APAN Landscape infrastructure for planning the sustainable coastal cities

Spatio-Temporal Analysis and Modeling for Sustainability of Andaman Coastal City and Forest

Alisa Sahavacharin: Interdisciplinary Program of Environmental Science, Graduate School, Chulalongkorn University **Penjai Sompongchaiyakul:** Department of Marine Science, Faculty of Science, Chulalongkorn University

Interactive Session I Networking Session: Thailand Youth Poster Session 11 July 2018 Bangkok, Thailand

Landscape infrastructure for planning the sustainable coastal cities

objectives

To study coastal urban pattern and process

methodology

Landsat land cover classification by visual interpretation

output

Ecological land classification map

To propose systematic landscape solutions for planning sustainable coastal cities Landscape ecological planning using patchcorridor-matrix model

RESULT &

DISCUSSION

Landscape planning scenario and evalution

Keywords:

coastal city, landscape infrastructure, multifunctional landscape, patch-corridor-matrix model

NTRODUCTION

Methodology

digitizing in ArcGIS software are used to classify land cover from Landsat 7 imagery. Satellite image obtained from USGS earth explorer platform are converted to land cover map with 3 different land classifications; cultural (built-up land), biotic (cultivated land and forest), and abiotic (water body)

Landscape component layer-cake model for inventorying cultural, biotic, and abiotic systems

REFERENCES

Methodology

Then landscape ecological planning framework adapted from Ahern (1999) was used. The framework method are divided into 4 steps; landscape planning goals & assessment, planning strategies, landscape scenario, and evaluation of alternative scenarios.

less connectivity

within the metrix.

6

Conclusion

References

Ahern, J. (1999). Spatial concepts, planning strategies, and future scenarios: a framework method for integrating landscape ecology and landscape planning. In Landscape Ecological Analysis (pp. 175-201). Springer, New York, NY.

Ahern, J. (2006). Theories, methods and strategies for sustainable landscape planning. From landscape research to landscape planning. Aspects of integration, education and application. Springer, Dordrecht, NL, 119-131.

Leitao, A. B., & Ahern, J. (2002). Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and urban planning, 59(2), 65-93.

Mas, J. F. (1999). Monitoring land-cover changes: a comparison of change detection techniques. International journal of remote sensing, 20(1), 139-152.

Steiner, F. (2000). The living landscape. An Ecological Approach to Landscape Planning McGraw-Hill, New York.

Strauss, Benjamin (2014) 20 Countries most at risk from sea level rise from https://weather.com/science/environment/news/20countriesmost-risk-sea-level-rise-20140924

Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual review of ecology and systematics, 20(1), 171-197.

Turner, M. G., Gardner, R. H., O'neill, R. V., Gardner, R. H., & O'Neill, R. V. (2001). Landscape ecology in theory and practice (Vol. 401). New York: Springer

