF anaylis dataMartin RieseScaifeAdamSolar Variability Effects on Extratropical Surface ClimateSolar Variability and Antarctic sea ice Delar vortex displacement and splitting eventsSeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsPeterShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionPeterSheshadriAdtiStratosphere temperatures in the Arctic by planetary wave reflectionPeterSheshadriAdtiStratosphere temperatures in the Arctic by <br< td=""><td>Oelhaf</td><td>Hermann</td><td>Probing the UTLS from 65°S to 80°N with</td><td></td></br<>	Oelhaf	Hermann	Probing the UTLS from 65°S to 80°N with	
Predictability of incrementing stratosphere vertical resolution in climate modelsShigeo YodenOtsukaShigenoriA Numerical Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesShigeo YodenParimisettyVishnu PrasanthA Climatological study on LIDAR observations of middle atmosphericShigeo YodenPeeveyTanyaAn climatological study on LIDAR observations of middle atmosphericStratosphere-PeeveyTanyaAn analysis of Double Tropopause formation and its relationship to the Tropopause Inversion Layer during Stratosphere-Troposphere ExchangeStratosphere-PetersDieterStratosphere-Iroposphere ExchangeMartin RiesePlumbAlanUsing age to diagnose the stratospheric circulation and its trendsMartin RiesePreussePeterCharacteristic of gravity waves resolved in and Antarctic sea iceMartin RieseScaifeAdamSolar Variability Effects on Extratopical Surface ClimateMartin RieseScottRichardA new interpretation of the relation between QBO phase and stratospheric solar vortex displacement and splitting eventsSolar Variability Effects on Extratopical Surface ClimateShawTiffanyOn the control of the residual circulation and stratospheric Final Warming Events and their Impact on the TropospherePeterSimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Laitude Cliculation southern Hemisphere Mid-Laitude Cliculation southern Hemisphere Mid-Laitude CliculationPeterShawTiffanyIslaZonal and Season	Omrani		response to warm Atlantic decadal	-
Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible Role of Inertia-Gravity WavesParimisettyVishnu PrasanthA Climatological study on LiDAR observations of middle atmosphericPeeveyTanyaAn analysis of Double Tropopause formation and its relationship to the Tropopause Inversion Layer during Stratospheric and tropospheric circulation changes in response to a zonally asymmetric ozone field (ERA40) of the boreal stratospherePetersDieterStratosphere-Iroposphere ExchangePlumbAlanUsing age to diagnose the stratospheric circulation and its trendsPreussePeterCharacteristic of gravity waves resolved in ECMWF anaylsis dataRenwickJamesSouthern Hemisphere circulation variability and Antarctic sea iceScatfeAdamSolar Variability Effects on Extratropical Surface ClimateSeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric Final Warning Events and their Impact on the Tropopause polaretary wave reflectionSheshadriAditiStratospheric Final Warning Events and their Impact on the Tropopause artospheric final Warning Events and their Impact on the TropopauseSimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationSipbergJeremiahThe role of the tropopause eregion in the wave forcing of sudden stratospheric warnings	Osman	Marisol	predictability of incrementing stratosphere	
Prasanthobservations of middle atmosphericPeeveyTanyaAn analysis of Double Tropopause formation and its relationship to the Tropopause Inversion Layer during Stratosphere-Troposphere ExchangePetersDieterStratospheric and tropospheric circulation changes in response to a zonally asymmetric ozone field (ERA40) of the boreal stratospherePlumbAlanUsing age to diagnose the stratospheric circulation and its trendsPreussePeterCharacteristic of gravity waves resolved in ECMWF anaytsis dataRenwickJamesSouthern Hemisphere circulation variability and Antarctic sea iceScaifeAdamSolar Variability Effects on Extratropical Surface ClimateScottRichardA new interpretation of the relation between QBO phase and stratospheric surface ClimateSeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaZonal and Seasonal Variations in Future VariabilitySimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude Circulation variabilitySipbergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric	Otsuka	Shigenori	Tropopause Inversion Layer Associated with an Explosive Cyclogenesis: Possible	Shigeo Yoden
formation and its relationship to the Tropopause Inversion Layer during Stratosphere-Troposphere ExchangePetersDieterStratospheric and tropospheric circulation changes in response to a zonally asymmetric ozone field (ERA40) of the boreal stratospherePlumbAlanUsing age to diagnose the stratospheric circulation and its trendsPreussePeterCharacteristic of gravity waves resolved in ECMWF anaylsis dataRenwickJamesSouthern Hemisphere circulation variability and Antarctic sea iceScaifeAdamSolar Variability Effects on Extratropical Surface ClimateScottRichardA new interpretation of the relation between QBO phase and stratospheric sudden warming frequencySeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid-latitude VariabilitySimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationSjobergJeremiahThe role of the tropopause region in the wave friction of the Mid-Latitude Circulation	Parimisetty		observations of middle atmospheric	
changes in response to a zonally asymmetric ozone field (ERA40) of the boreal stratospherePlumbAlanUsing age to diagnose the stratospheric circulation and its trendsPreussePeterCharacteristic of gravity waves resolved in ECMWF anaylsis dataRenwickJamesSouthern Hemisphere circulation variability and Antarctic sea iceScaifeAdamSolar Variability Effects on Extratropical Surface ClimateScottRichardA new interpretation of the relation between QBO phase and stratospheric sudden warming frequencySeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude VariabilitySipobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric varimings	Peevey	Tanya	formation and its relationship to the Tropopause Inversion Layer during	
PlumbAlanUsing age to diagnose the stratospheric circulation and its trendsPreussePeterCharacteristic of gravity waves resolved in ECMWF anaylsis dataMartin RieseRenwickJamesSouthern Hemisphere circulation variability and Antarctic sea iceMartin RieseScaifeAdamSolar Variability Effects on Extratropical 	Peters	Dieter	changes in response to a zonally asymmetric ozone field (ERA40) of the	
ECMWF anaylsis dataRenwickJamesSouthern Hemisphere circulation variability and Antarctic sea iceScaifeAdamSolar Variability Effects on Extratropical Surface ClimateScottRichardA new interpretation of the relation between QBO phase and stratospheric sudden warming frequencySeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilityPeter HitchcockSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmingsTiffany Shaw	Plumb	Alan	Using age to diagnose the stratospheric	
ScaifeAdamSolar Variability Effects on Extratropical Surface ClimateScottRichardA new interpretation of the relation between QBO phase and stratospheric sudden warming frequencySeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilitySimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmings	Preusse	Peter		Martin Riese
Surface ClimateScottRichardA new interpretation of the relation between QBO phase and stratospheric sudden warming frequencySeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilitySimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmings	Renwick	James	•	
QBO phase and stratospheric sudden warming frequencySeviourWilliamA practical method to identify stratospheric polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilityPeter HitchcockSiopsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationTiffany ShawSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmingsFuture warmings	Scaife		•	
polar vortex displacement and splitting eventsShawTiffanyOn the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilitySimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmings	Scott	Richard	QBO phase and stratospheric sudden	
SheshadriAditiStratospheric temperatures in the Arctic by planetary wave reflectionSheshadriAditiStratospheric Final Warming Events and their Impact on the TroposphereSimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilityPeter HitchcockSimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationTiffany ShawSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmingsFeter Hitchcock	Seviour	William	polar vortex displacement and splitting events	
SimpsonIslaUnderstanding Climate Model Biases in Southern Hemisphere Mid- latitude VariabilityPeter HitchcockSimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationTiffany ShawSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmingsFeter Hitchcock	Shaw	Tiffany	stratospheric temperatures in the Arctic by	
Southern Hemisphere Mid- latitudeHitchcockVariabilityVariabilitySimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationTiffany ShawSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmingsFor the tropopause region in the warmings	Sheshadri	Aditi		
SimpsonIslaZonal and Seasonal Variations in Future Predictions of the Mid-Latitude CirculationTiffany ShawSjobergJeremiahThe role of the tropopause region in the wave forcing of sudden stratospheric warmingsTiffany Shaw	Simpson	Isla	Understanding Climate Model Biases in Southern Hemisphere Mid- latitude	
wave forcing of sudden stratospheric warmings	Simpson	Isla	Zonal and Seasonal Variations in Future	Tiffany Shaw
•	Sjoberg	Jeremiah	wave forcing of sudden stratospheric	
	Stephan	Claudia		

		response to storm characteristics over the US using WRF with validation by radar and satellite data	
Thiéblemont	Rémi	The difference of different sensitivity factors on the 11-year solar signal representation in CESM-WACCM	
Thiéblemont	Rémi	Variability of tracer transport in spring/summer Arctic stratosphere simulated by CESMWACCM	
Vargin	Pavel	A case study of Major Sudden Stratospheric Warming in January 2013	
Vera	Carolina	The multi-scale nature of SAM influence on South America climate	Marisol Osman
Wang	Ling	Characteristics of lower stratospheric gravity waves during stratospheric sudden warmings from ray-tracing experiments and GPS radio occultation data	
Watson	Peter	How does the quasi-biennial oscillation affect the polar vortex?	
Watson	Peter	The stratospheric response to applied extratropical torques	
Williams	Paul	The effect of climate change on transatlantic aviation turbulence in the UTLS region	Manoj Joshi
Xia	Yan	SST Forced Stratospheric Warming over Southern-Hemisphere High Latitudes	
Yao	Weiye	Idealized Simulations of Sudden Stratospheric Warmings with an Ensemble of Dry GCM Dynamical Cores	Christiane Jablonowski
Zhang	Yehui	The impact of the tropopause inversion layer on the gravity wave activity	
Zhang	Yuli	Stratospheric Thermodynamics during the Seasonal Transition between Winter and Summer	
Zhou	Wen	The Characteristics of Wintertime Tropospheric Blocking over Ural- Siberia and Its Implication for East Asia Winter Monsoon	
Zülicke	Christoph	Performance of a gravity wave parameterization with moist baroclinic wave life cycle simulations	

Poster Session C: Observational datasets, reanalyses, and attribution studies

Surname	First Name	Title	Presented by
Alexander	Simon	Tropospheric cloud properties at Davis, Antarctica (69S) and at Hobart, Australia (43S) measured with Rayleigh lidar	
Berthet	Gwenael	In situ measurements of stratospheric aerosols from a new light optical aerosol counter with particle characterization capabilities	
Bodeker	Greg	Science highlights from the GCOS Reference Upper Air Network (GRUAN)	

Bowman	Kevin	Attribution of direct ozone radiative forcing to spatially resolved emissions	Jessica Neu
Braathen	Geir	Long term changes in the polar vortices	
Braesicke	Peter	How well can we model polar spring ozone variability in a CCM?	James Keeble
Bumke	Karl	Validation of fresh water fluxes in HOAPS and ERA-Interim reanalysis data over sea	Remi Thieblemont
Burrows	John Philip	Observations of vertical profile of Ozone from SCIAMACHY	
Davis	Sean	The SPARC Reanalysis Intercomparison Project (S-RIP): Initial comparisons of water vapour and ozone	Masatomo Fujiwara
Dean	Sam	Changes in South Pacific Blocking and the Influence on New Zealand and Antarctica	
Dhomse	Sandip	Stratospheric O3 changes during 2001±2010: the small role of solar flux variations in a CTM and a CCM	Graham Mann
Duruisseau	Fabrice	On the accuracy of stratospheric meteorological reanalyses using wind measurements at high altitude in the stratosphere,	
Eckhert	Ellen		Gabriele Stiller
Fueglistaler	Stephan	On the consistency of the evolution of dynamics, temperatures and tracers in the TTL and lower stratosphere from the 1980's to the present in observations	
Fujiwara	Masatomo	SPARC Reanalysis Intercomparison Project (S-RIP)	
Garfinkel	Chaim	Connections between the TTL and sea surface temperatures: interannual variability and trends	
Geller	Marvin	A Proposed WCRP/SPARC Project on Fine-Scale Atmospheric Structures and Processes	
Gerber	Edwin	Quantifying the Summertime Austral Jet Stream and Hadley Cell Response to Stratospheric Ozone and Greenhouse Gases	
Griessbach	Sabine	Detection of Volcanic Aerosol with Envisat MIPAS	
Gruzdev	Aleksandr	Peak Anomalies in Stratospheric NO2 over Russia Related to the 2011 Ozone Hole in the Arctic	Pavel Vargin
Harris	Neil	Past Ozone Profile Changes analyzed by statistical modeling of suitable long-tem measurements	Johannes Staehelin
Hassler	Birgit	Changes in the Polar Vortex: Effects on Antarctic Total Ozone Observations at Various Stations and Antarctic Surface Climate Characteristics	
Hassler	Birgit	SI2N Overview Paper - Measurements Or Where Do I Find the Perfect Ozone Profile Data?	

		Part I	
Hegglin	Michaela	Solving the stratospheric water vapour entry puzzle	
Huret	Nathalie	On the dynamical characterization of the stratosphere using multi- scale analysis of N2O, CH4, O3 and HNO3 high resolution	
Igri	Moudi Pascal	Comparison of the Cameroon Weather Synoptic Stations Rainfall Data	
Jianying	Jia	Spatio-temporal characteristics of convective gravity wave momentum flux derived from HIRDLS and SABER satellites in the stratosphere over Asian Summer Monsoon region	
Kasai	Yasuko	SMILES diurnal variation climatology of strato- and mesospheric trace gases: O3, HCI, HNO3, CIO, BrO, HOCI, HO2, and temperature	
Kizhathur Narasimhan	Uma	A climatological Perspective of Water Vapour at UTLS Region over Different Global Monsoon Regions: Observations Inferred from AURA-MLS and Reanalysis Data	
Klekociuk	Andrew	Quasi-Stationary Rossby Waves in the Southern Extratropics: An Examination of Meteorological Reanalyses and Climate Model Simulations	Simon Alexander
Kobayashi	Chiaki	Brewer-Dobson circulation diagnosed from JRA-55	
Kolonjari	Felicia	Understanding the Global Distribution of HCFC-22 in the Upper Troposphere and Lower Stratosphere	
Kremser	Stefanie	Climate data record of carbonyl sulfide (COS) in the Southern Hemisphere	
Krizan	Peter	Vertical dependence of breakpoint occurrence at the selected European ozonosonde stations	
Kunz	Anne	A climatology of potential vorticity filaments and related exchange between the tropics and extratropics in the lower stratosphere	
Legras	Bernard	Brewer-Dobson circulation in the ERA- Interim: increase or decrease?	
Liley	Ben	Global Dimming and Brightening in New Zealand	
Liley	Ben	Stratospheric Aerosol over Lauder, New Zealand	
Liu	Yi	Vertical ozone variability and decadal trend over Beijing from ozonesonde observation	Yuli Zhang
Livesey	Nathanial	Lagrangian "Match" chemical loss calculations and related diagnostics for Aura MLS	Michelle Santee
Long	Craig	SPARC Reanalysis Intercomparison Project (S-RIP): Climatology and Interannual Variability of Dynamical Variables	Masatomo Fujiwara
Lossow	Stefan	Variability and linear changes of stratospheric water vapour	

LucasChrisA Critical Comparison of Tropical Expansion MetricsLucasChrisWhat Drives Southern Hemisphere Tropical Expansion?McdonaldAdrianUsing trace gas measurements to quantify horizontal and vertical motion at the polesMcKenzieRichardLong Term Changes in UV in New Zealand Ben Liley	
LucasChrisWhat Drives Southern Hemisphere Tropical Expansion?McdonaldAdrianUsing trace gas measurements to quantify horizontal and vertical motion at the polesMcKenzieRichardLong Term Changes in UV in New ZealandBen Liley	
McdonaldAdrianUsing trace gas measurements to quantify horizontal and vertical motion at the polesMcKenzieRichardLong Term Changes in UV in New ZealandBen Liley	
McKenzie Richard Long Term Changes in UV in New Zealand Ben Liley	
Due to Ozone Depletion: Comparison with Variability from Other Causes and at Other Places	
Metelka Ladislav Non-linear Statistical Model of Changes of Total Ozone with the	
Millan Valle Luis Latest BrO, HO2 and HOCI Observations from the EOS Microwave Limb Sounder	
Min Seungki Multimodel attribution of the Southern Seok-Woo S Hemisphere Hadley cell widening: Major role of ozone depletion	Son
Mitchell Dann The Impact of Stratospheric Resolution for Detection and Attribution of Atmospheric Temperature Trends	
Mitchell Dann The Morphology of the Polar Vortices on Mars and Earth from Atmospheric Reanalyses	
Neef Lisa Assimilation of Geodetic Monitoring Data as Remi a Dynamical Constraint in Atmosphere Thieblemont Models	
Neu Jessica High Altitude Airships as a Platform for Atmospheric Composition Observations	
Neu Jessica The SPARC Data Initiative: Comparison of upper troposphere / lower stratosphere ozone climatologies from limb-viewing instruments and the nadir-viewing Tropospheric Emission Spectrometer (TES)	
Oetjen Hilke Towards a combined IASI/TES record of ozone: validation and first results	
Penckwitt Andreas Splicing SAGE-II and GOMOS measurements to create a long-term stratospheric ozone climate data record	
Pendlebury Diane A comparison of the SPARC Data Initiative Michaela and the CMAM30 datasets Hegglin	
Peter Thomas Balloon-borne match measurements of mid- latitude cirrus clouds	
Raffalski Uwe A New Balloon-borne Submillimetre Limb Sounding Radiometer	
Rahpoe Nabiz Limb ozone profile intercomparison of ozone_cci data products	
Reddmann Thomas Evaluating transport in the middle atmosphere using ERA-Interim analyses	
Salvador Jacobo Study of Temperature Profiles Observed During An Unusual Depletion Of Ozone Over NDACC Station Of Río Gallegos (51° 55'S, 69° 14'W) - Argentina On November 2009	
Santee Michelle Observations of Methyl Chloride and	

		Methanol in the Upper Troposphere / Lower Stratosphere from the Aura Microwave Limb Sounder	
Sato	Kaoru	Program of the Antarctic Syowa MST/IS Radar (PANSY)	
Scherllin- Pirscher	Barbara	Geopotential Height and Geostrophic Wind from Radio Occultation Data	
Schmidt	Torsten	Temperature variability in the upper troposphere and lower stratosphere observed with GPS radio occultations	
Schwaerz	Marc	Validation of Thermodynamic Profiles from MIPAS, GOMOS, and Radiosondes against Radio Occultation Reference Datasets	
Shiotani	Masato	Comparison of ozone profiles between Superconducting Submillimeter- Wave Limb-Emission Sounder (SMILES) and worldwide ozonesonde measurements - some issues in ozonesonde measurements	Masatomo Fujiwara
Shrestha	Dibas	Spatial Patterns of Summer Precipitation around the Himalayas and the Mountainous Western Coast of India and Myanmar Revealed by TRMM	
Smith	Inga	Reanalysis versus reality: a case study of snow on Antarctic sea ice	
Son	Seok-Woo	The Fine-scale Structure of the Global Lapse-Rate Tropopause Derived from COSMIC GPS Radio Occultation Measurements	
Staufer	Johannes	Comparison of ozone concentrations in the UTLS as measured by ozone sondes and commercial airliners (MOZAIC)	Johannes Staehelin
Steiner	Andrea	Atmospheric temperature trends from GPS radio occultation records	
Stone	Kane	An Updated Retrieval of Ozone Profile Information from the Australian Dobson Observational Network	
Suzuki	Nao	Diurnal variation of HO2 over wide vertical region, from stratosphere to thermosphere, observed by SMILES	
Tarasick	David	A Re-Evaluated Canadian Ozonesonde Record: Changes in the Vertical Distribution of Ozone Over Canada from 1966 to 2012	
Tegtmeier	Susann	Highlights of the SPARC Data Initiative: Part II	
Thomason	Larry	The SAGE III's mission aboard the International Space Station	
Thomason	Larry	Toward standardization of the SAGE-series data products: SAGE II 7.0	
Tian	Wenshou	Dynamical and Chemical Effects of Quasi- biennial Oscillation and Stratospheric Semiannual Oscillation on Tracer Transport in the upper Stratosphere	
T	Matt	Trends in Total Column Ozone from	
Tully	matt	Australian and New Zealand Dobson Sites	

		ozone time-series using data from Odin and other satellites	
Vernier	Jean-Paul	On the nature and origin of the Asian Tropopause Aerosol Layer	
von Clarmann	Thomas	MIPAS databases: the current status and future plans	Gabriele Stiller
Whaley	Cynthia	Using FTIR Measurements of Stratospheric Composition to Identify Mid- Latitude Polar Vortex Intrusions Over Toronto	
Wild	Jeanette	The Cohesive SBUV and SBUV/2 Climate Data Record (1978-2012) and the Current Status of the Ozone Profile	Birgit Hassler
Wolfram	Elian	Impact of polar vortex on ozone profiles in the Atmospheric Observatory of South Patagonia, RÃ-o Gallegos, Argentina	
Worden	Helen	Decadal Record of Satellite Carbon Monoxide Observations	
Worden	John	CH4 emissions estimates from tropical and subtropical fires using Aura TES CH4 and Terra MOPITT CO profiles	Zhe Jiang

Poster Session D: Coupling to the mesosphere and upper atmosphere Tropical Processes

Surname	First Name	Title	Presented by
Ajay Kumar	MC	Response of tropical cyclone NILAM on surface metrological parameters	
Akihiro	Masuda	A study of anomalous potential vorticity distribution frequently observed in the boreal winter mesosphere based on a gravity-wave resolving GCM simulation	Kota Okamoto
Andersson	Monika	Mesospheric ozone loss caused by energetic electron precipitation	
Bancala	Severin	How do Major SSWs Develop in Present and Future Climate	Kirstin Krueger
Bunzel	Felix	Tropical ascent rates derived from the water vapour tape recorder - a comparison study with SHARP models and observations	
Butchart	Neal	The response of quasi-biennial oscillation to climate change in HadGEM2-CC	
Carminati	Fabien	Impact of Tropical Land Convection and interplays between Water Vapor, Ice Water Cloud and Temperature in the TTL	
Chan	lan	Balance model for equatorial planetary scale dynamics	
Chane Ming	Fabrice	Characteristics of Gravity Waves during Tropical Cyclone Events in ECMWF Analyses	
Chemel	Charles	Sampling unexplored regions of the tropical UTLS: planning for the next major field campaign in the tropical warm pool	
Chishtie	Farrukh	A study of cloud occurrences and properties in the UTLS region during summer	Fahim Khokhar

		monsoon seasons using CALIPSO and Cloudsat observations across Pakistan	
Dutta Gopa		Long term trend of diurnal tide over a	
		tropical station	
Eguchi	Nawo	Downward coupling process through TTL : a	
		case study using a global non-hydrostatic	
_		model	
Ern	Manfred	Two examples of gravity-wave mean-flow	Martin Riese
		interactions observed from satellite: The	
Ette	Krishna	QBO and the summertime mesospheric jet Effect of cyclone NILAM on atmospheric	
Elle	KIISIIIIa	parameters and characteristics of Inertia	
		Gravity Wave over Hyderabad (170°N,	
		78.40°E)	
Flannaghan	Thomas	The Potential Impacts of Vertical Mixing on	
c		the Tropical Tropopause Layer Temperature	
		Structure	
Frey	Wiebke	Modelling of Hector overshooting	
		convection and its implications on water	
		vapour distribution in the TTL and lower	
Gabriel	Axel	stratosphere Interannual variability of the 3D residual	
Cabilei	AACI	circulation and tracer transport in the	
		stratosphere and mesosphere	
Gabriel	Axel	Stratospheric and mesospheric wind fields	
		derived from Aura/MLS temperatures and	
		tracer distributions	
Geller	Marvin	Changing ENSO Influences on the QBO	
Gong	Jie	Systematic Inclination of Tropical Upper-	
		troposphere Clouds Revealed from Satellite Observations and Model Simulations	
Gong	Yun	Atmospheric Tides in the Low Latitude	
Cong	1 di l	Thermosphere and Their Response to a	
		Sudden Stratospheric Warming in January	
		2010	
Hirooka	Toshihiko	Observed General Circulation Changes up	
		to the Mesopause Level Associated with	
l litabaa alu	Deter	Sudden Warming Events	
Hitchcock	Peter	The Impact of Compositional Changes on Radiative Damping Rates in the	
		Stratosphere	
Jablonowski	Christiane	Spontaneous QBO-like Oscillations in	
		Atmospheric Model Dynamical Cores	
Kawatani	Yoshio	Weakening stratospheric quasibiennial	
		oscillation and trends in tropical mean	
	0	upwelling	
Khaykin	Sergey	Dehydration, Hydration and Horizontal	
Kim	Joowan	Transport in the Tropical Tropical Cold-Point Tropopause:	Seok-Woo Sor
	Joowan	Climatology, Seasonal Cycle, and	
		Intraseasonal Variability Derived from	
		COSMIC GPS Radio Occultation	
		Measurements and CMIP5 models	
121 1.14	Takenari	A study of the tidal periodicity of	
Kinoshita	Takenan	mesospheric gravity waves observed with	

		ME reder at Delver Elet Aleeka	
Krismer	Thomas	MF radar at Poker Flat, Alaska Seasonal Aspects of the Quasi-Biennial	
RIISIIIEI	momas	oscillation in the Max Planck Institute Earth	
		System Model and ERA-40	
Krismer	Thomas	The influence of spectral resolution on	
Rhomer	momas	modeling the Quasi-Biennial Oscillation	
Krismer	Thomas	Wave forcing of the Quasi-Biennial	
Rhomer	momas	Oscillation	
Krueger	Kirstin	Sulfur and Halogen Release from Large	
rauger	i di odiri	Tropical Volcanic Eruptions to the	
		Stratosphere - a Potential Ozone Hole	
		Scenario	
Kuribayashi	Kota	Cly chemistry in the mesosphere observed	
		by SMILES	
Luo	Beiping	In situ measurements of UTLS humidity:	
	1 3	Effects of small-scale temperature	
		fluctuations and of data quality	
Mcdonald	Adrian	Patterns of Southern Hemisphere Climate	
		Change and their Relationships	
Mohammad	Salauddin	Equatorial wave activity during 2007 over	
		Gadanki, a tropical station	
Mohr	Viktoria	Present and Future changes of the TTL	Kirstin
		using a Lagrangian approach	Krueger
Naja	Manish	Vertical profiling of ozone, RH and	
		temperature from the central Himalayas:	
		Influence of dynamical processes and	
		biomass burning	
Nishimoto	Eriko	A diagnostic tool for the temperature	
		structure around the tropical tropopause	
Ortland	David	The residual mean circulation in the tropical	Joan
-	0 11	tropopause layer driven by tropical waves	Alexander
Osprey	Scott	An assessment of tropical stratosphere	
		variability within past and present global	
Dorot	Kristell	climate models	
Perot	KIIStell	Odin/SMR's Contribution to a Better Understanding of Energetic Particle	
		Precipitation Indirect Effect	
Peter	Thomas	Upper Tropospheric Humidity,	
FEIGI	momas	Supersaturation and Cirrus Formation	
Peters	Dieter	Ground-based observation of the long-term	
1 01010	Dictor	variability in the extra- tropical mesosphere	
		and the inter-annual coupling with the	
		stratosphere/ troposphere	
Pommereau	Jean-Pierre	Evidence of much more convective	
		troposphere to stratosphere transport in the	
		Southern than in the Northern tropics and	
		tentative explanation	
Pommrich	Robert	Carbon monoxide as a tracer for tropical	Rolf Mueller
		troposphere to stratosphere transport in the	
		Chemical Lagrangian Model of the	
		Stratosphere (CLaMS)	
Quan	Gan	TIMED/SABER observations of lower	
		mesospheric inversion layers at low and	
		middle latitudes	
Radley	Claire	Cloud and radiative balance changes in	
		Final Tachnical Danarty CRA2012 17NEV	

Final Technical Report: CBA2013-17NSY-Bodeker 21

		response to ENSO in observations and models	
Ramsay	Hamish	The Effects of Imposed Stratospheric Cooling on the Maximum Intensity of Tropical Cyclones in Axisymmetric Radiative-Convective Equilibrium	
Rao	Kusuma	Climate impact of Asian Monsoon Convection	
Rao	Kusuma	Deep cloud structure of the Mesoscale Convective Systems (MCS): Impact of MCS on the Atmospheric Boundary Layer (ABL) and the Tropical Tropopause Layer (TTL)	
Rao	Polisetty Venkateswa ra	Madden - Julian Oscillations over a Tropical Indian Station Using Radar and ERA data of winds	
Reddmann	Thomas	Evaluating NOy transport from the lower thermosphere in the KASIMA model	
Rollins	Andrew	Observational Evidence for Incomplete Dehydration in the TTL	David Fahey
Sakazaki	Takatoshi	Non-migrating tides appearing in a high vertical resolution GCM	
Scaife	Adam	Predictability of the Quasi-Biennial Oscillation	
Schirber	Sebastian	Effects of a Convection-based Gravity Wave Parameterization in a General Circulation Model: The Link from Variable Wave Sources to the QBO	
Schlager	Hans	In situ Measurements in the Outflow of the Asian Summer Monsoon during the HALO ESMVal Campaign	
Schmidt	Torsten	Long-term observations of gravity wave activity in the lower stratosphere with GPS radio occultation data	
Seppala	Annika	Geomagnetic activity signatures in wintertime stratosphere	
Sharma	Som Kumar	Middle Atmospheric Dynamics and Structure in Sub-tropical and Tropical Regions: Possible Interconnections	
Sharma	Som Kumar	Stratospheric Temperature Characteristics and its Association with Ozone over a High Altitude Location	
Sheese	Patrick	The possible effects of nitric oxide variations in the upper atmosphere on temperatures in the lower atmosphere	
Sinnhuber	Miriam	Solar variability impacts on the middle atmosphere - investigations using satellite observations and global models	
Smith	Madeleine	A Quantitative Measure of Polar Vortex Strength Using the Function M	
Smith	Ronald	The Deep-Propagating Gravity-Wave Experiment (DEEPWAVE) over New Zealand	
Son	Seok-Woo	Formation of the tropical cold-point tropopause by baroclinic eddies in a dynamic-core GCM	

Stiller	Gabriele P.	Can the MIPAS-observed pattern of mean age of air trends be explained by shifts of the subtropical mixing barriers?	
Stroh	Fred	The StratoClim Aircraft Field Campaign: Studying Processes Relevant to the Climate Impact of the Asian Monsoon Circulation	
Tissier	Ann'Sophie	Convective sources and transport in the TTL	
Tweedy	Olga	Nighttime Secondary Ozone Layer during Major Stratospheric Sudden Warmings in Specified-Dynamics WACCM	Anne Smith
Ueyama	Rei	Insights on TTL dehydration mechanisms from microphysical modelling of aircraft observations	
Vazhathottat hil	Madhu	A possible UT/LS coupling during dry and wet years of Indian summer monsoon circulation	
Verronen	Pekka T.	Comparison of Modeled and Observed Effects of Radiation Belt Electron Precipitation on Mesospheric Hydroxyl and Ozone	
von Hobe	Marc	Sulfur transport into and through the tropical gateway to the middle stratosphere	
Wang	Wuke	Recent UTLS Variability and Potential Climate Impacts	
Watanabe	Shingo	Vertical resolution dependence of gravity wave momentum flux	
Wright	Jonathon	Differences in Reanalysis Estimates of Diabatic Heating in the Tropical UTLS and Implications for Cross-Tropopause Transport	
Xu	Jiyao	Evidence for non-migrating tides produced by the interaction between tides and stationary planetary waves in the middle atmosphere	
Yuan	Wei	FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07	
Zebaze	Sinclaire	Interaction between moist Kelvin waves and synoptic variability of precipitation over Congo basin	
Zülicke	Christoph	Do split stratospheric vortices reach higher?	

4. Conclusions

As stated under the 'Overview of Project Work and Outcomes', the main objectives of this project were to:

- 1. Support the attendance of PhD students and early career scientists from developing countries and countries with economies in transition in the Asia-Pacific region to the 5th SPARC General Assembly, and by doing so...
- 2. Entrain regional research capability
- 3. Foster regional engagement in SPARC research (e.g. SPARC has a growing interest in processes linking tropospheric and stratospheric change in the tropical Western Pacific)
- 4. Ensure that SPARC is cognizant of the research needs of communities in the Asia-Pacific region.

As a result of generous sponsorship from APN, we were able to provide financial support for three PhD students from countries in the Asia-Pacific region, which enabled them to attend the 5th SPARC General Assembly in Queenstown, New Zealand. Additionally, funding was allocated to a fourth scientist, however due to last minute difficulties in obtaining his visa, this delegate was unfortunately unable to attend.

References

Not applicable.

Appendix

Conference Programme Overview

5th SPARC General Assembly – 12th-17th January 2014 Millennium Hotel, Queenstown, New Zealand

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday
Ounday	09:00 - 10:00	09:00 – 10:00	09:00 – 10:00	09:00 – 11:00	09:00 - 10:30
	Oral Presentations	Oral Presentations	Oral Presentations		
				Oral Presentations	Oral Presentations
	10:00 – 10:45	10:00 – 10:45	10:00 – 10:45		
	Poster Summaries	Poster Summaries	Poster Summaries		
	r öster Gammanes	r öster Gammanes	r öster Gummanes		10:30 – 12:30
					Destas Ossaisa D
	10:45 - 12:00	10:45 – 12:00	10:45 – 12:00		Poster Session D and Morning Tea
					and worning rea
11:00 - 12:30	Poster Session A	Poster Session B	Poster Session C		
11.00 - 12.30	and Morning Tea	and Morning Tea	and Morning Tea		
Registration Open				11:00 - 12:30	
	12:00 - 13:30	12:00 - 13:30	12:00 - 13:00	Poster Session C	
	12.00 10.00	12.00 10.00	12.00 10.00	and Morning Tea	
10.00 10.00	Lunch	Lunch	Oral Presentations	40.00 44.00	40.00 44.00
12:30 – 13:20 Official Opening				12:30 – 14:00	12:30 – 14:00
Onicial Opening	Optional lunch session	Optional lunch session		Lunch	Lunch
Brief Break	-				
13:30 – 17:30	13:30 – 15:30	13:30 – 15:30	Free Afternoon		
10.00 - 11.00	10.00 - 10.00	10.00 - 10.00			
Invited keynote	Oral Presentations	Oral Presentations		14:00 - 15:30	14:00 - 16:00
addresses with					
halftime tea/coffee				Oral Presentations	Oral Presentations
break	15:30 - 17:00	15:30 – 17:00		15:30 - 16:15	
	15.30 - 17.00	13.30 - 17.00		10.00 - 10.10	
	Poster Session A	Poster Session B		Poster Summaries	
	and Afternoon Tea	and Afternoon Tea			16:00 – 17:30
					Afternoon Tea &
				16:15 – 17:00	Closing Address
				Poster Session D	U
	17:00 – 18:30	17:00 – 18:30	4	and Afternoon Tea 17:00 – Late	
	17.00 - 10.00	17.00 - 10.00		17.00 - Laic	
	Oral Presentations	Oral Presentations		Conference Dinner	
17:30 – 19:30 Icebreaker				Please be at the	
ICEDIEANEI				Steamer Wharf by 17:45	
L					

A full version of the programme can be found in the conference handbook, which is available online at:

http://www.sparc-climate.org/fileadmin/customer/5_Meetings/GA5_PDF/Handbook_Total.pdf

Participant List

It is not appropriate to provide a full list (including contact details) of the participants of the 5th SPARC General Assembly, as we have not obtained permission from the individual delegates to do so. However, a significant portion of the attendee names are listed in either the oral or poster programmes (see Section 3, *Results and Discussion*).

Funding Sources Outside the APN

In addition to the funding provided from APN, the SPARC General Assembly was grateful to receive sponsorship (to support the attendance of PhD students, early career scientists, scientists from developing countries or countries with economies in transition) or support inkind from the following organisations:

Platinum (NZ \$50,000 or over)

• World Climate Research Programme

Gold (NZ \$20,000 or over)

- United States National Science Foundation
- World Meteorological Organization (including WIGOS, GAW and WWRP)

Silver (NZ \$5,000 or over)

- Australian Research Council Centre of Excellence for Climate System Science
- Canadian Space Agency
- European Space Agency
- SPARC International Project Office
- New Zealand National Institute of Water and Atmospheric Research

Bronze (Less than NZ \$5,000)

- Aerodyne Research
- Antarctica New Zealand
- Bodeker Scientific
- Committee on Space Research
- Macquarie University
- Tofwerk
- University of Otago

List of Young Scientists

The young scientists supported through the APN sponsorship (to facilitate their attendance at the 5th SPARC General Assembly) were:

Negar Banan PhD Student, Universiti Kebangsaan Malaysia (UKM) Malaysia artibanan@yahoo.com

Message from Negar:

"One of the purposes of the SPARC in Queenstown, New Zealand from 12th-17th January 2014 is to encourage exchange of information between communities involved in scientific research. They address stratosphere-troposphere processes and their role in climate and related processes using observations, data analysis, modeling and numerical studies, and theories. This workshop is a good opportunity to aid my research field and add additional value to my department's area of research, as well as develop any possible skills that I

can apply once I come back to Malaysia. I have better understanding of both relevant and current literature to assist in more scientifically sound climate related research. The new experience in the workshop helped me to provide my team members further motivation with knowledge of what the global community has achieved in climate-related field study.

This area of scientific research is relatively new to this country, and any unique effort on the part of individual scientists is obviously very beneficial for my group, department, and university and hopefully country. For my role in my group and department, I learned more efficient ways or even more challenging ways to approach the study of climate effects on surface ozone concentrations. Finally, I have some in depth understanding of adverse climate variability and change, processes related to ozone, atmospheric chemistry and aerosols and polar processes, possibly using this knowledge to add value to my study on ozone depletion and its role in climate."

Yuli Zhang

PhD Student, Institute of Atmospheric Physics, Chinese Academy of Sciences China zhangyuli@mail.iap.ac.cn

Message from Yuli:

"I am glad to attend SPARC General Assembly (GA) which provides me an opportunity to show my scientific work and to learn more knowledge from so many scientists. I am very grateful to the GA for organizing this meeting and to APN (Asia-Pacific Network for Global Change Research) for the funding which makes this journey.

During the SPARC GA, scientists provide many excellent presentations which explore new frontiers. I have been inspired by their ideas and works. The posters provide even more informations about almost all hot topics in stratospheric research. Also, I was so close to these scientists that we could discuss face to face and create friendships. They gave me many precious comments for my research, and I think my opinions might help them too.

The schedule had been organized very well, and the trip to the island was very happy. At Queenstown, the most beautiful place I have ever seen, I got not only scientific knowledge but also many friends which I stay in touch with. And we still send emails to discuss scientific problems. I think the GA is one of the most important things in my scientific career, and I hope that I will be a good scientist in the further. So once more I want thank the GA and APN for their great help. I wish to see all these friends in next SPARC GA."

Ette Krishna

PhD Student, Vignana Bharathi Institute of Technology India <u>krishna.ette555@gmail.com</u>

Message from Ette:

"It's my pleasure to thanking once again to SPARC GA 2014 organizers and Asia-Pacific Network (APN) organization for given me full support to attend SPARC General Assembly. It

was a big opportunity for me to attend such big conference as a young scientist. I would like to congratulate for the big success of General Assembly.

Almost all the sessions (Oral and Poster) was very interesting. I have got a good knowledge which type of research is going on throughout the world. I met world top most scientist in my field. It was a very good platform to learn the new things from top minds. I have also attended a lunch time meeting. It was very knowledgeable discussion with John Alexander and my co-participants.

Actually I have concentred most of the sessions which were related to Atmospheric Dynamics and Gravity Waves. My project is related to Gravity wave characteristics, Tropopause dynamics and stratosphere - troposphere exchange through observations of water vapor across the tropopause. I have collected a lot of information which is related to my project. Poster sessions were also very great. The better thing is, you have allotted a sufficient time for poster presentations. It could be better to collect more information from all the posters. I have given a poster presentation. It was a very wonderful experience to me as participant such type of a big conference.

Thanking you very much for once again for given this opportunity."

Allocated funding, but unable to attend:

Md. Mizanur Rahman PhD Student, SAARC Meteorological Research Centre (SMRC) Bangladesh <u>mrahman426@yahoo.com</u>

Glossary of Terms

GAW	Global Atmosphere Watch
GFCS	Global Framework for Climate Services
JSC	Joint Scientific Committee
SPARC	Stratosphere-troposphere Processes And their Role in Climate
WCRP	World Climate Research Programme
WIGOS	WMO Integrated Globabl Observing System
WMO	World Meteorological Organization
WWRP	World Weather Research Programme

Abstracts and Power Point Slides of Conference Presentations

The abstracts from all the poster presentations can be viewed on the SPARC website at http://www.sparc-climate.org/meetings/general-assembly-2014/#c1120

The slide shows in PDF format from the majority of the oral presentations (where permission was given to publish these) are available on the SPARC webpage as above.

Conference Reports

A brief summary of the 5th SPARC General Assembly was published in the January 2014 edition of the SPARC Newsletter, which is available on the SPARC website at http://www.sparc-climate.org/publications/newsletter.

A more in-depth report was published in the July 2014 edition of the SPARC Newsletter which is also available via the SPARC Website.