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OVERVIEW OF PROJECT WORK AND OUTCOMES 
 
 
Non-technical summary  

For better prediction of future climate at Asian dryland by using climate models, a 
community of Asian scientists, including young scientists, was build to inter-compare 
numerous landsurface process models. These models are subprograms of climate models to 
reproduce water, energy and vegetation processes at landsurface, and in this project they 
are used independently, i.e. “off-line”, of climate models. Asian Dryland Model 
Intercomparison Project, ADMIP, is an international project driven by this community. The 
data needed to drive the models at the target sites were collected and archived: One of the 
finest data set in Asian dryland was constructed. Then, these data were used to drive a 
number of state-of-the-art numerical models of landsurface processes. The outputs 
generated by these models were also archived, and they were subject to mutual comparison. 
This way of comparison is called model intercomparison, and shed a light into differences in 
reproducibility of landsurface processes caused by different coding between the models. 
This gave an insight into current status of modeling skills of landsurface processes at Asian 
dryland. 

 
Objectives  

The main objectives of the project were:  
1. To increase modeling capacity in Asian countries of landsurface phenomena at 

dryland 
2. To build a “land surface modelling community” in Asia for future cooperation 

 
Amount received and number years supported 

The Grant awarded to this project was:  
US$ 57,700 for Year 1:  
US$ 47,100 for Year 2: 

Activity undertaken  

Three major international workshops and 1 interim meeting. Numerous conversations over 
the project mailing lists. 

 
2010 
 May 23 A small meeting was held at National Olympics Memorial Youth Center 
 Jun. 22 A presentation was given by J. A. to introduce ADMIP at HESSS2, held at Tokyo 

Univeristy , Komaba, Tokyo. 
 Jul. 11-12 The APN-MAIRS joint workshop on ADMIP (ADMIP kick-off meeting) was held 

at Beijing Foreign Expert Hotel, Beijing, China 
 Jul. 13-16 The 2nd Summer School on Land Surface Observing, Modelling and Data 

Assimilation at Beijing Normal University, Beijing, China 
 Jul. The project home page was opened at http://hywr.kuciv.kyoto-

u.ac.jp/admip/index.html hosted by Kyoto University 
 Jul. The mailing list among the project members (admip@suiri.tsukuba.ac.jp) were 

made, under the support of Terrestrial Environment Research Center, 
University of Tsukuba 

2011 
 Feb. 10 A task force meeting was held at Katsura Campus of Kyoto University, Japan 

http://hywr.kuciv.kyoto-u.ac.jp/admip/index.html�
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 Jul. 13-14 The 2nd workshop on ADMIP was held at Ning Wo Zhuang Hotel, Lanzhou, 
China 

 Dec. 1-2 ADMIP interim meeting was held at Hokkaido University, Sapporo, Japan 
2012 
 May 16-18 The 3rd ADMIP workshop was held at Sylvan Dale Guest Ranch, Loveland, 

Colorado, USA 

Results  

In order to improve climate predictions of landsurface processes at Asian dryland, Asian 
scientists, including young scientists, were gathered to start a project called ADMIP, Asian 
Dryland Model Intercomparison Project, which aims to inter-compare numerous landsurface 
process models, that are subprograms of climate models to reproduce water, energy and 
vegetation processes at landsurface. The project protocol, which states the details of model 
runs and the methods of intercomparison of the model outputs, was composed through a 
long discussion among the project members. By following the protocol, then, the data 
needed to drive the models were collected, archived and used to drive land surface models 
(LSMs), which computes energy and water balance at the earth surfaces, and terrestrial 
ecosystem models (TEMs), which takes care of carbon uptake and intake by the ecosystem 
at the land surface. The outputs of these models were also archived and subject to mutual 
comparison to shed light into differences between the models caused by different schemes 
and different modelling approaches. While all of the models selected in this project are 
among the most elaborated, the preliminary results revealed by this project suggested that 
skills of current climate models to reproduce water and ecosystem processes are still under 
its developing stage at Asian dryland.  More data and more elaboration on the testing of the 
models are needed. The current effort is following the similar efforts in Europe, Australia 
and America, but one of the first in Asia. The driving data and the model outputs archived by 
this project will surely serve as a basis for future works, as will do with the researchers 
community build in this project. The current project also worked as a capacity building of the 
young scientists, which will help promote further modelling works.  

 
Relevance to the APN Goals, Science Agenda and to Policy Processes 

As already stated, this project aims to increase research capacities in Asian countries, and 
to build research communities for Asian dryland research. These aims relates to three of the 
four specific areas cited in APN scientific agenda, 2010-2015; namely, climate change and 
climate variability, ecosystems, biodiversity and land use; changes in the terrestrial domains. 
Moreover, it contributes specifically to APN Goal 1, supporting regional cooperation, and 
Goal 3, improving scientific capabilities of Asian nation.  

 
 
Self evaluation  

This project aims to increase modeling capacity of drylands in Asian countries, and will seek 
to build a “land surface modeling community” in Asia for future cooperation. About ten 
researchers, who constantly attended the meetings and the conferences, and who, 
therefore, are listed as the participants of the smallest Sapporo meeting in Dec. 2011, were 
the core members of the project. A community of Asian researchers to conduct a model 
intercomparison was successfully constructed. At the beginning of the project, few among 
them are experienced with the model intercomparison works. Now that they have become 
well-experienced, their capacity has been expanded. For these reasons, the project fulfills 
the initial aims very well. I am sure that this project will be a basis of the further modeling 
works in Asia.  



Potential for further work  

During this project, the long-term research plan, called here as “Project protocol”, was 
constructed for the period of 5 years or longer. We are in the middle of the tasks stated in 
this plan: About half of the tasks in the protocol were already finished, while the others 
ahead are left to be finished in the next two to three years.  
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TECHNICAL REPORT 
 
 

Preface 

Researchers from Japan, China, USA, Korea, Mongolia and so on, gathered to conduct an 
international project called, ADMIP  (Asian Dryland Model Intercomparison Project), to inter-
compare land surface process models. This reports its activities at the end of the financial term of 
APN-GCR.  

 
 

Table of Contents 

ACTIVITY UNDERTAKEN .......................................................................................................................... 4 
RESULTS .............................................................................................................................................. 5 
POTENTIAL FOR FURTHER WORK .............................................................................................................. 6 
PUBLICATIONS (PLEASE WRITE THE COMPLETE CITATION) ............................................................................. 6 
REFERENCES ........................................................................................................................................ 6 
ACKNOWLEDGMENTS ............................................................................................................................ 6 
PREFACE ............................................................................................................................................. 8 
TABLE OF CONTENTS ............................................................................................................................. 8 
1.0 INTRODUCTION............................................................................................................................... 9 

1.1 WHY DRYLAND ?......................................................................................................................... 9 
1.2 WHAT IS LANDSURFACE PROCESS MODELLING? .............................................................................. 10 
1.3 WHAT IS MODEL INTERCOMPARISON? .......................................................................................... 10 
1.4 TARGET PHENOMENA AND SCIENTIFIC QUESTIONS ......................................................................... 11 

1) TARGET PHONEMENA ............................................................................................................. 11 
2) SCIENTIFIC QUESTIONS ............................................................................................................ 11 

1.5 PURPOSE OF THIS PROJECT? ........................................................................................................ 11 
2.0 METHODOLOGY............................................................................................................................ 11 

2.1 TARGET SITES ........................................................................................................................... 11 
A. TONGYU (CHINA) .................................................................................................................... 12 
B. KHERLEN BAYAN ULAAN (KBU, MONGOLIA) ............................................................................... 12 
C. PINGLIANG (CHINA) ................................................................................................................ 12 

2.2 INTERCOMPARISON STAGES (BLIND POLICY) .................................................................................. 12 
1) STAGE 0: ANALYSES OF EXISTING DATA SET .................................................................................. 13 
2) STAGE 0.5: W/”DEFAULT” PARAMETER SET ................................................................................ 13 
3) STAGE 1: W/“OBSERVED” PARAMETER SET: ................................................................................ 13 
4) STAGE 2: W/“CALIBRATED” PARAMETER SET: .............................................................................. 13 

2.3 REGISTERED MODELS ................................................................................................................. 13 
2.4 MODEL INPUT/OUTPUT VARIABLES AND INPUT PARAMETERS ............................................................ 15 

1) INPUT VARIABLES (AS TIME SERIES) ............................................................................................ 15 
2) INPUT PARAMETERS (AS FIXED VALUE IN TIME) ............................................................................ 15 
3) OUTPUT VARIABLES................................................................................................................. 16 



 

 

 
 

 
 

2.5 DATA ISSUES ............................................................................................................................ 16 
1) DATA SHARING POLICY ............................................................................................................. 16 
2) DATA FORMAT ....................................................................................................................... 16 
3) DATA PREPARATION ................................................................................................................ 16 
4) DATA SUBMISSION .................................................................................................................. 18 

2.6 TIMELINE OF THE PROJECT .......................................................................................................... 20 
1. TIMELINE OF ACTIVITIES ........................................................................................................... 20 
2. MEETINGS AND CONFERENCES .................................................................................................. 20 

3.0 RESULTS & DISCUSSION ................................................................................................................. 25 
3.1 DATA SET CONSTRUCTED ............................................................................................................ 25 
3.2 MODEL INTERCOMPARISON ........................................................................................................ 27 

4.0 CONCLUSIONS .............................................................................................................................. 29 
5.0 FUTURE DIRECTIONS ..................................................................................................................... 29 
REFERENCES ...................................................................................................................................... 29 
APPENDIX.......................................................................................................................................... 31 

LIST OF YOUNG SCIENTISTS ............................................................................................................... 31 
GLOSSARY OF TERMS....................................................................................................................... 32 

ORGANIZATIONS ........................................................................................................................ 32 
OTHERS .................................................................................................................................... 32 
ACRONYMS OF PARTICIPATING MODELS ......................................................................................... 32 
ACRONYMS FOR MODEL VARIABLES (ADOPTED FROM ALMA CONVENTION) ......................................... 33 

 
 

1.0 Introduction 

1.1 Why dryland ? 
Dryland account for 40% of the 

earth’s land surface and also a 
similar fraction of Asian land 
surface (FAO, UNCCD, Figure 1). 
Characterized by dry climate, low 
vegetation cover and low nutrient, 
its ecosystem and the society that 
depends thereon, have inherently large 
vulnerability to the external perturbations, such 
as climate change and land use change. IPCC AR4 
predicts drier climate in the extratropical arid 
regions during the latter half of this century, and 
overgrazing and/or land use change are triggering 
desertification and land degradation in Asian 
drylands, especially in the transitional zones (Fu, 
2009). Because it concerns the poorest 
population groups, essentially living off 
threatened natural resources, the desertification 
and land degradation are challenges for achieving 
the Millennium Development Goals (UNCCD). Figure 1.2: Schematic figure of 

processes in LSMs 

Figure 1.1: Dryland in Asia(FAO) 



 

 

 
 

 
 

1.2 What is landsurface process modeling? 
In order to facilitate sustainable land management in Asian drylands, increasing our 

predictive capability of land surface processes

Land surface models (LSMs) were initially developed as a sub-module of GCMs (general 
circulation model) to incorporate energy and water exchange at the land surface into global 
atmospheric simulation (Manabe 1969). Since mid 1980’s, LSMs have been developed 
separately from those of their parent GCMs. Now, most sophisticated LSMs in the world 
compute processes such as heat and water 
budget for different land cover/use, 
transpiration and carbon assimilation of 
plants, river discharge, groundwater, urban 
environment, and even usage and control of 
river water by human beings (Pitman, 2003; 
Oki and Kanae, 2006).  

 is indispensable. This can be achieved through 
improvement of land surface process modelling, that refers, in this proposal, to land surface 
models (LSMs, Figure 1.2) and terrestrial ecosystem model (TEMs), each of which are briefly 
described below. 

Terrestrial ecosystem models (TEMs) has 
been also developed in conjunction with 
GCM simulation, particularly to incorporate 
response of ecosystem to the elevated CO2 
concentration in the projected future. TEMs 
specialize in carbon dynamics, such as plant growth, ecological succession and soil organic 
processes at longer time scale larger than, e.g., months, while LSMs, that major in water and 
energy at shorter time scales such as hours and days, take vegetation as a static component. 
Though these models are initially developed for a sub-module of GCMs as stated, they can 
be also used independently of GCMs (offline), and therefore can serve as a modelling tool of 
land surface environment at the regional and point scale.  

1.3 What is model intercomparison? 
The current most-sophisticated LSMs and TEMs utilize latest scientific knowledge on 

hydrosphere, atmosphere and biosphere, and use state-of-the-art computer simulation 
technique. Nevertheless, uncertainties in the model results are, in general, large, and the 
origins of these uncertainties are still a matter of a research target. In particular, it is already 
known that ability of these models to reproduce land processes at Asian dryland surface 
processes are still limited (Figure 1.3), partly because they are not sufficiently tested at short 
grass vegetation in Asian dryland, where plant activities are strongly regulated by water 
availability. In other words, Asian dryland is one of largest gap region of land surface 
modelling works in the world. Note that most of LSMs and TEMs are initially developed for 
tropical and boreal forests as a major target. In addition, until recently, the observed data 

Figure 1.4: Schematic diagram of 
model intercomparisons 

Model A 

Output 

Model B 

Output 

Model C 

Output 

Common data set 

 

Comparison 

Figure 1.3: An example of LSMs simulation results of evaporation at 
Mongolian grassland (line) compared with the observations (cross).  



 

 

 
 

 
 

that is needed to drive and validated these models were not easily available from Asian 
drylands.  

The model intercomparison (Henderson-Sellers et. al, 1993, 1995; Figure 1.4) is a way 
toward improvement of LSMs and TEMs, where multiple models are run with a common 
driving meteorological data set, and the results are compared each other to identify relative 
performance of each model as well as ensemble characteristics common to all of the models 
tested. This facilitates intensive tests of LSMs at the targeted site as well as best-estimate of 
model uncertainties from the inter-model variations. 

1.4 Target Phenomena and Scientific Questions 

1) Target Phonemena 
Target phenomena that will be tested through the intercomparison of LSMs and TEMs are, 

energy, water and carbon exchange at the land surface under water-limited environment, 
and/or under the control of vegetation growth, at the temporal scales of 3-hourly, daily, and 
monthly. 

2) Scientif ic  Questions 
Scientific questions that will be answered through the intercomparison of TEMs and LSMs 

are as follows 
1) What is the ability of models to reproduce 

energy, water, and carbon exchange at dryland 
surface (reproducibility)? 

2) Do current ecosystem models, developed mainly 
for forest, reproduce energy, water and carbon 
exchange? 

3) Does the current complexity of models 
effectively simulate land surface processes?  
(complexity issues, also related to 
benchmarking) 

4) Does the multi-model ensemble of LSMs 
outperform single model output? (ensemble) 

1.5 Purpose of this project?  
In the proposed project, several LSMs and TEMs will be intercompared by using the 

common data recently obtained at Asian dryland. LSMs and TEMs will be selected from the 
candidates and their revisions widely used in both research and operational institutes in the 
world. Two selected site will provide meteorological data to drive these models. These sites 
started their observations within this century, and have continued the observations to 
acquire high-quality and continuous data that are needed to drive LSMs and TEMs in the 
intercomparison. All of these circumstances made the proposed works possible, only 
recently. 

Through these intercomparison works, this project aims to increase modelling capacity of 
drylands in Asian countries, and will seek to build a “land surface modelling community” in 
Asia for future cooperation. 

2.0 Methodology 

2.1 Target Sites 
At the beginning, three target sites were chosen for the intercomparison, mainly with the 

data availability.  The observed data at these sites will be archived and used in the 

KBU 

Tongyu 

Figure 1.5: Target sites. Contours and 
colors indicate radiative dryness index 
of Budyko. 



 

 

 
 

 
 

intercomparison. 

a.  Tongyu (China)  
contact person: Dr. Ailikun (MAIRS-IPO, ailikun@gmail.com) 
target period: 2003-2009  
note:  GEWEX-CEOP registered 
 http://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/Tongyu/Cropland 

b. Kherlen Bayan Ulaan (KBU, Mongolia)  
contact person: Dr. Jun Asanuma (U. Tsukuba, asanuma@suiri.tsukuba.ac.jp) 
target periond: 2003-2007 
note:  GEWEX-CEOP and IGBP-AsiaFlux registered 
 http://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/Northern_Mongolia/Kherlen 
 http://asiaflux.yonsei.ac.kr/network/021KBU_1.html 

c.  Pingl iang (China)  
contact person: Dr. Jun Wen (CAREERI, jwen@lzb.ac.cn) 
 future candidate  

2.2 Intercomparison stages (Blind policy)  
In general, a model will perform better when it is provided with more information about 

the target location it is applied. However, different models will perform differently with 
different degree of information they are given about the target. Some model may perform 
well even when it does not have any geographical information. Another model may improve 
its performance magnificently better than others, when it is given some information.  

In order to evaluate model differences with respect to how they depends on the amount of 
information they are given about the geographical, three stages with different degree of 
information given to the models were defined, as an experimental design of the 
intercomparison.  

In the stage 0.5, no information will be given to the models, except time series of 
meteorological variables and the location of the sites, i.e. longitude and latitude. This is 
called a “blind” stage. The performance of the model when nothing is known will be tested 
at this stage. In the following stage 1, the models will be given information about the target 
site, such as soil and vegetation properties. These are the information the models are given 
when they are run within the climate models. stage 2 will provide the models with data for 
calibration, that are, the answers. 

In summary, stage 0.5 is designated to differentiate models with their performance when 
they are “blind”, while the models are evaluated with the same degree of information as in 
the climate models under stage 1.0. Stage 2 will compare the model performance when they 
are fully “tuned”. 
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Fig. 2.1: Schematic diagram for the blind policy in ADMIP 

 

1) Stage 0: analyses of existing data set  
Basic investigation of the results from previous intercomparison or analyses. e.g., GSWP 1 

and 2, GLDAS, and CEOP-MOLTS, will be made to evaluate current overall performance. 
 

2) Stage 0.5:  w/”default” parameter set  
“Totally-blind” stage. No observed information is available at this stage. The parameter 

values without any measured knowledge will be used. The decision is left to the model 
operators. Data being provided will be 

for LSMs,  climatological values of LAI derived from MODIS 
for TEMs,  none 

3) Stage 1: w/“observed” parameter set:  
“Half-blind” stage. Parameters in the models will be determined from observations if 

reliable information is available. Otherwise, the decision is left to the model operators. All of 
the model operators will be requested to report their parameter selection. Data being 
provided will be: 

for LSMs, LAI (from MODIS); albedo; vegetation type & properties including root 
profiles; soil type and properties 

for TEMs, soil type and properties 

4) Stage 2: w/“cal ibrated” parameter set:  
“Calibration” stage. Calibration will be performed by tuning the model results with the 

observations. All of the model operators will be requested to report their parameter 
selection, or how they calibrated the parameters. The objective function for this calibration 
will be a matter of future discussion. Data being provided for calibration will be, in addition 
to those listed in stage 1,  

for LSMs: energy, water and carbon fluxes 
for TEMs: energy, water and carbon fluxes; above- and below-ground biomass; LAI 

2.3 Registered models 
Below are the list of the models registered to the ADMIP project, and the researchers in 

charge of the models. 



 

 

 
 

 
 

BAIM V2.0 
Biosphere-Atmosphere Interaction Model ver. 2 
Kazuo MABUCHI, Meteorological Research Institute, Japan 

JULES 2.0 
Joint UK Land Environment Simulator, ver 2 
Hong Jinkyu, Korea 

SiBCrop 
Simple Biosphere Model-Crop, ver 1 
Erandi Lokupitiya, USA 

CABLE_UNSW 
Community Atmosphere Biosphere Land Exchange, ver 1.0 
Jason P. Evans, Climate Change Research Centre, University of New South Wales, Australia 

CLM 3.5 
Community Land Model, ver 3.5 
Jun Asanuma, Tsukuba University, Japan 

CoLM 
Common Land Model, ver 3 
Guo Weidong, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 

MATSHIRO 
Minimal Advanced Treatments of Surface Interaction and Runoff, ver 5.6 
Shin Miyazaki, Hokkaido University, Japan 
Standard version, Groundwater version and Isotope version 

Noah 2.7 
Noah land surface model, revised ver 2.7 
Chen Yingying, Chinese Academy of Sciences, China 

SiB 2 
Simple Biosphere Model, revised ver 2 
Chen Yingying, Chinese Academy of Sciences, China 

SiBUC 
Simple Biosphere including Urban Canopy, ver 1 
Kazuaki Yorozu, Kyoto University, Japan 

SM/TEA 
Soil model 
Zhang Xia, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 

Biome-BGC 
Biome-BGC 
Kazuhito Ichii, Fukushima University, Japan 

SEIB-DGVM 
Spatially Explicit Individual-Based Dynamic Global Vegetation Model, ver 2.53 
Kaoru Tachiiri, Japan Agency for Marine-Earth Science and Technology, Japan 



 

 

 
 

 
 

VISIT 
Vegetation Integrative SImulator for Trace gases, ver 1 
Akihiko Ito, National Institute for Environmental Studies, Japan 

SSiB 
The Simplified Simple Biosphere model 
Qian Li, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 

HAL 
HAL 
Masahiro Hosaka, Meteorological Research Institute, Japan 

DayCent 
DayCent 
Dennis Ojima, Colorado State University, USA 

NoahMP 
Noah with multiple physics 
Guo-Yue Niu, The University of Arizona, USA 

2.4 Model input/output variables and input parameters 
(note: ALMA variable names in Bold) 
Model input variables are selected through the investigation of each participating models.  

1) Input variables (as t ime series)  
The variables listed below will be prepared as time series from observed data set. 

-  for LSMs (at every 30min or so)  
 SWdown and LWdown (incoming shortwave & longwave radiation, maybe 

diffuse/direct) 
 Tair (air temperature), Qair (specific humidity), CO2air (CO2 concentration), and Wind 

(wind speed) at specified height 
 Snowf and Rainf (snowfall and rainfall, or their sum) 
 Psurf (Surface pressure) 
 LAI (as time series if available) 

-  for TEMs (dai ly,  or  with longer t ime interval)  
 max. and min. temperature 
 precipitation, VPD, and SWdown 
 current and historical land use (grazing history) 

 

2) Input parameters (as f ixed value in t ime) 
The variables listed will be either prepared on the basis of the ground observation or 

derived from satellite measurements. Any post-observation processing of observed records 
should be documented.   

-  for LSMs 
 Vegetation type/properties (that can be measured with confidence) 
 Soil type/properties (that can be measured with confidence) 
 Elevation, slope, aspect 



 

 

 
 

 
 

-  for TEMs ( in addition to the above)  
 Soil texture 
 Additionally, soil C and N (for validation?) 
 Peak live aboveground biomass, root biomass (for validation?) and snow cover 
 Soil respiration (for validation?) 

 

3) Output variables  
The variables listed below should be submitted to the project for further analyses. Each 

variable listed below were ALMA compliant. The detail description can be derived 
from output variables table(http://hywr.kuciv.kyoto-u.ac.jp/admip/output_table.html). 

-  from LSMs (Hourly)  

Mandatory 
SWup, LWup, Qh, Qle, Qg, SoilTemp(layer-averaged soil temperature) 
Evap, Qs, Qsb, SWE and/or SnowDepth, SoilMoist, WatertableD 

Mandatory if  applicable  
GPP, NPP, NEE, AutoResp, HeteroResp 

- from TEMS  (Daily) 

Mandatory 
Qle, SoilTemp 
SoilMoist 
GPP, NPP, NEE, AutoResp, HeteroResp, ToLivBiom 

Mandatory if  applicable 
SWup, LWup, Qh, Qg 
Evap, Qs, Qsb, SWE and/or SnowDepth, WatertableD 

2.5 Data issues 

1) Data sharing policy 
First, all forcing data and model outputs will be shared by the participants of ADMIP. A key 

paper will be published with all participants as well as the data provider as the authors. At 1 
year after the publication of the key paper, forcing and input data that were used to run the 
models and the model outputs will be available to the public, under the condition that it 
complies the data policy of the data sources.  

2) Data format 
ALMA-compliant netCDF format will be used for submitting, archiving and exchanging the 

forcing and model output data. Specific notes to ADMIP are given below. 
sign convention flux values should be upward positive 
leap year issues 365-day calendar should be used, and, therefore, data at Feb 29th will be 

dropped after the data submission. 
the start of the day 00UTC (0 o’clock in UTC) 
soil layer depth information should be submitted in the netCDF file or  in a separate text. 
soil temperature SoilTemp in ALMA convention is laryer-averaged soil temperature. 

3) Data preparation  
The data working group will be organized to prepare necessary data. All of submission of 
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the data will be directed to ADMIP web page. 

a.  LAI  and albedo from MODIS 
CAREERI group (Dr. J. Wen) and Mr. Kondo (Fukushima U.) is in charge. LAI (at 500 m 

resolution) and albedo (at 5km resolution) was and will be derived from MODIS products. At 
KBU, LAI will be calibrated with in situ observations. 2 data sets is prepared as follows.  

1) Cl imatological  monthly LAI  from 10-years data for the bl ind stage 0.5 
prepared by Fukushima U.  

 

Table 2.1: Climatological monthly LAI derived from MODIS 
Site KBU TGY 

Jan 0.0 0.0 

Feb 0.0 0.0 

Mar 0.0 0.0 

Apr 0.0 0.0 

May 0.23 0.25 

Jun 0.28 0.33 

Jul 0.52 0.69 

Aug 0.56 1.22 

Sep 0.37 0.72 

Oct 0.2 0.25 

Nov 0.0 0.0 

Dec 0.0 0.0 

 
It should be noted that an expected value of LAI=0 during winter may not lead to 

reasonable results, and that it may need to be replaced with an infinitesimally small value, 
such as LAI=0.1, for some models (Thanks to Prof. Jinkyu Hong). 

2) Time series of LAI  (Fukushima U.)  and albedo (CAREERI)  at every 8 days,   

wil l  be constructed.   

b Soil  properties  
Dr. Yang K.(Tongyu) and Dr. Asanuma (KBU) will derive parameters needed. 

c.  Grazing history:  
Dr. Aili (Tongyu) and Dr. Asanuma (KBU) are in charge. Dr. Byanbahuu also gave details at 

KBU. 
 Tongyu: heavily overgrazed since1960’s, with increasing grazing pressure upto now.  No 

grazing since 2003 when it was fenced 
 KBU: heavily overgrazed, especially in winter, in summer moderately overgrazed (Dr. 

Byanbahuu will investigate further) 



 

 

 
 

 
 

d Root profi le (depth)  from the l iterature (at KBU) 
 Tongyu (10-35cm, no root below 35cm) and KBU(upto 50 cm) 

e.  Long term forcing data set for spin-up 
Long term forcing data set was prepared for spinning up LSMs and TEMs. 
 Tongyu (prepared by Dr. Yang K.) 

date set constructed by Instite of Tibetan Plateau Research  
period 1981-2008, 3 hourly 
 KBU (prepared by J. Asanuma) 

data set constructed by NCAR (Qian et al., 2007, J.Hydro.Met) for Community Land Model. 
period 1948-2004, 3 hourly 

4) Data submission 

1)  Data format 
ALMA-compliant netCDF format is used for submitting model output data. The detailed 

description of requested variables can be found in output variables table. 
(http://hywr.kuciv.kyoto-u.ac.jp/admip/output_table.html) at ADMIP home page. 

Some notes specific to ADMIP are also given in “section 6, 2) Data format”. 

2) Fi le naming convention 
Each participats will submit their model output to the project for further analysis and basic 

comparison. To facilitate these data analysis, a convention for file names should be 
followed:  

[model ID]_[stage ID]_[station ID].nc 

Where MODEL: model acronym and STATION: station name identifier (such as Tongyu or 
KBU(Kherlenbayan-Ulaan) 

 
Each modeler use specified model inputs integration of their models and submit that 

information with their output by filling in the requested sheet.  

a Model ID 
An acronym will be given to each of participating models as an unique ID. This ID will be 

used in the file name for the model outputs. It is in the form, 

<model acronym><version>[<modified organization>][<modified version>] 

ex1) “CLM40” 
 Community Land Model ver. 4.0, original version as developed at NCAR 
ex2) “CLM40UTKB13” 
 Community Land Model modified at Univ. Tsukuba after the original version of ver. 

4.0. Its modified version of 1.3. 
 

Table 2.2: Model acronyms of the participating models 
Model name Model acronym 

BAIM (Biosphere-Atmosphere Interaction Model) BAIM 

JULES (Joint UK Land Environment Simulator) JULES 
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SiB-Crop (Simple Biosphere Model-Crop) SiBC 

CABLE (Community Atmosphere) CABLE 

CLM (Community Land Model) CLM 

CoLM (Common Land Model) CoLM 

MATSIRO (Minimal Advanced Treatments of Surface 
Interaction and Runoff) 

MATSIRO 

MATSIRO-GW (Minimal Advanced Treatments of Surface 
Interaction and Runoff-Groundwater) 

MATSIRPG 

Iso-MATSIRO (Minimal Advanced Treatments of Surface 
Interaction and Runoff-Groundwater) 

IMATSIRO 

Noah-CAS (Noah land surface model) NCASA 

SiB2-CAS (Simple Biosphere Model) SCASA 

SiBUC (Simple Biosphere including Urban Canopy) SiBUC 

SM (Soil model) SM 

Biome-BGC BBGC 

SEIB (Spatially Explicit Individual-Based Dynamic Global 
Vegetation Model) 

SEIB 

VISIT (Vegetation Integrative Simulator for Trace gases) VISIT 

HAL(Hydrology，Atmosphere and Land (HAL) model) HAL 

DayCent DAYCENT 

Noah MP NOAHMP 

b Stage ID 
Table 2.3: Stage IDs 

Stage no. Stage ID 

stage 0.5 stage05 

stage 1.0 stage10 

stage 2.0 stage20 

c.  Station ID 
Table 2.4: Station IDs 

Sation  Station ID 

Tongyu Tongyu 

Kherlen Bayan Ulaan(KBU) KBU 

3 )  Data upload  
Each participants will submit their model output and their default parameters after 

archiving them into one file at the data submission page. 

a. Stage 0.5 submission 
Each modeler use default parameters for stage 0.5 integration of their models and submit 
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that information with their output by filling in the requested sheet (http://hywr.kuciv.kyoto-
u.ac.jp/admip/doc/default_parameter.xls). If you can't upload or upload system doesn't 
work well, please send your output as attachment.  

2.6 Timeline of the project 
In order to discuss the methodologies described above, and to prepare the data needed for 

the intercomparison as well as results of the intercomparison, 4 meetings have been held in 
conjunction with this project. Full summaries, participants lists, major presentation files, and 
pictures of these meetings are printed in the appendix or contained in DVD-ROM attached to 
this report, and therefore only brief descriptions are given herein.  

1.  Timeline of Activit ies 
2009 
 July, 22 Possibility of an international project on intercomparison of landsurface 

process models by using data obtained at Asian dryland was discussed at the 
2nd MAIRS International workshop on Asian Dryland Study. 

2010 
 Apr.  A proposal submitted to APN-ARCP by J. Asanuma (J.A.) and D. Ojima was 

approved. 
 Apr.  A proposal submitted to JSPS by J. Asanuma and others was approved. 
 May 23 A small meeting was held at National Olympics Memorial Youth Center, Yoyogi, 

Japan, with 5 participants. 
 Jun. 22 A presentation (Asanuma and Yorozu, 2010) was given by J. A. to introduce 

ADMIP at HESSS2, held at Tokyo University , Komaba, Tokyo. 
 Jul. 11-12 The APN-MAIRS joint workshop on ADMIP (ADMIP kick-off meeting) was held 

at Beijing Foreign Expert Hotel, Beijing, China. 
 Jul. 13-16 The 2nd Summer School on Land Surface Observing, Modelling and Data 

Assimilation at Beijing Normal University, Beijing, China. 
 Jul. The project home page was opened at http://hywr.kuciv.kyoto-

u.ac.jp/admip/index.html hosted by Kyoto University. 
 Jul. The mailing list among the project members (admip@suiri.tsukuba.ac.jp) was 

opend under the support of Terrestrial Environment Research Center, 
University of Tsukuba. 

2011 
 Feb. 10 A task force meeting was held at Katsura Campus of Kyoto University, Kyoto, 

Japan. 
 Jul. 13-14 The 2nd workshop on ADMIP was held at Ning Wo Zhuang Hotel, Lanzhou, 

China. 
 Dec. 1-2 ADMIP interim meeting was held at Hokkaido University, Sapporo, Japan. 
2012 
 May, 16-18 The 3rd ADMIP workshop was held at Sylvan Dale Guest Ranch, Loveland, 

Colorado, USA. 
 

2.  Meetings and Conferences  
The methodologies given in this chapter were discussed over long discussions between the 

participating researchers. These discussions are made during the series of meetings and 
conferences, and through the mailing list during the two and half year of this project. Below, 
these meetings and conferences will be listed and described briefly. Full information will be 
given in Appendix. 
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1.  A small  meeting at National  Olympics Memorial  Youth Center  
Date:  May 23, 2010 
Place:  National Olympics Memorial Youth Center, Yoyogi, Tokyo 
Participants:  Drs Mabuchi, Itoh, Ichii, Miyazaki, Yorozu, Tachiiri, Asanuma 
Summary Expectations and prospects of ADMIP were discussed. Past experiences of 

model intercomparison projects were introduced by some of the 
participants. 

2.  The APN-MAIRS joint workshop on Asian Dryland Model Intercomparison 
Project (ADMIP) –“Kickoff Meeting” 

Date:  July 11-12, 2010 
Place:  Beijing Foreign Expert Hotel, Beijing, China 
Hosted and supported by:  MAIRS, CAS, APN and JSPS 
Participants:  see the list in Appendix 
Summary:  Current status of the landsurface models and terrestrial ecosystem models 

were introduced by the participants. Various experiences and applications 
of these models at dry climate regions were discussed. Possible outcomes 
of intercomparison of these models at Asian dry land were further 
discussed. A detailed plan of the intercomparison of these models with use 
of observations gained at Asian dryland was presented. Possible candidates 
of the target sites of the project were listed, and 3 sites, Tongyu, KBU, and 
Pinliang, were chosen from them. The data policy, the time line of the 
project, and the next meeting place were decided. 

Training course: Right after the workshop, a training workshop jointly sponsored by CAS 
and UNESCO was held at Beijing Normal University, and the young 
participants of the project also attended the training. This workshop 
worked as a capacity building of this project. The course materials and the 
participant list are presented in the Appendix. 



 

 

 
 

 
 

 
Fig. 2.2: 1st APN-MAIRS joint workshop on ADMIP at Beijing Foreign Expert Hotel, Beijing on July 11-

12, 2010. 

 
Fig. 2.3: The 2nd Summer School on Land Surface Observing, Modeling and Data Assimilation 

13-16 July 2010, Beijing Normal University, Beijing, China 
 

3.  The 2nd APN-MAIRS joint workshop on Intercomparison of Land Surface 
Process Modeling at Asian Dryland 

Date:  July 13-14, 2011 
Place:  Ning Wo Zhuang Hotel, Lanzhou, China 
Also hosted and supported by :  
 CAREERI, APN, MAIRS, CAS and JSPS 
Participants:  see the list in Appendix 
Summary The progress of the project was reviewed. It was confirmed that two sites, 

Tongyu and KBU, are the final selections of the target site of the model 
application, while Pingliang is a future candidate. A future time line of the 
project was proposed and agreed, where the model intercomparison works 
will be separated into 3 stages with different objectives and data set.  



 

 

 
 

 
 

 
Fig. 2.4: The 2nd APN-MAIRS joint workshop on Intercomparison of Land Surface Process Modeling 

at Asian Dryland, Lanzhou, China 

4.  Asian Dryland Model Intercomparison Project (ADMIP) Interim Meeting  
Date:  Dec 1-2, 2011 
Place:  Hokkaido University, Sapporo, Japan 
Hosted and supported by :  
 Global COE program “Establishment of Center for Integrated Field 

Environment Science” at Hokkaido University, APN, MAIRS, CAS and JSPS 
Participants:  see the list in Appendix 
Summary: The progress of the project, especially that of the data preparation needed 

to drive the models in the intercomparison, were discussed. It was found 
that the year 2003, the beginning of the target period of the simulation, 
was found to be an anomalous year, and there are difficulties in generating 
the initial conditions of the state variables in LSMs and TEMs, such as soil 
moisture and biomass both above- and below-ground. In order to solve this 
issue, it was decided that the project prepare historical records of the 
meteorological data, which can be used in the initializing process of the 
models (spin-up process). The updated schedule of the project, as well as 
the related data preparation, was also discussed. 



 

 

 
 

 
 

 
Fig. 2.5: ADMIP interim meeting at Sapporo, Japan 

5.  The 3rd International  Workshop on Asian Dryland Model Intercomparison 
Project (ADMIP)  

Date:  May 16-18, 2012 
Place:  Sylvan Dale Guest Ranch, Loveland, Colorado, USA 
Hosted and supported by :  
 Colorado State University, APN, MAIRS, CAS and JSPS 
Participants:  see the list in Appendix 
Summary: The current status of the project was reviewed. The first results of the 

intercomparison between the models at the target sites were presented. A 
plan to write a research paper for a publication in a peer-reviewed journal 
was proposed, and agreed. The future plans of the project were also 
discussed.  



 

 

 
 

 
 

 
Fig.2.6: 3rd APN-MAIRS joint workshop on ADMIP at Colorado, USA 

 

3.0 Results & Discussion 

3.1 Data set constructed 
A forcing data set, that can drive LSMs and TEMs, were derived from the observational 

data at Tongyu and KBU. This process includes quality-controlling (QC), which evaluate the 
quality of each observational value to remove less-qualified data points, and gap-filling (GF) 
which fill in the gaps generated in the process of QC by mainly using statistical techniques 
(Lee, Massman, and Law, 2004). Through these processes, continuous, i.e. without any gaps, 
and well-qualified data series with high temporal resolution, i.e. every 30 minutes, were 
generated for KBU and Tongyu. An example of these data at KBU are plotted in Fig. 3.1. 

In addition, in order for constructing an initial state of the model variables (spin-up_, such 
as vegetation amount and soil moisture, a historical record of meteorological variables were 
derived for each of the target sites. 

 



 

 

 
 

 
 

 

  a) Tair (K) b) Qair (fraction) c)SWdown (W/m2) 
 

 
 d) CO2air (ppm)  e) LWdown (W/m2) f) PSurf (Pa) 
 



 

 

 
 

 
 

 
  g) Rainf (m/sec) h) Wind (m/sec) 

Fig 3.1: Example of the forcing data generated for KBU. The x-axes indicate time of the day, while the 
y-axes are days. Subtitles are in the ALMA convention, and the units are presented with the subtitles. 

(Asanuma, 2011) 

 

3.2 Model Intercomparison 
Table 3.1 summarizes the status of model output submission at the time of the 3rd 

workshop in Colorado in May, 2012. “Sign” indicates the sign of the values may be opposite.  
Though we strictly ask participants to follow ALMA convention, an international standard 
among the model intercomparison community, some of the model outputs are not 
compliant with it.  

Fig 3.2 and 3.3 show the comparison between monthly model outputs of Qle, latent heat 
flux, and Qh, sensible heat flux, from the participating models. It is found that differences 
between models are larger with Qh than with Qle. This is in contrast to general knowledge 
about the physical process in the landsurface modeling. While sensible heat flux from the 
surface to the atmosphere, that is the heating of air by the land, is mainly concerned only 
with the temperature of the land and the atmosphere, latent heat flux from the ground, that 
is the evaporation from the land into the air also involves moisture of the land. Therefore, 
modeling of the former is regarded as easier than that of the latter. However, the results 
shown in Figures 3.2 and 3.3 are opposite: The model works better with evaporation than 
with atmospheric heating. This is probably due to characteristics of dry climate: Evaporation 
from the landsurface, i.e., latent heat flux, is fully restricted by small amount of rainfall at 
the monthly time scale, therefore it does not have larger degree of freedom, therefore it is 
easier to be predicted. On the other hand, sensible heat is controlled by the balance of heat 
between the air and the land, and has larger degree of freedom, in contrast.  

 



 

 

 
 

 
 

 Table 3.1. Output submission status of the participating models, summarized at the 3rd 
workshop in May, 2012 (Yorozu et. al., 2012). 

 

 
 

 

 
Fig 3.2:  Comparison between Qle, latent heat flux, computed by different models (Yorozu et. al., 

2012). 
 

 

 
Fig 3.3: Same as Fig.3.2 but with comparison between Qh (Yorozu et. al., 2012). 

 



 

 

 
 

 
 

4.0 Conclusions 

The purpose of this APN funded project is to increase modelling capacity at dryland in 
Asian countries, and will seek to build a “land surface modelling community” in Asia for 
future cooperation.  

Asian scientists, including young scientists, were gathered to build an international project 
called ADMIP, Asian Dryland Model Intercomparison Project, which aimed to inter-compare 
numerous landsurface process models. The project protocol of ADMIP, which states the 
details of model runs and the methods of intercomparison of the model outputs, was 
composed from scratch through a long discussion among the project members. A part of the 
project protocol was given in the section 2.0 “Methodologies”. 

At the time of the beginning of the project, not may are experienced with the model 
intercomparison works. Now, the project protocol, that describes the model 
intercomparison methodologies, was composed from scratch by this community, and that 
the first model intercomparison was done. Therefore, it is able to conclude that our capacity 
was expanded, and that “the community” was constructed, which assures the successful end 
of the project. 

5.0 Future Directions 

While the project fully satisfied its first goal of the project, it is still at the middle of the 
tasks stated in the project protocol; about half of the tasks was finished, while the others 
ahead are left untouched. At the time of writing, the project finished the stage 0.5 
comparison, which is outlined in section “3.0 Results & discussion”, and it is about to start 
with stage 1.0 works. Therefore, stage 1.0 and 2.0, with further intercomparison, are surely 
next to do.  
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Appendix 

Project home page: 
ADMIP home page hosted by Kyoto University at 
 http://hywr.kuciv.kyoto-u.ac.jp/admip/index.html 

Funding sources outside the APN 
MAIRS:  Cofunding. Almost half of the expenses of the project are covered by MAIRS, in 

addition to in-kind support by its staffs at International Project Office (IPO). 
 
JSPS:  Cofunding.Financial support through its Grant-in-Aid for Scientific Research (B), 

titled “Intercomparison of landsurface models and terrestrial ecosystem models at 
dry and semi-dryland” (PI: J. Asanuma) 

  2010:  3,500,000JPY 
  2011:  2,200,000JPY 
  2012:  2,300,000JPY 
 
TERC, University of Tsukuba, Japan: 
 In-kind supports through 1) hosting the mailing list of the project, 2) providing 

logistic supports for the conferences and meetings including one personnel, and 3) 
providing whole financial accountings for whole APN funding. 

 
Hydrology and Water Resources Research Laboratory at Kyoto University: 
 In-kind support through 1) hosting the project home page, and 2) assisting 

preparing the data needed for model runs. 
 
CAREERI, CAS, China:  
 in-kind supports as the local host of the 2nd workshop as well as covering some 

local expenses. 
 
Global COE program “Establishment of Center for Integrated Field Environment Science” at 

Hokkaido University: 
  in-kind support as the local host of the interim meeting. 
 
Colorado State University: 
 in-kind supports as the local host of the 3rd workshop, as well as covering some 

meeting expenses. 

List of Young Scientists  

Prof.  Kazuaki  Yorozu 
Affiliation and Contacts: 

Hydrology and Water Resources Research Laboratory 
Department of Civil and Earth Resources Engineering 
Kyoto University, C1, Nishikyo-ku, Kyoto 615-8540, Japan 
Tel: +81-75-383-3363  Fax: +81-75-383-3360 
E-mail: yorozu@hywr.kuciv.kyoto-u.ac.jp 

Involvement in the project activities 
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The 2nd Summer School on Land Surface Observing, 
Modeling and Data Assimilation 

 
13-16 July 2010, Beijing Normal University, Beijing, China 
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       8:30 -20:00, July 12 (Monday), the main hall of the Science and Technology Building 

       8:00-12:00, July 13, RM502, Zeng Xianzi Building (Teaching Building 9), Registration  
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11:10 - 12:10 Atmosphere Forcing Data in China Region Based on FY2 Satellite, Dr. Chunxiang Shi 
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14:00 - 15:20 Second Generation Polar-Orbiting Meteorological Satellites of China: Fengyun 3 and its application on global monitoring, Prof. Peng Zhang 
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8:30 - 9:50 Assimilating Remote Sensing Data into Land Surface Models: Theory, Method and a Software Tool I, Dr. Xin Li 
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10:00 - 11:20 Cost-function Based Methods and Particle Filter Method: Theory and Application in Soil Moisture Estimation, Dr. Jun Qin 
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17:00 - 18:20 Assimilating Remote Sensing Data into Land Surface Models: Theory, Method and a Software ToolⅡ, Dr. Xin Li and Liangxu Wang 
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17:40 - 18:20 Climate Change Adaptation: Two Case Studies of IHP from Indian Sub Continent, Dr. Bhanu Neupane 
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This part addresses scientific problems about data sources, focuses on the Satellite 

Remote Sensing Products, and Interprets how to couple these data with land surface 

models based on data assimilation frameworks. Five invited experts contributed their 

lecture notes or recommended some helpful reference papers.  

 



Chapter 12
Data Assimilation Methods for Land Surface
Variable Estimation

Shunlin Liang and Jun Qin

Abstract Estimating land surface variables from remote sensing data is an ill-posed
problem. Integration of observations from multiple satellite sensors with different
spectral, spatial, temporal and angular signatures is now an important research fron-
tier. Data assimilation (DA), integrating not only remotely sensed data products,
but also other measurements and land dynamic models, is an advanced set of tech-
niques for innovative parameter estimation. After a brief introduction, we describe
the basic principles of DA, and then provide in-depth discussions of some relevant
issues while using DA. The latest applications of DA for estimation of soil moisture,
energy balance, carbon cycle and agricultural productivity are summarized.

12.1 Introduction

Despite the abundance and variety of remote sensing measurements, land surface
characterization from satellite observations is still very challenging. There are mul-
tiple sources of surface information, such as remote sensing data and derived prod-
ucts, in situ measurements, and land surface model outputs. Innovative techniques
are needed to merge these information sources and optimize the use of satellite
measurements for robust surface products and greater predictability. Data assimila-
tion (DA) is a mathematical approach that enables use of all available information
within a given time window to estimate various unknowns. The information that
can be incorporated includes observational data, existing a priori information, and,
very importantly, a dynamic model that describes our system and encapsulates cur-
rent theoretical understanding. The model brings consistency to the observational

Shunlin Liang
Department of Geography, University of Maryland, College Park, USA
sliang@umd.edu

Jun Qin
Institute for Geographical Science and Natural Resource Research, Beijing, China

S. Liang (ed.), Advances in Land Remote Sensing, 313–339. 313
c© Springer Science + Business Media B.V., 2008



314 S. Liang, J. Qin

data, and interpolates or extrapolates data into data-devoid regions in space and
time. The observational data, representing the actual state of the system, corrects
the trajectory of the imperfect model through adjusting model parameters. DA is
also called model–data synthesis or data–model fusion in different disciplines.

The benefits of DA for maximizing the scientific and economic value of remote
sensing data is summarized as follows (O’Neill et al., 2004; Raupach et al., 2005):

1. Forecasting and error tracking. By regularly comparing forecasts with observa-
tions, extremely valuable error statistics can be built up, which in turn can be used
to improve the quality of the observations (e.g., by revealing biases in instrument
calibration) as well as the quality of the models. It serves as a model testing and
data quality control procedure.

2. Combining multiple data sources. Different observing systems (both in situ and
remote sensing data) have varying virtues and deficiencies. Such variety can
be preferentially exploited or contrasted to optimize the value of the resulting
data set.

3. Interpolating spatially and temporally sparse observations. The model provides
a way to propagate information in a consistent manner in space and time from
data-rich regions to data-poor regions. This capability is vital to successfully uti-
lize satellite observations, which due to limited and sequential sampling provide
only an incomplete picture of the Earth. DA fills in “missing pieces” to achieve
a full global picture.

4. Inferring, from available observations, quantities not directly observable.
Through relationships expressed in the model’s governing equations, measured
parameters convey knowledge of those that are inadequately measured or com-
pletely lacking. For example, soil moisture vertical profile can be inferred from
the surface skin temperature or surface top-layer soil moisture content.

5. Forecasting. Predicting forward in time on the basis of past and current observa-
tions.

6. Designing observing systems. Decisions to deploy new satellite-borne instru-
ments require critical assessment of the incremental value or benefit of the data
to be acquired by the new sensors. With careful design, DA experiments pro-
vide an objective, quantitative way to contribute to such assessment. In addition,
DA can optimize the sampling pattern from an observing system, and can target
observations to capture features of concern, such as a rapidly developing storm.

DA methods exploit data streams not only to validate model outputs, or directly to
infer fluxes, but principally to constrain internal model parameters to optimize val-
ues (i.e., parameter estimation). Different data sets constrain different components
of a model which is able to assimilate data across a range of space and time scales.
Another distinctive characteristic of DA is that uncertainties associated with the
observation, techniques, processing, representation, and accuracy are as important
in determining the final outcome as the measured values themselves. Thus, uncer-
tainty estimates, for both measurements and model parameters, take on even greater
importance (Canadell et al., 2004).

The meteorological and oceanographic communities have been at the fore-
front in developing and using DA methods. In recent years, meteorologists and
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oceanographers have tended to view DA as a model state estimation problem. The
land community has aggressively endeavored to catch up and apply DA methods in
recent years, and some example applications are shown in Section 12.4.

The remainder of this chapter presents a brief introduction to the basic principles
of land DA as this is a relatively new field. Following the introduction is a discussion
of some critical issues pertinent to land DA. Section 12.4 introduces recent DA
applications in several major disciplines.

12.2 Principles of Land DA

In this chapter, land DA is considered as essentially an estimation problem: that is
to acquire optimal estimates of model state variables of the land surface and its pa-
rameters given a set of remote sensing products, a land surface process model, and
any available a priori information. Various land DA schemes have different char-
acteristics, but they may have the following common features: (1) a forward land
dynamic model that describes the time evolution of state variables such as surface
temperature, soil moisture and carbon stocks; (2) an observation model that relates
the model estimates of state variables to satellite observations and vice versa; (3) an
objective function that combines model estimates and observations along with any
associated prior information and error structure; (4) an optimization scheme that ad-
justs forward model parameters or state variables to minimize the discrepancy be-
tween model estimates and satellite observations; and (5) error matrices that specify
the uncertainty of the observations, model and any background information (these
are usually included in the objective function).

12.2.1 Dynamic Model

Land surface process models are often structured as a discrete-time nonlinear state-
space model with additive noise as:

xt+1 = f (xt ,ut ,θ)+wt (12.1)

where x denotes the model state vector (e.g., soil moisture), u the external forcing
data (e.g., meteorological data), θ the model parameter vector (e.g., soil texture), wt
the model noise, and f (·) the model operator mapping the previous state xt to the
next state xt+1. The differences among various land surface models are reflected in
different specifications of x, u and f (·).

12.2.2 Measurement Process

DA methods assimilate the measured values into a dynamic model, so the mea-
sured quantities have to be linked with model variables. The measurement process
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is a mathematical model that relates the model state vector (xt) to the observation
vector (yt):

yt = h(xt ,θ)+ et (12.2)

where et the observation noise, h(·) the observation operator, and θ is the parameter
set of observation operator. If remote sensing data products are used as the obser-
vations, the remote sensing reflectance, or emittance model of land surfaces, and
the coupled land and atmosphere system are the observation operator and θ is its
parameters.

12.2.3 Objective Function

The underlying principle of the DA method is to estimate the parameters and vari-
ables of the dynamic models by minimizing the differences between the predictions
of the model and the assimilated data products. The difference is often characterized
as the objective (or cost) function, and the common measure is the least squares.

DA methods usually attempt to minimize the objective function J

J(x) =
1
2
(x− xb)T B−1(x− xb)+

1
2
(H(x)− y)T R−1(H(x)− y) = Jb + Jo (12.3)

where y is the observation vector, x is the extended model state variables, xb is the
background field (or first guess), H is the model operator, and R is the observation-
error covariance matrix and B is background-error covariance matrix.

The DA problem now becomes: vary x to minimize J(x), subject to the constraint
that the state variables must satisfy the dynamic model. The value of x at the mini-
mum is the a posteriori estimate of x, including information from the observations
as well as the background. In Eq. (12.3), the first term Jb is to force the optimal
parameters as closely as possible to background fields, and the second term Jo is to
adjust parameters so that model outputs will be as close to the observations as possi-
ble. Specifying R and B depends on the relative accuracy of background information
and remote sensing data products. In extreme cases, if the errors of the “first-guess”
values are extremely large, the final estimates will be decided from the fitting of the
observations and will be close to the “first-guess” values.

12.2.4 Assimilation Algorithm

Since land DA is considered to be an estimation problem, an assimilation or esti-
mation algorithm is needed to estimate model parameters or states by assimilating
observations into the dynamic model. This process provides three kinds of output:
optimal estimates for the model properties to be adjusted, uncertainty statements
about these estimates, and an assessment of how well the model fits the data, given
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the data uncertainties. There are two types of assimilation algorithms popular in
current research and applications, namely cost function-based methods and sequen-
tial methods. These two methods have many different forms and will be discussed
in Section 12.3.5.

12.2.5 Error Model

Both dynamic models and measurements are not perfect and contain uncertainties
to some degree. These uncertainties or errors have to be characterized in the DA
system. Consequently statistical properties of wt in Eq. (12.1) and et in Eq. (12.2)
or R and B in Eq. (12.3) need to be estimated. The error terms in the dynamic and
observation models can, in principle, be quite general in form, including biases,
drifts, temporal correlations, extreme outliers and so on. Many extant methods
assume these error terms (e.g., wt and et ) have Gaussian distributions with zero
mean and no temporal correlation. Detailed discussions of observational errors are
given in Section 12.3.6.

12.3 Critical Issues in Land DA

12.3.1 Dynamic Models

Land DA uses land surface process models that describe the exchanges of momen-
tum, energy and mass between soil, vegetation and atmosphere. These models, often
called soil–vegetation–atmosphere transfer (SVAT) models, have similar structures,
whether land surface, hydrological, ecological or crop growth models.

How to select an appropriate dynamic model is largely related to the objectives
of the DA study. For the same objective, multiple models might be available. For ex-
ample, if we aim to estimate land surface energy balance components such as latent
and sensible heat fluxes by assimilating remotely sensed land surface temperature
(LST) products, almost any land surface process models may be appropriate. How-
ever, some models are rather complicated since they may describe other processes
such as those in the carbon cycle in addition to water and energy budgets and thus
contain more model parameters. Often a good strategy is to use a relatively simple
land surface model if possible.

A more general and important issue is the uncertainty of the model. All mathe-
matical models are abstractions and approximations of a complex physical environ-
ment. When dealing with ecosystem models, for example, keep in mind that their
designs are not completely derived from rigorous natural laws and hence the math-
ematical descriptions of the biological processes are not universal. Thus, we are
uncertain not only about values of the numerous model parameters, but also about
the model parameterizations and errors.
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DA aims to incorporate measured observations into a dynamic system model to
produce accurate estimates of the system’s current (and future) state variables. The
neglected model uncertainties are interpreted, in the course of strongly constraining
parameter estimation, as variations in model parameters and this may result either
in unrealistic parameter estimates or in solutions deviating far from the data. In
reality, the model does not exactly reproduce system behavior. Significant errors can
arise due to a lack of resolution, and inaccuracies in physical parameters, boundary
conditions and forcing terms.

Many studies have been reported to address these issues in terms of weak con-
straints (Liaqat et al., 2003a; Losa et al., 2004; Natvik et al., 2001; Qin et al., 2007b).
As a rule, weakly constrained DA has been used for state estimation. However, if
the model parameters are poorly known, state estimation with fixed model para-
meters can produce unacceptable results. Weakly constrained parameter estimation
results from a combination of the adjoint method and the generalized inversion; con-
sequently it can take into account errors inherent in the model and data, as well as
find optimal values of the poorly known model parameters. In addition, weakly con-
strained DA makes it possible to derive valuable supplementary information about
the model itself. This information is completely lost when the strong-constraint
scheme is used.

Chepurin et al. (2005) recently summarized four solutions to correct biases due to
model error in the meteorological community. The most straightforward approaches
to handling time-mean bias involve computing climatologies, and then introduc-
ing correction terms into the equations of motion. The second type of approach is
to correct for rapidly changing bias in a data-rich environment. It involves exam-
ination of the previous few updating cycles for a systematic trend, which is then
corrected. A third class of approaches, useful in linear one-dimensional problems,
involves pre-whitening the errors so that their frequency spectrum resembles white
noise. A fourth class of approaches is referred to as “two-stage estimation.” The
two-stage estimation algorithm begins with the assumption that a reasonable esti-
mate of the bias may be made prior to estimating the state of the system itself, thus
allowing the estimation procedures for bias and state to be carried out successively.

12.3.2 Observation Vector

Which remotely sensed data products and other measurements are the most valu-
able for DA? There are two major schemes for assimilating remotely sensed data
products into dynamic models (Liang, 2004). The first approach assimilates the de-
rived high-level land products (e.g., leaf area index (LAI), fractional photosynthet-
ically active radiation absorbed by green vegetation (FPAR), LST, gross primary
production (GPP), biomass) from remote sensing observations (see Fig. 12.1). It is
equivalent to simplification of measurement process through static remote sensing
inversion. So the observation vector is directly the components of the model state
and h(·) is simplified as a matrix H with non-diagonal elements equal to 0:
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Fig. 12.1 Illustration of assimilating remotely sensed high-level products into a land dynamic
model

Fig. 12.2 Illustration of assimilating the direct remote sensing observations to the coupled radiative
transfer and land surface dynamic model

yt = Hxt + et (12.4)

The second approach assimilates the direct observations (radiance, reflectance,
brightness temperature, or vegetation indices) (see Fig. 12.2). In this approach, h(·)
is a radiative transfer (RT) model relating the state vector x to the remote sensing
signal (e.g., radiance) or its simple transformation (e.g., reflectance).
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Both approaches have strengths and weaknesses. If the high-level product
retrieval is very accurate and its uncertainties well-characterized, then, use of such
data is preferable. However, most inversion processes are ill-posed (see Chapters 7
and 8), and the resulting products may be poor. This is particularly so if their error
characteristics cannot be specified accurately for DA (see Section 12.3.6). Another
issue is that most current land products are not continuous both spatially and tem-
porally due to cloud contamination or the inversion failure due to an inadequate
number of good observations. Since many biogeophysical variables are “continu-
ous” spatially and temporally, “gaps” need to be filled using various spatiotemporal
modeling techniques (Fang et al., 2007a; Fang et al., 2007c; Julien et al., 2006;
Moody et al., 2005).

On the other hand, there is no need for an inversion if direct observations are
used, but the forward RT models must be coupled with land surface process models.
With physically based RT models, an additional advantage of the second approach
is that consistency can be maintained between the direct physical meaning of model
parameters in both the RT and land surface process models. This is not necessarily
so for high-level products that may be derived under a different set of assumptions
(e.g., spatial distribution of foliage) to those assumed in the process model.

For using high-level products, not only those from optical and thermal observa-
tions (e.g., LAI/FPAR, albedo, LST) are considered but also those obtained from
LIDAR (e.g., canopy structure parameters and above-ground biomass) and RADAR
(above-ground biomass and moisture conditions) observations. Other products, such
as forest biomass inventories, soil carbon survey, and Eddy covariance flux mea-
surements, atmospheric CO2 and tracers concentrations, nutrient fluxes and stocks
(particularly N) can also be used for assimilation.

A highly related issue is the compatibility of remotely sensed products and vari-
ables in land surface process models. Although substantial efforts have been made
from both remote sensing and modeling communities, the gaps still exist. For ex-
ample, most land surface models separate broadband albedos into direct and diffuse
components (Dai et al., 2003), but remote sensing albedo products are usually total
broadband albedo (see Chapter 9). Most land surface models normally partition sur-
face temperature into sunlit/shadow leaf and soil temperatures, but remote sensing
skin temperature is an effective temperature for each pixel (see Chapters 4 and 10).

A particular advantage of DA schemes is that they can be used to evaluate the
“advantage gained” (assessed through reduction in uncertainty) by the addition of
new observations. This will be of great use in assessing the value of different types
and sample availability of observations, as well as performing synthetic experiments
to evaluate new types of observations (e.g., from proposed monitoring networks or
space missions).

12.3.3 Target Variables

The target variables are the properties of the model to be adjusted or estimated in the
optimization process. They include any model property considered to be sufficiently
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uncertain as to benefit from constraint by the data. Model properties which can be
target variables include: (1) model parameters (θ); (2) forcing variables, if there is
substantial uncertainty about them; (3) initial conditions on the state variables; and
(4) time-dependent components of the state vector. Land surface models are becom-
ing more and more sophisticated with numerous parameters. Some parameters may
be easily estimated, while others may not be very sensitive to the cost (objective)
function. These target variables must be identified based on extensive sensitivity
experiments.

Selecting the target variables depends on the land surface model used in the DA
system, along with how many and which data products are assimilated. For exam-
ple, Kaminski et al. (2002) optimized 24 parameters (light use efficiency and Q10
for heterotrophic respiration for each of 12 biomes) in a terrestrial biosphere model
coupled with an atmospheric transport model using CO2 data. Barrett (2002) opti-
mized a set of parameters (turnover times, C allocation ratios, humification ratios,
and light use efficiency) in a terrestrial C cycle model. Rayner et al. (2005) estimated
56 process parameters plus an initial condition through terrestrial carbon cycle DA
system with a coupled ecosystem and atmospheric transport model. Williams et al.
(2005) estimated nine unknown parameter constants in the C box model and the
initial values of the five C pools using the ensemble Kalman filter.

For a given land surface model, a rigorous sensitivity study is absolutely required,
which enables determination of the parameters/state variables that are sensitive to
the assimilated data. The automatic differentiation (AD) tool called the Tangent
linear and Adjoint Model Compiler (Giering and Kaminski, 1998) as well as its
successor, Transformation of Algorithms in Fortran (Giering and Kaminski, 2002)
used to generate the adjoint code of the process model may provide an effective way
for sensitivity studies.

12.3.4 Multi-Objectives Optimization

Practical experience suggests that any single objective (cost) function, no matter
how carefully chosen, is often inadequate to properly measure all of the characteris-
tics of the assimilated data sets deemed to be important (Demarty et al., 2005; Vrugt
et al., 2003). One strategy to circumvent this problem is to define several objective
functions that measure different (complementary) aspects of the system behav-
ior and to use multi-objective optimization to identify the set of non-dominated,
efficient, or Pareto optimal solutions. Such an approach makes it more efficient to
assimilate multiple data products simultaneously.

The choice of fitting criterion or “estimator” is crucial. The very popular
weighted least-squares estimator is the simplest, and is amenable to very efficient
mathematical algorithms. However it may be seriously inappropriate in certain
circumstances. For example, the estimator of maximum likelihood may be a much
more reasonable choice when errors in the data or dynamical information are
non-Gaussian.
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Generally speaking, the multi-objective problem can be stated as the following
minimizing formulation:

Min{J1(θ),J2(θ), . . . ,Jm(θ)} (12.5)

where Ji symbolizes a single objective function with i = 1, . . . ,m and θ ={
θ1, θ2, . . . ,θp

}
a particular set of p parameters included in the feasible para-

meter space.
This issue is highly related to those discussed in Section 12.3.2. A single objec-

tive function corresponds to each high-level product or directly observed variable,
thus, we can combine both high-level products and direct observations. Even for the
same product, a single objective function can be a measure of errors (Gupta et al.,
1998), such as root mean square error, mean absolute error, maximum absolute error,
and so on.

The solution of the multi-objective formulation given in Eq. (12.5) does not
lead to a unique solution, but to a set of solutions, generally named Pareto set or
“behavioral” set (Gupta et al., 1998). There are many different algorithms to ad-
dress this problem (Marler and Arora, 2004), such as the Multiobjective Shuffled
Complex Evolution Metropolis (MOSCEM) algorithm that is capable of solving the
multi-objective optimization problem for hydrologic models (Vrugt et al., 2003).
MOSCEM is available to the public. Other assimilation algorithms will be discussed
in the following Section 12.3.5.

12.3.5 Assimilation Algorithms

The target variables characterizing the land surface properties are estimated through
the assimilation algorithms. On one hand, there are many different assimilation
algorithms available in the literature from meteorological and oceanographic
DA communities, such as three- or four-dimensional variational algorithms (see
Section 12.3.5.1), and Kalman filters (Section 12.3.5.2). On the other hand, land
DA has different characteristics, such as handling only dozens of unknowns, while
the meteorological DA system typically manages 106–109 unknowns. Neural net-
work and particle filtering techniques are briefly introduced in Sections 12.3.5.3
and 12.3.5.4.

Before moving on, the measurement sequence is defined as y1:t ≡{yi}t
i=1 and the

state sequence as x0:t ≡ {xi}t
i=0. With these definitions, the whole DA process as an

estimation problem can be stated as:

x̂0:t = g(y1:t) (12.6)

where x̂0:t represents estimated state sequence, and g(·) the estimator, which can be
viewed as the assimilation algorithm. When a measurement sequence y1:t is inserted
into the estimator, we obtain a realization of the estimator (x̂0:t).
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12.3.5.1 Cost Function-Based Methods

This type of method is also called non-sequential or batch one. The most general
form of cost function-based methods can be expressed as the following constrained
optimization problem:

min
x0:t

J = ‖x0 − x̄0‖2
B−1 +∑t−1

i=0 ‖wi‖2
Q−1

i
+∑t

i=0 ‖ei‖2
R−1

i

s.t. xi+1 = f (xi,ui,θ)+wi, i = 0, . . . , t −1 (12.7)
yi = h(xi,ui,θ)+ ei i = 1, . . . , t

where the weighting matrices Qi, Ri, and B can be regarded as covariances of the
distribution functions p(wi), p(ei), and p(x0). If the parameter vector θ needs to
be estimated simultaneously, a term

∥∥θ − θ̄
∥∥2

P−1
θ

can be added into Eq. (12.7) and

the control vector becomes
[

x0:t
θ

]
.

This problem is the so-called weak constraint DA approach (see Section 12.3.2)
when the dynamic model is considered to be imperfect. The traditional strong con-
straint DA problem is just its special case in which the model is assumed to be
perfect and thus the term ∑t−1

i=0 ‖wi‖2
Q−1

i
is removed in Eq. (12.7). The formulation

statements can then be expressed as:

minJ =
x0:t

‖x0 − x̄0‖2
B−1 +∑t

i=0 ‖ei‖2
R−1

i

s.t. xi+1 = f (xi,ui,θ) i = 0, . . . , t −1 (12.8)
yi = h(xi,ui,θ)+ ei i = 1, . . . , t

In the cost function-based problems, all data are treated simultaneously and the
minimization problem is solved only once, as presented in Eq. (12.7) or (12.8).
The problem becomes the usual optimization problem. It is computationally expen-
sive when the number of unknowns is large. There are many non-sequential algo-
rithms depending on whether the derivative information is used, but the key issue
is to incorporate an effective global searching algorithm. The typical algorithms in-
clude the shuffled complex evolutionary (SCE) method (Duan et al., 1993; Duan
et al., 1992; Duan et al., 1994), a very fast simulated annealing (SA) algorithm
(Ingber, 1989; Li et al., 2004), the differential evolutionary (DE) method (Storn
and Price, 1997; Storn and Price, 1996), and the genetic algorithm (GA) (Goldberg,
1989). Codes for these methods are available to the public. The common weakness
of these methods is their slow computational speed.

In order to solve both weak and strong constraint problems stated above, some
descent algorithms, such as the conjugate gradient method, can be used. These
approaches require the first-order derivative or even Hessian matrix of the cost func-
tion. To this end, the adjoint of the dynamic model has to be developed. However,
this process is tedious. It is encouraging that automatic differentiation (AD) tech-
niques have been developed and applied to automatically generate the adjoint model
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Fig. 12.3 Illustrations of eval-
uating the derivatives of the
cost function with AD tech-
niques. F denotes the whole
codes to evaluate the cost
function. F ′∗ represents the
adjoint codes of the original
codes, which can be used to
evaluate derivates easily.

F

F '*

(a)

(b)

x J

dJ = 1
∂x
∂J

at the level of computer codes (Bischof et al., 1996; Bischof et al., 2002; Carmichael
et al., 1997; Dobmanin et al., 1995; Giering and Kaminski, 2002; Verma, 2000). AD
is very effective and easy to use. This dramatically conserves time and energy of DA
practitioners. The principle of AD is simple and based on two facts. First, any com-
puter code statement can be regarded as a composition of elementary functions.
Second, chain rule can be used to differentiate this composition of elementary func-
tions. Many software packages have been developed in accordance with the princi-
ples described above for FORTRAN and C computer languages. They are given at
the web site www.autodiff.org. The illustration of AD running process is presented
in Fig. 12.3. We have recently applied this method in estimating LAI from satellite
data (Qin et al., 2007a).

The advantages of cost function-based method are twofold. First, all data in a
batch window are used to estimate the state. Second, inequality, equality, and bound
constraints can be included explicitly. Its disadvantages are also apparent. First, the
adjoint model is generated to evaluate the derivative of the cost function if the highly
efficient descent optimization method is used. However, the development of the ad-
joint model requires that the dynamic model should be differentiable. This condition
can not usually be met in the land surface process modeling because of many dis-
continuous parameterizations. Instead, SCE, SA, DE, or GA could be used, but they
are computationally very slow. Second, the cost function-based method just uses
the inverses of covariance matrices as the weights, as seen in Eqs. (12.3) or (12.7)
and (12.8). Since the covariance is the second moment of one distribution, more
information included in the distributions p(wi), p(ei), and p(x0) is not used and
therefore wasted. If p(wi), p(ei), and p(x0) are normal distributions, no informa-
tion is discarded since Gaussian distributions are completely characterized with the
first and second moments.

12.3.5.2 Sequential-Based Methods

To derive the “optimal” sequential assimilation scheme, assume that the background
states are represented by prior estimates. The sequential approaches are based on the
Bayesian inference that combines the prior knowledge of the state vector and the
measurement to obtain the posterior distribution of the state vector. Once obtaining
the posterior distribution, everything is known about the state vector. This process
can be expressed as follows.
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p(x0:t |y1:t) ∝ p(y1:t |x0:t)p(x0:t) (12.9)

where p(x0:t) represents the prior distribution of the state vector, p(y1:t |x0:t) the mea-
surement distribution, and p(x0:t |y1:t) the posterior distribution. Typically, a Markov
assumption is applied to the prior. So the state vector at time t only depends on the
state vector at time t −1:

p(x0:t) = p(x0)∏t
i=1 p(xt |xt−1) (12.10)

where p(xt |xt−1) is the evolution distribution, and p(x0) is the distribution of the
initial state vector (background or “first guesses”). Another important assumption is
that measurements are independent given the true state:

p(y1:t |x0:t) = ∏t
i=1 p(yt |xt) (12.11)

Substituting Eqs. (12.9) and (12.10) into (12.8), we obtain:

p(x0:t |y1:t) ∝ p(x0)∏t
i=1 p(yt |xt)p(xt |xt−1) (12.12)

This equation implies that once new data is available, the previous estimate of the
state process could be sequentially updated without having to calculate from scratch.
However, this also means we have to store all state vectors up to time t, and the size
of x0:t will expand as time goes by, becoming very large. In fact, there often is
an interest in the filtering distribution p(xt |y1:t), that is to estimate the probability
density of the current state vector conditioned on the measurements up to now. The
whole filtering process is straightforward.

The filtering density, p(xt |y1:t), and the one step prediction, p(xt+1|y1:t), density
are recursively given by a measurement update according to

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
(12.13)

p(yt |y1:t−1) =
∫

p(yt |xt)p(xt |y1:t−1)dxt (12.14)

and a time update according to

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt |y1:t)dxt (12.15)

and the recursion is initiated by

p(x0|y0:−1) = p(x0) (12.16)

In the general case, one is normally unable to obtain an analytical expression of the
filtering density except under the assumption of linear model and observation, and
Gaussian error distributions. This leads to the prominent Kalman filter (KF). If the
dynamical model and measurement process are characterized as follows
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xt+1 = Fxt +wt , wt ∼ N(0,Qt) (12.17)
yt = Hxt + et , et ∼ N(0,Rt)

the KF can be expressed as

x̂t+1|t = Fx̂t|t

Pt+1|t = FPt|tF
T +Qt

x̂t+1|t+1 = x̂t+1|t +G(yt+1 −Hx̂t+1|t) (12.18)

Pt+1|t+1 = (I −GH)Pt+1|t

G = Pt|t−1HT (HT Pt|t−1H +Rt)−1

where x̂ denotes the estimate of the state vector.
There are two popular variants of Kalman filter. One is the Extended Kalman

filter (EKF) and the other is the Ensemble Kalman filter (EnKF). EKF handles the
cases where either H or F is nonlinear. Note that most land surface models (H) are
nonlinear. In this case, they can be defined as its tangent linear. The EnKF is a so-
phisticated sequential DA method. The EnKF applies an ensemble of model states
to represent the error statistics of the model estimate, uses ensemble integrations to
predict the error statistics forward in time, and employs an analysis scheme which
operates directly on the ensemble of model states when observations are assimi-
lated. The EnKF efficiently manages strongly nonlinear dynamics and large state
spaces and is now used in realistic applications with primitive equation models for
the ocean and atmosphere. Originally proposed by Evensen (1994), the EnKF is
more recently reviewed by Evensen (2003), providing detailed information on the
formulation, interpretation and implementation of the EnKF.

Other sequential assimilation algorithms widely used in meteorological or
oceanographic DA communities include successive correction, optimal or statistical
interpolation, analysis correction, 3DVAR and 3DPSAS.

All these methods have been widely applied in a variety of fields (Evensen, 2003;
Houtekamer and Mitchell, 1998; Jones et al., 2004; Kumar and Kaleita, 2003; Qin
et al., 2006; Reichle et al., 2002; Wade and Eric, 2003).

12.3.5.3 Neural Network-Based Methods

In recent years, people have attempted to combine artificial neural network (ANN)
and DA method (Liaqat et al., 2003a, b; Tang and Hsieh, 2001; Wu et al., 2005;
Yu et al., 1997). The primary objective of these investigations is to complete or
approximate the dynamic models from measurements by estimating weights and
biases of ANN using DA method. The advent of the feed-forward neural network
model opens the possibility of hybrid neural-dynamical models via variational DA.
Such a hybrid model may be used in situations where some variables, difficult to
model dynamically, have sufficient data for empirical modeling with ANN. Liaqat
et al. (2001) used a neural network for constructing an arbitrary mapping function.
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A neural network is trained by optimizing an object function composed of squared
residuals of differential equations at collocation points and squared deviations of the
observation data from the computed values. An assimilation problem is solved even
if the model differential equations do not express the observed phenomena exactly.
Since the dynamic model can be constructed directly from measurements and can
be approximated, the computational speed greatly improves.

12.3.5.4 Particle Filtering

Particle filtering (PF) is also called sequential Monte Carlo filtering based on point
mass (or “particle”) representations of probability densities, which can be applied
to any state-space model and which generalize the traditional KF methods (Ristic
et al., 2004; Smith et al., 2005). It is an important technique to manage the DA with
elements of nonlinearity and non-Gaussianity such that the underlying dynamics of
a physical system are modeled accurately. It has been applied in many engineering
fields and attracted attention from some DA practitioners since the posterior distri-
bution of state vector can be represented with Monte Carlo samples. However, KF
and its variants just evaluate the mean and covariance of the posterior distribution.
PF better grasps the filtering density evolution of the nonlinear system in time than
KF and its variants do. PF itself also has many variants, among which the bootstrap
filter, also called sampling importance resampling filter (SIR), is the most easily
used. Its main steps include:

Step 1: for t = 0, sample {x(i)
0 }N

i=1 ∼ p(x0);
Step 2: draw {x̃(i)

t+1}N
i=1 ∼ p(xk+1|x(i)

k ). That is x̃(i)
t+1 = f (x(i)

t , ut , θ)+w(i)
t , w(i)

t ∼
p(wt);

Step 3: compute weights u(i)
t+1 =

p(yt+1|x
(i)
t+1)

N
∑

i=1
p(yt+1|x

(i)
t+1)

where p(yt+1|x(i)
t+1) denotes the value of p(yt+1 −h(x̃(i)

t+1, θ));

Step 4: resample {x̃(i)
t+1}N

i=1 with replacement according to weights {u(i)
t+1}N

i=1 in

order to get {x̃(i)
t+1}N

i=1 with weights {1/
N}N

i=1;
Step 5: set t = t +1 and go to step 2.

Observe that SIR is easy to be implemented in DA practice.

12.3.6 Observation Error Matrix

Characterizing the errors in DA is extremely important since it significantly
affects the estimates (Daley, 1991). The observation error covariance matrix R
in Eqs. (12.3), (12.6) and (12.16) can in principle be quite general in form, includ-
ing biases, temporal correlations, extreme outliers and so on. Many extant methods
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assume the error to be Gaussian with zero mean and no temporal correlation.
However, more general error structures are very common, and the development of
methods for dealing with such errors is an active area of current research (Evensen,
2003; Raupach et al., 2005).

All NASA Earth Observing System (EOS) land surface high-level products have
been claimed to be “validated,” but most were based on limited “ground truths”
(Morisette et al., 2006). The error magnitudes, and their spatial and temporal distri-
butions, have never been well specified. Assigning uncertainties to these high level
products is complex. There are a few studies reporting the accuracies of individual
products, but comprehensive modeling of spatial and temporal error structures, and
correlation among errors of different products has not yet been done. It raises the
challenge of evaluating the uncertainty properties of major products, and it is evi-
dent that this is an enormous goal. A range of issues identified by Raupach et al.
(2005) as needing to be addressed include:

• The error magnitude rii for each high-level product, inclusive of all error sources
(in other words, the diagonal elements of the covariance matrix R)

• The correlations among errors in different products, quantified by the off-
diagonal elements of the covariance matrix R

• The temporal structure of the errors: whether they are random in time or tempo-
rally correlated, and the possible presence of unknown long-term drifts or biases

• The spatial structure of errors (random, slowly varying or bias as for temporal
structure)

• The error distribution: normal (Gaussian), lognormal, skewed or the sum of mul-
tiple error sources with different distributions, such as a small Gaussian noise
together with occasional large outliers because of measurement corruption events

• Possible mismatches between the spatial and temporal averaging implicit in the
model and the measurements (the “scaling problem”).

This same set of challenging issues (to define and specify the error models) pertains
to other data sets, such as the error properties of direct flux measurements and direct
measurements of carbon stores in addition to remote sensing of land surface prop-
erties. It is more straightforward to assign uncertainties to lower-level products than
to higher-level ones. This is a major factor for considering the assimilation of direct
observations (radiance/reflectance or vegetation indices), as noted above.

12.4 Recent DA Applications

DA is a powerful way to consistently combine measurements and dynamical models
for the accurate estimation of model parameters and the state vector. Since DA has
been explored and implemented in many applications, progress in the following
selected fields is summarized.



12 Data Assimilation Methods for Land Surface Variable Estimation 329

12.4.1 Soil Moisture Estimation

While microwave remote sensing provides the opportunity to map global soil
content, the revisiting frequency is limited. Moreover, the L band brightness temper-
ature is related to only the surface soil moisture (top 5 cm) and yields little informa-
tion about the root zone. A land surface process model forced by atmospheric data
can produce soil moisture and temperature profiles at the model time resolution.
It is obvious that just running the model without any constraints can lead to large
errors due to uncertainties in the model structure, model parameters, and external
forcing data. DA offers a means to consistently take advantage of both modeling
and observations. Two DA algorithms have been applied to estimate not only soil
moisture, but also latent heat flux (tightly associated with the root-zone moisture)
using L band microwave remote sensing data.

Entekhabi et al. (1994, 1998) first applied EKF to assimilate microwave remote
sensing data into a land surface model to subsequently retrieve soil water mois-
ture and temperature profiles. Although synthetic data was used and the land surface
model was relatively simple, their research opened up prospects for land surface DA.
Many improvements have been made since then. Walker and Houser (2001) and
Walker et al. (2001a, b) compared direct insertion and EKF assimilation methods,
conducted retrieval experiments with field data, and then applied their algorithm on
the regional scale for initialization of climate and hydrological models. But surface
soil moisture data rather than satellite observations was assimilated in their studies.

Reichle et al. (2002) used EnKF to assimilate L-band (1.4 GHz) microwave
radiobrightness observations into a land surface model, compared it with the varia-
tional method, and investigated the influence of the ensemble size on the retrieved
results. Their research indicates that the EnKF is a flexible and robust DA option that
gives satisfactory estimates even for moderate ensemble sizes although the updat-
ing process is suboptimal. Crow (2003) and Crow and Wood (2003) applied EnKF
to assimilate L-band microwave data to correct for the impact of poorly sampled
rainfall on land surface model predictions of root-zone soil moisture and surface
energy fluxes. The results suggest the EnKF-based assimilation system is capable
of correcting a substantial fraction of model error in root zone (40 cm) soil moisture
and latent heat flux predictions associated with the use of temporally sparse rainfall
measurements as forcing data. The recent studies also applied EnKF to estimation
of soil moisture profiles (e.g., Merlin et al., 2006; Zhou et al., 2006). Margulis et al.
(2002) explained why the EnKF technique is so appealing for soil moisture estima-
tion: (i) its sequential nature is well suited to real-time data streams and forecasting;
(ii) it not only provides an estimate of surface and profile soil moisture, but infor-
mation about the statistical confidence of estimation; (iii) it is sufficiently straight-
forward to use with “off-the-shelf” models; and (iv) it is relatively efficient, making
its application to large-scale problems feasible.

The variational cost function-based approach has also been successfully applied
to hydrological studies in recent years. The key point in using the variational
assimilation method is to develop the adjoint of a dynamic model. This requires
the model should be differentiable, but land surface schemes usually are not.
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Consequently some approximations have to be made. Reichle (2000) and Reichle
et al. (2001) first used the variational method to assimilate L-band microwave data
into a complicated land surface model to retrieve the soil moisture profile. The
results showed that the state estimates obtained from the assimilation algorithm im-
prove significantly over prior model predictions derived without assimilating radio-
brightness data.

Soil moisture estimation is also one of the major goals in the regional and global
land surface DA systems, such as the global land DA system (Rodell et al., 2004),
the North American Land DA system (Mitchell et al., 2004), and the South America
Land DA system (de Goncalves et al., 2006).

12.4.2 Energy Balance Fluxes Estimation

Accurate estimation of energy and momentum fluxes, especially sensible and la-
tent heat fluxes, between the land surface and the atmospheric boundary layer, is
required in a wide variety of agricultural, hydrological, and meteorological appli-
cations (Courault et al., 2005; Su, 2002). Many methods, such as eddy correlation
and Bowen ratio, can be used to measure these fluxes at the field level. Their ap-
plicability, however, is limited on the fine spatial scale. Currently, the only way to
achieve this goal of mapping fluxes regionally is to use remote sensing techniques
that provide various spatial and temporal imageries covering large areas.

Estimation of surface energy balance components using remote sensing data can
be roughly divided into three categories: empirical, residual and DA. Empirical
methods directly build on the relationship between remote sensing products, such
as various vegetation indices and retrieved LST for the estimation. Residual meth-
ods of the energy budget couple some empirical formulas and physical mechanisms
to realize the estimation of evapotranspiration (ET or LE) and sensible heat flux
(H) by using remote sensing to directly estimate input parameters, such as the sur-
face energy balance system (SEBS) (Su, 2002). In recent years, DA methods have
integrated remote sensing data and soil–vegetation–atmosphere transfer models for
estimating surface fluxes, and have achieved encouraging results. This new method
has been receiving considerable attention from researchers in recent years (Boni
et al., 2001a, b; Caparrini and Castelli, 2004; Caparrini et al., 2003; Castelli et al.,
1999) since it combines dynamic models and temporal remote sensing data based
on the control theory in order to accurately retrieve critical parameters for flux es-
timation. The first two methods more or less use only the instantaneous data and
empirical relationships.

Castelli et al. (1999) developed a simple land surface scheme and its adjoint,
defined a moisture index as control variables, used radiometric surface temperature
as observations, and performed DA experiments. Results indicated that this algo-
rithm can retrieve land surface energy balance components effectively. Boni et al.
(2001a, b) investigated the impact of land surface temperature sampling frequency
on assimilation results and suggested that satellite remote sensing of land surface



12 Data Assimilation Methods for Land Surface Variable Estimation 331

temperature may be used to provide estimates of components of the surface energy
balance and land surface control on evaporation. Caparrini et al. (2004, 2003) re-
placed a moisture index with evaporative fraction as control variables, made many
assimilation experiments, and applied this algorithm on the regional scale using
AVHRR land surface temperature as observations.

12.4.3 Carbon Fluxes Estimation

It is increasingly recognized that DA (model–data synthesis, data–model fusion or
many other names) is one of the methods that can meet such a challenge. The US
Climate Change Science Program strategic plan and the North American Carbon
Program (NACP) plan repeatedly call for the development of DA methods for car-
bon cycle studies. A near-term priority identified by the US Carbon DA Program
Workshop Report (Fung et al., 2002) was urgent support “for interdisciplinary teams
to develop component and coupled prototype carbon assimilation models.” Canadell
et al. (2004) identified three fundamental research areas that require major develop-
ment in order to provide policy relevant knowledge for managing the carbon-climate
system over the next few decades, with the first area being “carbon observations and
multiple constraint data assimilation.”

For carbon cycle studies, some efforts have been made to develop DA systems,
but most of these are based on “top-down” strategies that begin with measured
changes in atmospheric carbon concentrations and attempts to infer the spatial
distribution and magnitude of the net exchange. For example, the Carbon Data-
Model Assimilation (C-DAS) project at NCAR (National Center for Atmospheric
Research) is developing a carbon DA system based on their atmospheric transport
model (http://dataportal.ucar.edu/CDAS).

An equally important approach in carbon cycle science is the “bottom-up” ap-
proach (Cihlar et al., 2000) that starts with a specific land parcel to account for the
various pathways of carbon exchange between the ecosystem and the atmosphere,
and then scales up to much larger regions. It relies on both ecosystem process mod-
els and spatial data sets. The model can be developed at the local level and validated
using conventional measurements. Satellite observations provide spatial distribution
and frequent up-to-date information on the rate of change of the variables driving
the model. These models can in turn be used to estimate spatial and temporal vari-
ations in CO2 uptake and release over large areas, if appropriate “input” data sets
(e.g., vegetation and soils maps, weather data) are available.

Several obstacles stand in the way of extensive use of ecosystem process models
for extrapolation. The major issue is the requirement of much more information on
vegetation characteristics than is readily available or even known for many areas of
the globe. Many parameters are not measurable at earth system scales, because of
high small-scale spatial variability (e.g., any soil property), high temporal variabil-
ity (e.g., stomatal conductance), and physical inaccessibility (e.g., most roots, deep
soil). Moreover, from the modeling perspective, some processes are well understood
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(e.g., photosynthesis, decomposition of litter and soil organic matter), while other
processes are not (C-allocation among plant tissues, T-sensitivity of humus decom-
position). As a result, large uncertainties arise in calculating terrestrial carbon cycle
using the “bottom-up” approach (Barrett, 2002).

Wang and Barrett (2003) developed a modeling framework that synthesizes var-
ious types of field measurements at different spatial and temporal scales to estimate
monthly means (and their standard deviations) of gross photosynthesis, total ecosys-
tem production, net primary production (NPP), and net ecosystem production (NEP)
for eight regions of the Australian continent between 1990 and 1998. Williams et al.
(2005) developed a DA approach combining stock and flux observations with a dy-
namic model to improve estimates of ecosystem carbon exchanges. Rayner et al.
(2005) developed a terrestrial carbon cycle DA system (CCDAS) for determining
the space-time distribution of terrestrial carbon fluxes for the period 1979–1999.
Hazarika et al. (2005) integrated the MODIS LAI product with an ecosystem model
for accurate estimation of NPP. Validations of results in Australia and the USA show
that NPP estimated using the DA method to be more accurate than that generated
by the data “forcing” method. Their research demonstrates the utility of combining
satellite observations with an ecosystem process model to achieve improved accu-
racy in estimates and monitoring global net primary productivity.

Barrett et al. (2005) demonstrated that a “multiple-constraints” model–data as-
similation scheme using a diverse range of data types offers improved predictions of
carbon and water budgets at regional scales. Xu et al. (2006) applied the Bayesian
probability inversion and a Markov chain Monte Carlo (MCMC) technique to a ter-
restrial ecosystem model to analyze uncertainties of estimated carbon (C) transfer
coefficients and simulated C pool sizes. Their study shows that the combination of a
Bayesian approach and MCMC inversion technique effectively synthesizes informa-
tion from various sources for assessment of ecosystem responses to elevated CO2.
Sacks et al. (2006) used a model–data synthesis approach with a simplified carbon
flux model to extract process-level information from 5 years of eddy covariance
data at an evergreen forest in the Colorado Rocky Mountains. Including water vapor
fluxes, in addition to carbon fluxes, in the parameter optimization did not yield sig-
nificantly more information about the partitioning of the net ecosystem exchange of
CO2 into gross photosynthesis and ecosystem respiration. Sacks et al. (2007) used
the model–data synthesis method to address fundamental questions about climate
effects on terrestrial ecosystem net CO2 exchange.

12.4.4 Crop Yield Estimation

Advance information on crop yield during the crop growing season is vital for effec-
tive crop management and for national food security policy. Agricultural harvested
grain yield is a reliable way to estimate crop yields by sampling field measurements
of standing crops. However, this method is both time consuming and costly, with
results that are not available until after harvest. In the last three decades, satellite
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remote sensing data have been used to estimate crop yields over large areas because
these methods are more cost effective and more timely than traditional survey pro-
cedures (MacDonald and Hall, 1980).

Earlier studies were mostly based on empirical regression methods that relate
crop yield to remotely sensed surface reflectance and their combinations (i.e., veg-
etation indices). These relationships could be described with linear, cubic polyno-
mial, or exponential regression (Jiang et al., 2003). Essentially a statistical model,
this method cannot predict the time-dependent processes of crop growth. Addition-
ally, the relationship between yield and NDVI may not be accurate under extreme
weather conditions.

Mathematical crop growth models simulate fundamental processes such as pho-
tosynthesis, respiration, biomass partitioning, and water and nitrogen transfers
(Baret et al., 2000). This allows researchers to evaluate a wide array of alterna-
tives, and to assemble processes in an integrated package. Along with supporting
better crop management decisions, mechanical crop growth models can simulate
the dynamics of LAI and other structural properties of the crop fields (e.g., height
and biomass). The combination of remote sensing and crop growth simulation mod-
els is increasingly recognized as a promising approach for monitoring growth and
estimating yield (Bauman, 1992).

The use of crop models is often limited by uncertainties in their input parameters
such as soil conditions, sowing date, planting density and initial field conditions.
Except in some controlled experimental fields, many of these parameters are poorly
known. Remote sensing can play a critical role in helping identify the field and crop
status from estimated biophysical parameters (Clevers and Leeuwen, 1996). Remote
sensing data, therefore, can be assimilated with crop growth models to improve their
overall performance.

Several assimilation schemes, of various degrees of complexity and integration,
have been developed in the last 10 years (Moulin et al., 1998). Various methods for
integrating a crop growth model with remote sensing data were described by Mass
(1988a, b) and were also reviewed by Fischer et al. (1997) and Moulin et al. (1998).
Mass (1993) compared the results of calibrating a crop simulation model using LAI
observations obtained either from field sampling or remote sensing. Winter wheat
yields were modeled more accurately using remotely sensed LAI observations than
field-sampled LAI observations (Mass, 1993). This difference appeared to result
from the apparent ability of the remotely sensed LAI observations to better represent
the photosynthetically active plant area in the crop canopy.

Bach et al. (2003) experimented with coupling a raster-based PROMET-V model
with the radiative transfer model GeoSAIL to predict biomass and yield. In their
study, LAI, fraction of brown leaves, and surface soil moisture were used as free
variables; surface reflectance was used as the control variable. Their assimilation
procedure produced improved biomass and yield results. Guérif and Duke (2000)
combined the SUCROS crop model with the SAIL canopy reflectance model for
accurate estimation of sugar beet yield. Ground measured reflectance was used to
match the predicted reflectance. One limitation of their study is that many crop
and soil parameters need to be obtained from field measurements. The SAIL model
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has also been integrated with the EPIC crop model to estimate the yield of spring
wheat in North Dakota (Doraiswamy et al., 2003). Planting date is the only ad-
justable variable in this model. The estimated yields are mostly within 10% of the
NASS (National Agricultural Statistical Service) reports. In this work, climate data
are based on interpolation of weather station measurements. The crop area mask is
based on the 1 km AVHRR classification. NDVI is also calculated from AVHRR.
Although the AVHRR data set is easily accessible, using it will compromise the
precision of analyses owing to outdated calibrations and the application of par-
tial atmospheric corrections. Doraiswamy et al. (2004) used a look-up table (LUT)
method to estimate LAI from 250 m MODIS reflectance data. The crop modeled
LAI was adjusted to fit the MODIS simulated LAI by changing planting time, time
when maximum LAI is attained, and the beginning of leaf senescence.

Jongschaap and Schouten (2005) estimated the regional wheat yield by assim-
ilating SPOT data into a crop model. Microwave remote sensing data (ERS SAR
C-band) were used to estimate regional wheat flowering dates to calibrate a wheat
growth simulation model. Pauwels et al. (2007) assessed to what extent the results of
a fully coupled hydrology–crop growth model can be optimized through the assim-
ilation of observed LAI and soil moisture values using the EnKF. A practical proce-
dure using the variational optimization method to predict crop yield at the regional
scale from MODIS data was recently developed by Fang et al. (2007b). This method
outputs agronomic variables (yield, planting, emergence and maturation dates) and
biophysical parameters (e.g., LAI).

12.5 Summary

Though DA has reached maturity in meteorological and oceanographic applications,
the land community has just begun to employ it for estimation of land surface vari-
ables. Herein, basic DA principles have been described, critical issues in land DA
have been identified, and many of the latest applications in hydrology, carbon cycle,
and agriculture have been introduced. Because of the continuous improvement in
DA methods and computational technology, along with an available wealth of re-
mote sensing observations and extensive ground observation networks, DA is likely
to become the best technique to monitor and map land surface environments by
integrating a priori knowledge with an enormous variety and sheer volume of data.

Revisiting the key issues addressed in this chapter, the following questions are
put forth:

1. Which remotely sensed data products and other measurements are the most valu-
able for land DA?

2. How are the differences between the constrained data sets and predictions of a
dynamic model characterized?

3. How can the model parameters/variables be estimated effectively?
4. How will the errors of the assimilated data be specified?
5. Which land surface properties can be estimated?
6. What types of dynamic models are suitable for DA?
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To answer these questions, “explorers” from the community are needed to traverse
this new frontier, and we hope they will do so.

The computational issues of DA have not been broached since DA algorithms
are usually computationally expensive. However, the fast pace of computer science
advances promises to minimize such obstacles. Community efforts are needed to
build the practical tools so that few researchers have to start from scratch. A good ex-
ample of such endeavor is the land information system developed by NASA (Kumar
et al., 2006). Ideally, more educational tools for this enterprise will follow.
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Abstract: Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical 

parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by 

influencing ground evapotranspiration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent 

heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface 

temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper 

presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process 

models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. 

CLSMDAS is comprised of the following components: 1) A land process model—Community Land Model Version 

3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of 

atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary 

meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observation data 

including satellite-inverted soil moisture outputs of the AMSR-E satellite and surface soil moisture observation data. 

Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both 

simulation and assimilation results of the land model reflected reasonably the temporal-spatial distribution of soil 

moisture. The assimilated soil moisture distribution matches very well with severe summer droughts in Chongqing 

and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It 

also matches drought regions that occurred in eastern Hubei and southern Guangxi in September. 

 

Key words: EnKF land data assimilation, AMSR-E soil moisture, Fy2C stationary satellite, high-resolution 

precipitation, surface incident solar radiation 

 

Soil moisture affects matter and energy balances between land and atmosphere through influencing moisture flux, 

sensible heat, and latent heat flux. Accurate estimates of the spatial and temporal distribution of soil moisture are of 

vital importance to further understanding the ecological and physical processes of land and land-atmosphere 

interactions, and are of great importance in the research and application of meteorology in environmental 

management, ecology, hydrology, and agriculture. Soil moisture information can currently be acquired with the 

following methods: regular and field observations, satellite remote sensing, and land hydrological modeling and 

simulation. Soil moisture data acquired through regular observation has a low temporal frequency and few spatial 

points, and using some field observations is interim and limited to a small range. Regular and field soil moisture 

observations provide only point-based data and cannot represent spatial variations in the soil moisture profile. 

Synchronous field observation is usually expensive. Satellite remote sensing can provide global soil moisture data 

with a high spatial and temporal resolution, which cannot be achieved via the regular observation network. However, 

soil moisture observations based on satellite remote sensing are also problematic. Precision of soil moisture inversion 

is related to soil type, ground surface roughness, and vegetation coverage. The uncertainty in these parameters results 

in inversion errors and insufficient temporal and spatial resolutions. Soil moisture obtained through land hydrological 

modeling simulation and calculation has good temporal frequency and spatial distribution. However, its precision is 

influenced greatly by model structure and input data. Land assimilation technology serves as an effective solution to 

these problems [1-2]. It is a technical approach that integrates optimally physical process information of the land 

model.  

Data assimilation methods used currently in atmospheric, marine, and land data assimilation systems include 

mainly the optimal interpolation method, 3-D variation method, 4-D variation method, Kalman filter, and EnKF. 

EnKF is an assimilation method is used widely in land model assimilation systems, and uses the Monte Carlo method 

(overall integration method) to calculate predicted error covariance of the state. It was proposed by Evensen on the 

basis of Epstein's stochastic dynamic prediction theory [3]. The model state prediction is considered an 
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approximately stochastic dynamic prediction. An overall state is used to represent the probability density function in 

a stochastic dynamic prediction. By integrating ahead, we can calculate easily the statistical characteristics (e.g., 

mean value and covariance) corresponding to probability density functions at various times of the overall state. EnKF 

key feature is that it does not require linearized model operators or observation operators as the Kalman filter does. 

Huge and low-efficiency computation requirements are its greatest drawbacks. As all current land models are 

single-column models, they contain much fewer model state variables than atmospheric and marine models and thus 

have a higher computational efficiency. Strong non-linear characteristics in land process models are significant.  

Starting in 1998, the Department of Hydrological Sciences and Data Assimilation Office of US NASA Goddard 

Space Flight Center organized many organizations to initiate the research of Land Data Assimilation System (LDAS), 

and developed the Global Land Data Assimilation System (GLDAS). US National Oceanic and Atmospheric 

Administration also offers support for hydrology-based LDAS research at the scale of the North American continent 

(North America Land Data Assimilation System project). Land data assimilation uses many kinds of new satellite 

and ground-based observation data to generate optimal land state and flux data (http: //www.knmi.nl/samenw/LDAS/). 

In 2001, Europe started research on the European Land Data Assimilation System. The main purpose of ELDAS 

research is to improve forecasting and monitoring of floods and droughts. The ELDAS project conducted to: 

assemble specialists in soil moisture assimilation to design and produce a unified, flexible, and practical data 

assimilation framework; use independent observation data to verify the assimilated soil moisture field; evaluate the 

seasonal water circulation forecast after soil moisture data assimilation; evaluate flood risk; establish an exemplary 

data set covering at least one season over the European region; use data from new satellite platforms MSG 

(MTEOSAT Second Generation) and SMOS (ESA Soil Moisture/Ocean Salinity Mission); and make European 

contributions to the Global Land Data Assimilation System. ELDAS has been applied in four numerical forecasting 

centers (ECMWF, DWD, CNRM and INM) and already been brought from the research stage into the service 

operation stage (http: //www.knmi.nl/samenw/eldas/). The West China Land Data Assimilation System (WCLDAS) 

was researched and developed by the Cold and Arid Regions Environmental and Engineering Research Institute, 

Chinese Academy of Sciences and Department of Atmospheric Sciences, School of Resources and Environment, 

Lanzhou University. The institute established a single-point soil moisture assimilation system based on EnKF and 

SiB2 models, and completed preliminary analysis and evaluation of this assimilation system [4-5]. Yang et. al. [6] 

developed an automatic rating system used to estimate moisture and energy balances of soil by assimilating AMSR-E 

vertical polarization 6.9GHz and 18.7GHz luminance temperature data. Tian Xiangjun [7-14], Zhang Shenglei
 

[15-16], and Jia Binghao [17] et. al. researched the improvement of land data assimilation methods and the rating of 

microwave luminance temperature assimilation observation operator models.  

This paper explains the composition of the China Land Soil Moisture Data Assimilation System (CLSMDAS), 

processing methods and quality inspection of atmospheric driving data, the performance test of CLSMDAS with 

single-point observation data, error analysis of observed soil moisture data, and design, and analysis of the 

CLSMDAS experiment.  

1. China Land Soil Moisture Data Assimilation System 

 

Figure 1 Structure of the China Land Soil Moisture Data Assimilation System (CLSMDAS) 

CLSMDAS is comprised mainly of the following (See Fig.1): 1) Land model: A NCAR-CLM3.0 land model used 

widely at present; 2) Driving data: High spatial and temporal resolution precipitation estimates and ground-incident 
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solar radiation data acquired from the FY2 geostationary meteorological satellites, and surface air temperatures, 

humidity, atmospheric pressure and wind speed in the NCEP reanalysis data set are interpolated temporally and 

spatially to construct atmospheric driving data of the land model; 3) Data assimilation method: We have chosen the 

EnKF assimilation method which is suitable for land data assimilation; 4) Observation data: Soil moisture inversion 

data acquired from AMSR-E carried by the AQUA EOS satellite, and soil moisture data observed at ground level, are 

used; 5) Output data set: Assimilated soil moisture grid point data can be output. CLSMDAS works at present on a 

SGI-LINUX platform. Its individual components are described below.  

1.1. Land process model  

The land process model is the core of the land data assimilation system. The extent to which the land process model 

describes accurately and reasonably the energy and material exchanges at the ground surface has a direct influence on 

the output of the land assimilation system, forecasting the state of the next iteration. A land process 

model—Community Land Model Version 3.0 (CLM3.0 for short)—developed by US National Center for 

Atmospheric Research (NCAR) [18] was used here.  

The CLM3.0 model is designed mainly for coupling with the atmospheric numerical model and provides the 

surface albedo (direct and scattered light within the visible and infrared bands), upward long-wave radiation, sensible 

heat flux, latent heat flux, water vapor flux, and east-to-west and south-to-north surface stress needed by the 

atmospheric model. These parameters are controlled by many ecological and hydrological processes. The model 

simulates the phenology of leaves and physiological and water circulations of pores. Ecological differences between 

vegetation types and thermal and hydraulic differences between different soil types are also considered. Each grid 

cell can be covered by several types of land surfaces. The river transport model transfers downward to the sea. 

Because this land model has to be coupled with the climate model and numerical weather forecast model, 

compromise has to be made between effectiveness and complexity of the parametric computation of land processes. 

Land spatial non-uniformity is realized by nesting subgrids where one grid cell contains several land units, snow and 

soil cylindrical blocks, and different types of vegetation. Each cell contains several land units, each land unit contains 

a different number of soil and snow cylindrical blocks, and each cylindrical block may contain several types of 

vegetation functions [19]. Many researchers have tested and evaluated the application of the CLM3.0 model in China 

and proved the feasibility of its application in China [18].  

The EnKF assimilation module is coupled mainly with the soil moisture module. Below is the equation of 

one-dimensional soil water vertical motion (horizontal flow is ignored) used in CLM3.0:  
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,                                          (1) 

where θ  is the volumetric water content of soil (m3 m-3), 
q

 is vertical soil water flux (mm s-1), E  is 

evaporation rate (mm s-1). fmR
 is melting (negative) or freezing (positive) rate, and z  is vertical distance to the 

ground surface (positive under 
q

 and z directions) [18].  

1.2. Atmospheric driving data 

One of the difficulties preventing us improving the land model simulation precision is lack of long-term, 

high-resolution, observational atmospheric driving data. Atmospheric driving data usually requires diurnal 

precipitation, atmospheric temperature, relative humidity, atmospheric pressure, wind speed and downward solar 

radiation data, which cannot be observed directly at the global scale. Much work has been done on processing 

atmospheric driving data for offline land models. Qian’s [20] research showed that there are false long-term 

variations with NCEP’s reanalysis of precipitation and terrestrial radiation. The errors in precipitation data will affect 

inevitably the effects of soil moisture prediction, simulation, and assimilation. Other researchers have also realized 

these problems, and as a result either directly use observation or adjust the reanalysis data.  

In this paper, inverted precipitation and ground-incident solar radiation products acquired through high spatial 

and temporal resolution geostationary satellite data were introduced and combined with the NCEP reanalysis data to 

establish a set of high-quality atmospheric driving data which covers the Chinese region.  

(1) High spatial- and temporal-resolution precipitation 

FY2C/D/E satellite precipitation estimate outputs can be downloaded free of charge from the website of the China 

Satellite Data Service Center (http://satellite.cma.gov.cn/). Precipitation estimate outputs include daily accumulative 

and 6-hour accumulative precipitation estimate outputs. A new hourly accumulative precipitation estimate output was 

made available in September 2007. The integral time step of the CLM3 land model is 30 min. Therefore, we need 
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atmospheric forcing field data with high temporal resolution. Compared with the 6-hour accumulative precipitation 

data, the hourly precipitation data is more suitable to drive simulation of the land model. To this end, Shi Chunxiang 

[21] developed a method to perform time-weighted interpolation of accumulative precipitation on the basis of hourly 

geostationary satellite cloud category information. This was applied to the FY2C 6-hour precipitation estimate output 

provided by the China Satellite Data Service Center, to derive a precipitation data set with 0.1°×0.1° spatial 

resolution and 1-h temporal resolution, and used automatic rainfall observation data from China to verify and 

evaluate the precipitation estimate data. The result indicated that the method was reasonable. See Fig. 2 for the 

process flow of geostationary satellite 1-hour precipitation output. See [22] for details on the processing and quality 

evaluation of precipitation data.  
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Figure 2 Precipitation process flow with high spatial and temporal distribution 

(2) Ground-incident solar radiation data with high spatial and temporal 

resolution 

FY2C/D/E ground-incident solar radiation out can be downloaded free of charge from the website of China Satellite 

Data Service Center (http://satellite.cma.gov.cn/). The temporal resolution of the product is 1 day. The spatial 

resolution is 0.5°×0.5°. Due to its low spatial and temporal resolution, the output does not meet the requirements of 

the land model for atmospheric forcing data. Therefore, an inversion algorithm was used here on the FY2C/D/E 

ground-incident solar radiation output of the China Satellite Data Service Center (http://satellite.cma.gov.cn/). 

Visible-band observations acquired through the FY2C geostationary meteorological satellite are used to generate a 

ground-incident solar radiation data set with a temporal resolution of 1 hour and a spatial resolution of 0.1°×0.1°. The 

quality of this data set was verified with the solar radiation data from five China Meteorological Administration 

climatic observation stations.  

The discrete ordinate method proposed by Stamnes [23] was used to calculate radiation transfer in the inversion 

algorithm for the ground-incident solar radiation output. This algorithm calculates the radiance of any direction and 

thus gives consideration to the anisotropy of solar radiation reflected at the top of the atmospheric layer. It first 

calculates the radiance of solar radiation reflected towards the satellite observation direction at the top of the 

atmospheric layer, and then converts it into the visible-light two-way albedo observed through the visible light 

channel of the satellite. The period in which the solar radiation incident at the top of the atmospheric layer penetrates 

the atmosphere and reaches the ground surface contains a series of physical interaction processes with the atmosphere 

and the ground surface. The inversion model considers mainly: 1) Ozone absorption; 2) Repeated Rayleigh scattering 

of molecules; 3) Repeated scattering and absorption of cloud droplets; 4) Water vapor absorption; 5) Repeated 

scattering and absorption of aerosol; and 6) Repeated reflection between the ground surface and the atmosphere. 

Similar to the work of Stuhlmann [24], we designed a 5-layer planoparallel ideal atmospheric model which is not 
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uniform in the vertical direction. It is divided into five solar spectral intervals (0.2-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 

0.7-4.0µm) to calculate the scattering, absorption, and reflection of solar radiation that take place within them. 

Judged by the extents to which the above-mentioned physical processes influence the ground-incident solar radiation, 

cloud has a greater effect than all other factors by one order of magnitude. Ground-incident solar radiation is 

determined mainly by cloud, which needs to be stressed in the inversion model.  

     

                                        
Figure 3 Comparison between FY2C satellite-inverted and station observation surface incident solar radiation data. (a) 

Variation of surface incident solar radiation data with time. Surface observation is station observation data of surface incident 

solar radiation (green line). FY2C product is output of FY2C satellite-inverted surface incident solar radiation data (red line). 

(b) Scatter diagram of FY2C satellite-inverted data and ground-based observation data of surface incident solar radiation. (c) 

Difference between FY2C satellite-inverted data and station observation data of surface incident solar radiation (W m
-2

). 

Yuan Wanping performed many tests and verifications of the inversion algorithm of ground-incident solar 

radiation (http://satellite.cma.gov.cn/). In this paper, the ground-based observation data provided by newly-built 

climatic observation stations of China Meteorological Administration was used for a comparative verification of the 

FY2C ground-incident solar radiation data between July 2007 and December 2007. The five climatic observation 

stations were located in Xilinhot, Shouxian, Zhangye, Dali, and Dianbai. Fig. 3a shows time-varying ground-incident 

solar radiation data observed at Xilinhot Observation Station and inverted from FY2C satellite data. The horizontal 

coordinate is time, the unit of measurement (UOM) is hours; the accumulative total counts from 00:00 August 1, 

2007 (universal time). The vertical coordinate is ground-incident solar radiation, the UOM is W m2. Fig. 3a shows 

that when the value of ground-incident solar radiation is high, the value observed at ground level is greater than the 

satellite-inverted ground-incident solar radiation. This is probably because satellite observation covers a relatively 

large area while ground-based observation covers a very limited area, which can almost be considered a point. 

Therefore, the result of satellite inversion is closer to the mean state. Fig. 3b is a scatter diagram of ground-incident 

solar radiation data observed at ground level and inverted by the FY2C satellite. Fig. 3c is a histogram of the 

difference between ground-incident solar radiation data inverted by the FY2C satellite and observed at ground level. 

Both Fig. 3b and Fig. 3c show that satellite-inverted values are higher than ground-observed values. Fig. 3c also 

shows that under most circumstances the difference between satellite-inverted data and ground-observed data of solar 

radiation is approximately <50 W m
-2

.  

 

(a) 

(b) (c) 
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3) Atmospheric driving field data set 

Surface temperature, humidity, atmospheric pressure, and wind speed that drive operation of the CLM3.0 land model 

were derived from interpolation of NCEP reanalysis data with 1°×1° resolution and 6-h interval. These parameters 

were combined with precipitation and ground-incident solar radiation data, with large spatial and temporal 

distribution inverted through geostationary satellite to form an atmospheric forcing data set that drives the land 

model.  

In this paper, the relevant data between July 2005 and June 2009 were processed and then subject to quality 

control and verification. An atmospheric driving data set is generated (UOM of one month). Temporal resolution of 

the data set is 1 hour, the horizontal resolution is 0.1°×0.1°, the spatial coverage is 15-55° N, 75-135°E, and the data 

format is NETCDF.* This atmospheric driving field data set was used in the China Soil Moisture Land Data 

Assimilation experiment described below. A 0.1°×0.1° atmospheric driving field data set was used as the basic data. 

Data corresponding to assimilation experiments with other spatial resolutions were derived through spatial 

interpolation of this atmospheric driving field data.  

1.3. Land data assimilation method 

Evensen proposed a new solution to square root analysis [25] on the basis of standard EnKF [26]. It does not require 

observation disturbance in the calculation of analytic field sets and will thus reduce or eliminate sample error brought 

by observation disturbance. This algorithm also does not require additional assumptions or approximations in 

calculation of the analytic field structures. For example, it neither requires the assumption that an observation is 

non-related to the disturbance of the state variable set, nor requires the inversion of the observation error covariance 

matrix. This algorithm simplifies calculation.  

Below are the traditional EnKF equations [25-26]: 
 

(1) State error covariance matrix 

 

Matrix defining the state of the set:  

1 2( , , ) n N

N
A Rψ ψ ψ ×= ∈L

                                        (2)  

 

where iψ
 ( Ni ,,1 L= ) is the member of the sample set, n  is dimensionality of the state variable, N is the 

number of samples in the set.  

 

Matrix defining the disturbance of the set:  
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Each element in matrix 
1

N  is 1/ N .  

 

Observation error covariance matrix: 

Given an observation 
m

d R∈ , observation vectors of N  disturbances are defined as follows:   
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*Researchers in need of this data set may contact the author at Email: shicx@cma.gov.cn 
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where m  is dimensionality of the observation vectors.   

(2) Analysis equation 

)()( 1 HADRHHPHPAA TfTfa −++= −

                          (9)  

where H  is the operator ( H  may be non-linear, in which case
( )HA H A=

). 

 

Based on the update of the covariance matrix of the traditional Kalman filter analysis equation, a square root 

algorithm was used to calculate the update of disturbance in the state variables of the set: 

 
ffffa

HPRHHPHPPP
1TT −+−= ）（ ,                          (10) 

 

where H  is the observation operator, P  and R  are the state error covariance matrix and observation error 

covariance matrix, respectively. The superscripts a ,
f

 and T  represent analysis field, forecast field, and matrix 

transposition, respectively. Suppose A  and A′  are the state matrix and disturbance matrix of the set, respectively. 

The state variable in this paper is soil volumetric moisture. Therefore, 
Nn

N21 R),,,( ×∈= θθθ LA
. In addition, the 

observation vector 
mR∈d  is set as the satellite-inverted soil moisture. E  is the observation disturbance set. 

Matrices are defined as AHS ′= and RNSSC ）（ 1T −+= . The algorithm was performed through the following 

steps: 

1) Calculate Matrix C and decompose the characteristic values of C, i.e., CZZ =TΛ ; 

2) Update the mean value of the state variable set ）（ ffa
HdZZSA θΛθθ −′+= T-1T

; 

3) Calculate Matrix 
SZX T2

1

2

−

= Λ
; 

4) Perform SVD decomposition 2

T

222 XVU =Σ
; 

5) Solve the disturbance of the analytic set of state variables 
ΘΣΣ 2

T

22 −′=′
IVAA

a

 ( Θ  is any 

orthogonal matrix) and then add the mean value of the state variable set 
aθ  calculated with (2) to derive 

the analysis field 
aA  of the state variables.  

During the establishment of CLSMDAS, we first used a simple soil water module to establish a land 

near-surface soil moisture assimilation model based on the EnKF method, constructed a set of ideal near-surface 

observation data, and then performed an ideal simulation verification test to prove the accuracy and feasibility of the 

EnKF assimilation module because only near-surface observation was available [22]. On the basis of this analysis, an 

EnKF assimilation module was coupled with the CLM3.0 model to establish CLSMDAS.  

1.4. AMSR-E soil moisture output 

The advanced microwave scanning radiometer (AMSR-E) carried by EOS/Aqua is the world’s first sensor capable of 

providing soil moisture service outputs at the global scale. These outputs have been applied widely in hydrological, 

meteorological, and climatic studies. The working frequencies of AMSR-E are 6.925 GHz, 10.65 GHz, 18.7 GHz, 

23.8 GHz, 36.5 GHz, and 89 GHz.  

 The AMSR-E land inversion algorithm is based on the radiation transfer model. Three major geophysical 

parameters are obtained through inversion: soil moisture e
m

, vegetation moisture content e
w

, and surface temperature 

e
T

. According to the relationship between the observed luminance temperatures and the geophysical variables related 

to the atmosphere, the model equation can be simplified to:  

        ( )
Bi i

T x= Φ                                                   (11)  

where 
{ }

j
x x=

, j
x

 are geophysical variables i.e., soil moisture, vegetation moisture content, and surface 

temperature; Bi
T

is the luminance temperature observed through channel i; 
( )

i
xΦ

are standards for the functional 
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relationship between parameters and the luminance temperature.  

AMSR-E luminance temperatures ( bs
T

) were first subjected to projection treatment. Projected Luminance bs
T

 is 

classified to make ensure it matches pixel points of the inversion conditions. It is matched with auxiliary data. The soil 

moisture inversion process comprises: 1) Quality control of input data; 2) project re-sampling; 3) surface classification; 

4) eliminating data that do not meet inversion requirements; 5) inversion; and 6) obtaining soil moisture [27].  

We downloaded and processed AMSR-E daily output data between 2004 and 2007 and used regular nationwide 

soil moisture observation data, detailed soil moisture observation data from Inner Mongolia and Henan Province, and 

AMSR-E inverted soil moisture data for a comparative analysis.  

Comparative analysis results showed that: 1) Both spatial and temporal variation in AMSR-E inverted soil 

moisture data was small; 2) The difference between AMSR-E inverted soil moisture and ground-based observed soil 

moisture was related significantly to level of soil moisture. The inverted soil moisture is more accurate in arid and 

semi-arid regions than in wet regions. This coincides with the theoretical analysis results; and 3) The difference 

between AMSR-E inverted soil moisture and ground-level data observed at Station 117 in Inner Mongolia was 

generally smaller than the differences at Station 115 in Henan. This is because observation points of Station 117 in 

Inner Mongolia were located mostly in grasslands and observation points in Henan were located mostly in farmlands. 

When there is high vegetation coverage, the soil moisture inversion capacity of microwaves is reduced. See [27] for 

details.  

2. China Land Soil Moisture Data Assimilation experiment and results 
verification 

Single-point ecological station observations capture key atmospheric driving observation data, and surface and soil 

data. After CLSMDAS was established, first we used single-point observation data acquired from ecological stations 

for the land soil moisture data assimilation experiment and analyzed the performance of this assimilation system. After 

the single-point soil moisture assimilation experiment, we prepared Chinese atmospheric driving field data with 

temporal resolution of 1 hour and spatial resolution of 0.25°×0.25° and AMSR-E inverted soil moisture data. We then 

performed the China soil moisture assimilation experiment. In this section, the processes of the single-point and 

regional soil moisture assimilation experiments are described and the results analyzed.   

2.1. Single-point land soil moisture data assimilation experiment  

Shouxian National Climatic Observation Station was located by Huaihe River in the north of Anhui Province at ，116°47′E 32°33 ′N. It has an average elevation of 23.5 m ASL. It is 25,000 m
2
 in extent and belongs to Huanghuai 

Agricultural Ecological Observation Area. Data from Shouxian Observation Station were acquired between April and 

June 2004. The temporal resolution of the observation data is 30 min. The atmospheric driving data include: 

atmospheric temperature, relative humidity, wind speed, atmospheric pressure and precipitation at 2 m altitude; surface 

short-wave radiation and 10 cm soil moisture data observed at ground level. The CLSMDAS established in this paper 

was used to carry out a soil moisture data assimilation sensitivity experiment. In CLSMDAS, the state error covariance 

matrix formed a state variable set by randomly disturbing the state variables. Then Eq. (4) was used to calculate the 

state error covariance matrix. The observation error covariance matrix was calculated with Eq. (8). The following four 

soil moisture assimilation experiments were designed (Table 1).  

Experiment 1: Alternate the model background error and observation error to assess effects of on assimilation 

results. The model background error was set at 0.03. In other words 
)1(* γθθ += bi  was used to generate a sample 

set. 
γ

 was a random value within 
]03.0,03.0[−
. Figure 4a shows time-variation curves of modeled, observed, and 

assimilated soil moisture when the observation error was set at 0.01 and 0.03, respectively (empirical value is used in 

this paper). The assimilated soil moisture is closer to the observation data when the observation error is set at 0.01.  

Experiment 2: Change the size of the EnKF sample set and assess the effects of samples in the set on assimilation 

results. Fig. 4b shows time-variation curves of modeled, observed, and assimilated soil moisture data when the number 

of samples in the set was set at 10, 20, and 50. The more samples the set contained, the closer the assimilation result 

became to observed data. Differences between the assimilation results of 10, 20, and 50 samples were not very 

significant.  

Experiment 3: Assess the effects of soil moisture depth on the assimilation results. Because the first layer of 

ground-observed soil moisture is the mean value of a 10 cm-deep soil layer which covers the first four soil moisture 

layers in CLM3.0, we designed two experiments. The observed soil moisture of the first layer was assimilated with the 

model first-layer soil moisture. The first-layer observed soil moisture (10 cm) was then divided into four layers and 

then assimilated with soil moisture data of the first four layers of the model for comparison. Fig. 4c shows 
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time-variation curves of the modeled, observed, and assimilated soil moisture. There were major differences between 

the results of both assimilation schemes. The more the observed soil moisture information, the closer to the observed 

results the assimilated soil moisture was.  

Experiment 4: Assess the effects of soil moisture frequency on assimilation results. The frequency of the 

observation data was set at once an hour, once a day or every 3 days. Fig. 4d shows time-variation curves of the 

modeled, observed, and assimilated soil moisture data. The higher the frequency of the observation data, the closer the 

assimilation data became to the observed data. The lower the observation frequency, the closer the assimilation result 

became to the modeled result. Fig. 4e and Fig. 4f are the time-variation curves of temperature and precipitation, 

respectively, used during the above-mentioned experiments.  

 

  
Figure 4a The time-variation curves of model (green line), observed(blue 

line), and assimilated soil moisture when the observation error is respectively 

set at 0.01 (cran line )   

and 0.03 (red line ) 

Figure 4b shows the time-variation curves of the model (dark green line), 

observed(black line), and assimilated soil moisture data when the number of 

samples in the set is respectively set at 10(red line ), 20(slight green line ), and 

30(blue line ). 

  
Figure 4c. The time-variation curves of the model(green line), observed(blue 

line) and assimilated soil moisture when observation layer is one(cran line ) 

and four (red line ). 

Figure 4d. The time-variation curves of the model(green line), observed(black 

line), and assimilated soil moisture data when the frequency of the observation 

at once/hour(blue line), once/day (red line ), and once/3 days (purple line )  . 

  
Figure 4e. Temperature-time variation Figure 4f. Precipitation-time variation 

Figure 4 Results of assimilation experiment at Shouxian between April and June, 2004.  

Table 1 Four Soil Moisture Assimilation Experiment Schemes 

Experiment Background 

error (mm
3 

mm
-3

) 

Observation 

error (mm
3 

mm
-3

) 

Number of 

samples 

Observation 

frequency (h)  

Number of 

assimilation 

layers  

1 0.03 0.01/0.03 30 0.5 1 

2 0.03 0.01 10/20/50 0.5 1 

3 0.03 0.01 30 0.5 1/4 

4 0.03 0.01 30 0.5/24/72 1 
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2.2. China Land Soil Moisture Data Assimilation Experiment  

CLSMDAS was used to perform a number of experiments. The spatial extent of the assimilation experiment was 

15–55°N, 75–135°E. CLM3.0 was used as the land model. FY2C satellite precipitation estimate data and FY2C 

ground-incident solar radiation data described in 1.2 were used as the precipitation and radiation in the atmospheric 

driving data. Temperature, moisture, atmospheric pressure, and wind speed data were derived through interpolation of 

NCEP reanalysis data. The observation data were AMSR-E inverted soil moisture data downloaded from NASA’s 

official website (http://nsidc.org/data/amsre/). EnKF assimilation was used as the assimilation method. The spatial 

resolution of soil moisture data was 0.25°×0.25° after assimilation. There were 10 layers in the vertical direction. The 

classification of soil moisture layers was consistent with that of the CLM3.0 model. The temporal integral step of the 

model was 30 min. The experiment in 2.1 showed that the sum of the soil moisture values of the topmost four layers in 

CLSMDAS was consistent in the physical significance of the 10 cm soil moisture data observed at ground level. 

Therefore, the output soil moisture data of the topmost four layers were combined and then processed into grid-point 

daily mean and monthly mean soil moisture data for further analysis.  
 

  

Figure 5 (a) Assimilated Chinese soil moisture distribution. (b) Observation station soil moisture.  

 

  

  

Figure 6  A comparison between Chinese assimilated soil moisture distribution (top left: August 2006, bottom left: September 2006) and 

Chinese drought and flood monitoring map (right top: August 2006,  

Right bottom: September 2006) 

Analysis of the assimilation experiment between June and September 2006 shows that the CLSMDAS soil 

moisture distribution is consistent with soil moisture observed on the ground. Due to insufficient available ground-level 

observation soil moisture data, the large error in observed soil moisture, and the inherent high variability of the spatial 

distribution of soil moisture, it is difficult to verify the assimilated soil moisture data. The Drought and Flood Climate 
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Bulletin is an authoritative output issued regularly by the National Climate Center. The climatic drought and flood 

distribution maps of this are drawn based on comprehensive analysis of station observation data observed. In this paper, 

the distribution map of ground soil moisture observation stations and the climatic drought and flood distribution map 

published by the National Climate Center were used to analyze the CLSMDAS soil moisture data (Fig. 5 and Fig. 6).  

Fig. 5a shows the CLSMDAS soil moisture on July 18, 2006 and Fig. 5b shows Chinese 10-cm deep soil moisture 

observations on July 18, 2006 (Fig. 5b). According to the CLSMDAS soil moisture distribution map, soil moisture is 

relatively high in most southern regions. In Fig. 5b, there are few observation stations in the south, but all of these have 

high soil moisture (yellow arrows). In the low soil moisture regions in eastern and central of Inner Mongolia, the 

observed and assimilated soil moisture were consistent (green arrows). In the lower-soil-moisture regions in central 

China, the observed and assimilated soil moisture data were also quite consistent (red arrows).  

Fig. 6 compares the Chinese assimilated soil moisture distribution and a Chinese drought and flood monitoring 

map published by the National Climate Center [28]. According to the China Drought and Flood Climate Bulletin 

published by the National Climate Center, the most serious summer drought since 1949 took place in Sichuan Province 

and Chongqing in August 2006. National climatic drought monitoring results from August 18 showed that the west of 

Chongqing and the east of Sichuan still remained in severe to extremely severe drought. The great majority of Sichuan, 

eastern Tibet, southwest Hubei, northwest Hunan, northern Guizhou, northern Xinjiang and southern Gansu and 

eastern Inner Mongolia remained in medium to severe drought. The east of Jiangnan, the great majority of northern 

China, and the east of northwest China had mild to medium droughts (http://climat.cma.gov.cn/). The CLSMDAS soil 

moisture distribution on August 18, 2006 showed significantly lower soil moisture values in drought regions of 

Chongqing and Sichuan than in surrounding regions. According to the China Drought and Flood Climate Bulletin 

issued by the National Climate Center, in September 2006 droughts persisted or developed in northern China, southern 

Chongqing, northern Guizhou and northern Xinjiang, and eastern Inner Mongolia. Different degrees of drought 

occurred in eastern Hubei and southern Guangxi. In the CLSMDAS monthly mean soil moisture map of September 28, 

2006, the low value centers of soil moisture are consistent with drought regions reported in the China Drought and 

Flood Climate Bulletin. It should be noted that the comparison between the Chinese assimilated soil moisture 

distribution map of China and the national climatic drought and flood distribution map published by National Climate 

Center is only qualitative because these two maps do not represent the same phenomenon. The climatic drought and 

flood distribution map contains relative information integrating many conditions and climatic states. Although soil 

moisture is a physical quantity that most directly reflects droughts and floods, it does not appropriately reflect the 

drought and flood characteristics of a certain region unless compared with climate data. For example, although soil 

moisture is very low in the great majority of southern Xinjiang, it is not defined as an arid region in the climatic drought 

and flood distribution map. Soil moisture is relatively high in normal years in Sichuan and Chongqing. Therefore, when 

it decreases significantly, it will be considered a sign of severe drought. 

3. Summary and discussion 

The establishment of the CLSMDAS, especially the application of high temporal and spatial resolution precipitation 

data acquired from the Chinese geostationary satellite FY2C, and ground-incident solar radiation data inverted with 

FY2C visible-light data in CLSMDAS, characterized the spatial and temporal distribution characteristics of 

atmospheric forcing variables that drive the operation of the land model, improved the simulation precision of the land 

model, and improved the soil moisture assimilation results. The assimilated high-quality soil moisture grid-point data 

serve as important basic information for monitoring climate changes, including droughts.  

One set of satellite-inverted soil moisture data was assimilated. The inversion error introduced in the soil moisture 

inversion was large and thus reduced the precision of the soil moisture assimilation results. In future research we will 

use the surface microwave radiation transfer model to conduct direct assimilation of satellite microwave channel 

radiation luminance temperature data to improve the precision of soil moisture assimilation. With regard to processing 

atmospheric driving data, we are currently using multi-source data fusion to interface the numerical model with surface 

and sounding regular observation data, and data recorded automatically at weather stations. We can then use this 

system to obtain surface atmospheric temperatures, atmospheric pressure, humidity, and wind speed grid-point data 

with high precision and high spatial and temporal distribution. By combination with precipitation and ground-incident 

solar radiation data obtained through geostationary meteorological satellite inversion, we can construct a more 

reasonable atmospheric driving data set and further improve the precision of land model simulation and assimilation.  
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Abstract Fengyun 3 series are the second-generation
polar-orbiting meteorological satellites of China. The first
satellite of Fengyun 3 series, FY-3A, is a research and
development satellite with 11 payloads onboard. FY-3A
was launched successfully at 11 a.m. on May 27, 2008.
Since the launch, FY-3A data have been applied to the
services on the flood season and the Beijing 2008 Olympic
Games. In this paper, the platform, payloads, and ground
segment designs are introduced. Some typical images
during the on-orbit commission test are rendered.
Improvements of FY-3A on Earth observations are
summarized at the end by comparing them with FY-1D,
the last satellite of Fengyun 1 series.

Keywords Fengyun 3, payloads, ground segment, data
application

1 Historical review of Chinese
meteorological satellites

Chinese meteorological satellite activities started in 1969.
Since then, two parallel works have been advocated. They
are receiving, processing, and utilizing foreign satellites,
and programming, developing, and applying Chinese
meteorological satellites (Fang et al., 2004).
Chinese meteorological satellites contain two systems

(Li, 2001; Meng, 2004). They are the polar orbit series and
the geostationary orbit series. Each satellite is named with
an Arabic numeral and an alphabet. The Arabic numerals
represent the satellite series, the odd being the polar orbit
satellites and the even representing the geostationary
satellites. The alphabet represents the sequence number
within the series. So far, five polar orbit satellites and five
geostationary satellites have been launched successfully
(seen in Table. 1).

2 Specification of the FY-3A platform

Fengyun 3 series are the second-generation polar-orbiting
meteorological satellites of China. To meet new and higher
requirements in modern meteorological services, espe-
cially in numerical weather predictions, these series are
designed to perform global, three-dimensional, quantita-
tive, and multi-spectral observations under all weather
conditions (i.e., cloud-free and cloudy conditions) with
multiple sensors onboard (Fan, 2000; Zhang, 2001).
FY-3A is the first satellite of Fengyun 3 series. It was

successfully launched on May 27, 2008 from the Taiyuan
launch center. Compared with the single payload of
Fengyun 1 series, the number of instruments onboard the
satellite has increased to 11. Therefore, FY-3A turns over a
new chapter in the history of Chinese meteorological
satellites and satellite meteorology (Yang, 2008).
FY-3A is a research and development satellite. The

designed lifetime of FY-3A is three years. FY-3A is located
at 831 km altitude in the sun-synchronous, near-polar orbit.
The attitude control adopted the three-axis stabilization
techniques. The major technical specifications of the FY-
3A platform are listed in Table 2 (National Satellite
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Table 1 Launched Chinese meteorological satellites

satellite name satellite type launch time satellite function

FY-1A polar Sept. 7, 1988 R & D

FY-1B polar Setp. 3, 1990 R & D

FY-1C polar May 10, 1999 Operation

FY-1D polar May 15, 2002 Operation

FY-3A polar May 27, 2008 R & D

FY-2A geostationary June 10, 1997 R & D

FY-2B geostationary June 25, 2000 R & D

FY-2C geostationary Oct. 18, 2004 Operation

FY-2D geostationary Dec. 8, 2006 Operation

FY-2E geostationary Dec. 23, 2008 Backup
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Meteorological Center, 2004; National Satellite Meteor-
ological Center, 2008a).

3 Introduction of the FY-3A payloads

There are 11 payload instruments mounted on FY-3A.
They are the visible and infrared radiometer (VIRR),
infrared atmospheric sounder (IRAS), microwave tem-
perature sounder (MWTS), microwave humidity sounder
(MWHS), medium resolution spectral imager (MERSI),
microwave radiation imager (MWRI), solar backscatter
ultraviolet sounder (SBUS), total ozone unit (TOU), earth
radiation measurement (ERM), solar irradiance monitor
(SIM), and space environment monitor (SEM). Among
them, the IRAS, MWTS, and MWHS make up the vertical
atmospheric sounding system (VASS). The VIRR is the
only instrument among them inherited from the formal
FY-1 series platform. Other instruments are all first time in
orbit.
The VIRR is a 10-channel VIS/IR radiometer for

multi-purpose imagery with 1.1 km resolution at nadir. The
swath of the VIRR is 2800 km. TheMERSI is a 20-channel
VIS/IR radiometer. There are 19 channels in VIS/NIR/
SWIR bands and one in TIR band at 10.0–12.5 μm. Spatial
resolution at nadir is twofold: 250 m (for four VIS/NIR
channels and one TIR channel) and 1 km (for all other
channels). Swath width is similar with VIRR at 2800 km.
The MWRI is a 10-channel conical-scanning microwave
radiometer at five frequencies. All frequencies are in
double polarization. Spatial resolution is 9.5�15 km at
90 GHz and 30�50 km at 19 GHz. The swath of the
MWRI is 1400 km. The IRAS is a 26-channel IR
radiometer for temperature and humidity sounding. Spatial
resolution is 17 km and swath width is 2250 km. The
MWTS is a four-channel microwave radiometer for nearly-
all-weather temperature sounding with the spatial resolu-
tion of 70 km at 54 GHz. The MWTS performs on cross-
track scanning mode with swath of 2200 km. The MWHS
is a five-channel microwave radiometer at four frequencies
(one frequency in double polarization) for nearly-all-
weather humidity sounding. The spatial resolution is
15 km at 183 GHz band. The swath width is 2700 km with
cross-track scanning. The TOU and SBUS make up a suite
of two UV spectro-radiometers. The TOU measures total
ozone amount with six channels in the 308–360 nm range,
with spatial resolution of 50 km with 3000 km swath. The
SBUSmeasures ozone profile with channels in the range of
252–340 nm. Spatial resolution is 200 km at nadir viewing
without side scanning. The ERM is a two-broadband
channel radiometer for earth-reflected solar flux and earth-
emitted thermal flux over total (0.2–50 mm) and short
(0.2–4.3 mm) waveband. The ERM has two working
modes. One is cross-track scanning mode with 28 km
spatial resolution at 2° narrow field of view (NFOV); the
swath width is 2300 km. The other is nadir viewing mode
with 120° wide field of view (WFOV). The SIM is a three-
channel radiometer over 0.2–50 mm wave band for the
total incident solar flux. It views the sun near the north
polar area. The SEM is the only in situ instrument to
measure charged particles in solar wind.
From the view point of data application, the payload

instruments on the FY-3A can be analogous to those
sensors that are well-used in the world. In fact, the VIRR is
the expanded AVHRR instrument, and the MERSI is the
MODIS-similar sensor. Both of these optical imagers can
provide surface characteristics (including cloud surface,
land surface, and ocean surface) and aerosol information.
The VASS set is made up of ATOVS-similar instruments
for atmospheric sounding. The MWRI is the AMSR-
similar instrument except for the low frequency at
6.9 GHz. The SBUS and TOU are the SBUV-similar and
TOMS-similar sensors, respectively, which can provide
ozone profile and total ozone amount separately. The ERM
is the CERES-similar instrument inherited from ERBE.
The detailed specifications of these 11 payload instruments
and their data applications are listed in Table 3 (National

Table 2 The major technical specifications of the FY-3A platform

parameters technical specifications

launch mass 2298.5 kg

dimensions ground configuration 4380 mm�2000 mm�2000 mm
(X.Y.Z)

in-orbit configuration 4440 mm�10000mm�3790 mm
(X.Y.Z)

orbit sun-synchronous, near-polar
circular

nominal altitude 831 km

Inclination 98.81°

Period 101.49 min.

Eccentricity 0.00013

number of revolutions/day 14.17

orbital interception 2,827.6 km (at equator)

repeat cycle about 5 days

local time at descending node 10∶05 (a.m)

local time drift at descending node less than 15 min. in 2 years

payload instruments numbers 11

data
transmission

real time L band; QPSK modulation;
4.2Mbps bit rate

X band; QPSK modulation;
18.7Mbps bit rate

delayed transmission X band; QPSK modulation;
93Mbps bit rate

attitude control 3-axis stabilized

control accuracy ≤0.3° (X,Y,Z)

measurement accuracy ≤0.05° (X,Y,Z)

stability ≤0.004°/s (X,Y,Z)

designed life time 3 years
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Table 3 The specification of FY-3A 11 payloads
Name Specification Purpose

VIRR spectral range 0.43–12.5 μm cloud image, cirrus and cloud phase, vegetation, sediment, snow
and ice, land surface temperature, sea surface temperature,
water vapor content

number of channels 10

scan range �55.4°
spatial resolution at nadir 1.1 km

Cal accuracy in VNIR 5%–10%

Cal Accuracy in IR 1 K (270 K)

quantization 10 bits

IRAS

MWTS

MWHS

spectral range 0.69–15.0 μm atmospheric temperature profile, atmospheric moisture profile,
total ozone amount, outgoing longwave radiationnumber of channels 26

scan range �49.5°
spatial resolution at nadir 17 km

Cal accuracy in VNIR 5%–9%

Cal accuracy in IR 1 K (270 K)

quantization 13 bits

spectral range 50–57 GHz

number of channels 4

scan range �48.3°
spatial resolution at nadir 50–75 km

Cal accuracy 1.2 k

sensitivity (NE△N) 0.4–0.55 k

quantization 13 bits

spectral range 150–183 GHz

number of channels 5

scan range �53.35°
spatial resolution at nadir 15 km

Cal accuracy 1.5 k

sensitivity (NE△N) 1.1–1.2 k

quantization 14 bits

MERSI spectral range 0.40–12.5 μm ocean color, aerosol, water vapor content, cloud properties,
vegetation, surface properties, surface temperature, snow and
ice

number of channels 20

scan range �55.4°
spatial resolution at nadir 0.25–1 km

Cal accuracy in VNIR 5%–10%

Cal accuracy in IR 1 K (270 K)

quantization 12 bits

MWRI spectral range 10–89 GHz precipitation rate, liquid water content, water vapor content, soil
moisture, sea ice, sea surface temperture, snow cover, ice
cover

number of channels 10

scan range �55.4°
spatial resolution at nadir 15–85 km

Cal accuracy 1–2.8 K

quantization 12 bits

SBUS spectral range 0.16–0.4 μm ozone profile

number of channels 12

spatial resolution at nadir 200 km

quantization 16 bits

stray light 10–6

Cal accuracy 3% (160–250 nm)
2% (250–400 nm)

Cal accuracy in diffuse reflection
board

3%

TOU spectral range 0.3–0.36 μm total ozone amount

number of channels 6

scan range �54°
spatial resolution at nadir 50 km

quantization 10–3

stray light 12 bits

Cal accuracy 2%
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Satellite Meteorological Center, 2004; National Satellite
Meteorological Center, 2008a).

4 FY-3A ground segment design

The Chinese meteorological satellite engineering system
comprises five parts: satellite segment, launch pad
segment, launch vehicle segment, measurement and
control segment, and ground segment (Li, 2008). The
ground segment responds to data receiving, data pre-
processing, and data processing. It is the key to sustaining
and promoting satellite data application in the meteor-
ological services (Xu et al., 2006).
The FY-3A ground segment includes the data processing

center, operation and control center, ground receiving
center, and data archiving center. They are composed of 10
technical systems and one airborne-based field experiment
(National Satellite Meteorological Center, 2006). The
technical systems are the Data Acquisition System
(DAS), Computer and Network System (CNS), Operation
Control System (OCS), Data Pre-Processing System
(DPPS), Products Generation System (PGS), Quality
Control System (QCS), Utilization Demonstration System
(UDS), Archive and Service System (ARSS), Monitoring
and Analysis System (MAS), and Simulation and
Technical Supporting System (STSS). The purpose of the
airborne-based field experiment is to test the engineering
model of the payload instruments. The FY-3A ground
segment framework is shown in Fig. 1.

(Continued)
Name Specification Purpose

ERM spectral total band 0.2–50 μm terrestrial radiation

range solar band 0.2–3.8 μm

number of narrow FOV 2

channels broad FOV 2

scan range �50° (narrow)
sensitivity (NE△N) 0.4Wm–2$sr–1

Cal total band 0.8%

accuracy solar band 1%

stability within 2 years < 1%

SIM spectral range 0.2–50 μm solar irradiation

sensitivity (NE△N) 0.2Wm–2

Cal accuracy 0.5%

quantization 16 bits

stability within 2 years < 0.02%

SEM heavy ions, high energy proton, high energy electron,
radiation dose, satellite surface charging monitoring,
single event upset

space environment

Fig. 1 FY-3A ground segment framework
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The FY-3A ground segment has five ground stations to
receive the satellite direct-broadcasting data. Four of them
are inside China and the last one is located near the
northern polar region. Such distribution, especially the
ground station in the polar region, guarantees that global
data can be received and collected within about three
hours. The ground stations receive all of the L-band HRPT
data, X-band MPT data, and DPT data. Table 4 shows the
information of current ground stations built for FY-3A.

5 Data application and demonstration

There are five systems in the FY-3A ground segment
related directly with data application. They are the DPPS,
PGS, ARSS, MAS, and UDS. Thereinto, the DPPS
generates level 1 products with geolocation and calibration
information, and the PGS produces level 2 products to
provide geophysical and geochemical information through
retrieval algorithms. The ARSS responds to data archiving
and data distribution. The MAS provides users a special
toolkit to analyze satellite data. The UDS responds to
promote the utilization and demonstration of FY-3A data
into meteorological services. Figure 2 shows the relation-
ship among the DPPS, PGS, ARSS, MAS, and UDS.
Table 2 lists the level 2 products generated from the PGS
currently covering the atmosphere, land, ocean, cryo-
sphere, radiation, and space environment (National
Satellite Meteorological Center, 2008b).
Since the launch, FY-3A data have been applied to

global weather system monitoring, typhoon monitoring,

sea and inland water body monitoring, fire monitoring,
aerosol and air quality monitoring, the monitoring of hot-
island effect in cities, global sea shelf monitoring, global
ozone monitoring, etc. It is noted that FY-3A is still on its
on-orbit commission test phase. However, FY-3A has
served the Beijing 2008 Olympic Games and the flood
season in 2008 at the same time.
Figure 3 is the global mosaic image in MERSI channels

3, 2, 1 with 250 m resolution acquired on the same day.
The intertropical convergence zone (ITCZ), tropical
depression, and subtropical high pressure can be seen
clearly. As indicated in Fig. 4, when typhoon Fung-wong
was monitored by MERSI on 27 July, 2008, the typhoon
hole inside and the spiral cloud outside can be distin-
guished. Figure 5 shows the ozone hole monitored from

Table 4 Ground station distribution

station name longitude latitude

Beijing Station 116° 16′ 36″ E 40° 03′ 06″ N

Guangzhou Station 113° 20′ 20″ E 23° 09′ 52″ N

Urumchi Station 87° 34′ 08″ E 43° 52′ 17″ N

Jiamusi Station 130° 22′ 48″ E 46° 45′ 20″ N

Kiruna Station 21° 02′ E 67° 32′ N

Fig. 2 FY-3A ground segment related with data application
Fig. 3 Global mosaic image in MERSI channel 3, 2, 1 with 250 m
resolution

Table 5 Level 2 products generated from PGS

discipline parameters FY-3A sensors

atmosphere cloud/fog properties
total water vapor
precipitation

aerosol properties
atmospheric temperature

and humidity
total ozone and ozone

profile

MERSI/VIRR/IRAS/
MWRI/MWHS

VIRR/MERSI/MWRI
MWHS/MWRI
MERSI/VIRR

IRAS/MWTS/MWHS
TOU/SBUS/IRAS

land land cover
surface temperature
vegetation dynamics

fire and flood monitoring
surface wetness

VIRR/MERSI
VIRR

VIRR/MERSI
VIRR/MERSI

MWRI

ocean sea surface temperature
sea surface color

VIRR/MWRI
MERSI

cryosphere sea ice
snow cover

MERSI/VIRR/MWRI
VIRR/MWHS/MERSI/

MWRI

radiation earth’s radiation and solar
irradiance

ERM/SIM

space environment high energy particles
radiation dose

SEM
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TOU on November 1, 2008. The region on the cold color
side corresponds to the ozone hole in the image.

6 Conclusions

In comparison with FY-1 series, the principal improve-
ments in FY-3A include: 1) atmospheric sounding
capacity, 2) microwave imaging capacity, 3) optical
imaging with spatial resolution from 1 km to 250 m, 4)
atmospheric composition detecting capacity, 5) radiation
budget measuring capacity, and 6) global data acquisition
from within one day to within two to three hours.
The number of instruments on board the satellite has

increased to 11. FY-3A has evolved from single imaging to

comprehensive earth environment observations, from
optical to microwave remote sensing, with resolution
having been increased from kilometer to hectometre-
category, and receivable both in China and up to the polar
region. Therefore, FY-3A turns over a new chapter in the
history of the Chinese meteorological satellites and
satellite meteorology.
The FY-3A satellite provides global air temperature,

humidity profiles, and meteorological parameters such as
cloud and surface radiation required in producing weather
forecasts, especially in making medium numerical fore-
casting. The FY-3A satellite monitors large-scale meteor-
ological disasters, weather-induced secondary natural
hazards and environment changes, and provides geophy-
sical parameters for scientific research in climate change
and its variability, climate diagnosis, and predictions. The
FY-3A satellite renders global and regional meteorological
information for aviation, ocean navigation, agriculture,
forestry, marine activities, hydrology, and many other
economic sectors.
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Abstract: The NASA Earth Observing System (EOS) program was started in early 1990s, focusing on observation of 

measurements for climate studies, such as land surface temperature, precipitation, greenhouse gases, aerosols, vegetation 

index, and soil moisture, etc.  Data acquired from many satellites are archived and distributed at different NASA data 

centers.  This document provides brief information about the land data products from NASA satellite measurement 

missions as well as land surface models.  The data search and order methods, data tools, as well as sample applications 

are documented.   

1.  Introduction of NASA land products  

1.1 NASA satellite observation missions on land surface  

The land surface satellite observations begun with the launch of the first in a series of Landsat satellites developed by 

National Aeronautics and Space Administration (NASA) and operated by U.S. Geological Survey (USGS) 

(http://landsat.gsfc.nasa.gov/ ).  Ladsat 1 was launched on July 23, 1972, known as the Earth Resources Technology 

Satellite (ERTS). Landsat 1 operated until January 1978, outliving its design life by five years. Six Landsat satellites 

were launched following Landsat 1.  Landsat 5 and Landsat 7 are in operation. About 38 years data were collected from 

Landsat.  The next generation of land observation satellite, Landsat Data Continuity Mission (LDCM), is scheduled to 

launch in December 2012. 

The NASA Earth Observing System (EOS) program started to acquire data in early 1990s, focusing on climate science 

areas: radiation, clouds, water vapor, and precipitation; the oceans; greenhouse gases; land-surface hydrology and 

ecosystem processes; glaciers, sea ice, and ice sheets; ozone and stratospheric chemistry; and natural and anthropogenic 

aerosols.  Detailed information about the NASA EOS program is documented in the “Earth Scienece Reference 

Handbook” by Parkinson et al (2006) and can be found at the web site http://eospso.gsfc.nasa.gov/. More than twenty 

satellites were launched since 1991. Land surface products are obtained from a number of instruments, such as ETM on 

Landsat 7 (1999), MODIS on Terra (2000) and Aqua (2002), ASTER on Terra (2000), and SeaWiFS on Obview-2 

(1997).  Other measurements for land surface study in EOS program include precipitation from TRMM (1997), soil 

moisture and snow/ice water from AMSR-E (Aqua, 2002), etc. 

1.2 NASA Satellite land products, processing levels, resolutions, and data format 

Most NASA satellite land measurements are summarized in the NASA Land Measurement Portal 

(http://landportal.gsfc.nasa.gov/).  The portal lists land products in four categories: Surface radiation Budget, Vegetation 



 

 

 

Parameters, Land-Cover/land Use Changes, and Hydrosphere.  The portal provides product metadata, including 

instrument name, spatial and temporal resolution, data archiving location, and data access policy.  Example products are: 

• Land Surface temperature/Emissivity from MODIS at 1km, 6km, or 0.05 degree for daily, 8-day, and 

monthly 

• Vegetation index from MODIS at 250m, 500m, 1km, or 0.05 degree for 16-day, and monthly 

• Land cover types from MODIS at 250m or  500m for annual; from Landsat 1-7 at 30m for decadal  

• Thermal Anomalies/Fire from MODIS at 500m or 1km for daily, 8-day, and monthly  

• Snow cover from MODIS at 500m and 0.05 degree for daily, and 8-day 

• Evapotranspiration from MODIS at 0.05 degree for 8-day and annual  

The standard NASA satellite products have four processing levels as listed in Table 1.  

Table 1: Satellite data processing Levels 

Levels Description Data type 

Level-0 Source data, the raw radiance counts at full resolution swath 

Level-1A The raw radiance counts with time and geolocation referred  Swath 

Level-1B Calibrated radiance, or processed to sensor units, such as 

brightness temperature at full resolution 

swath 

Level-2 Derived geophysical variables (e.g, land surface temperature, 

vegetation index, land cover type) after performing atmospheric 

correction at the same resolution and location of Level-1 data. 

Swath 

Level -3   Geophysical variables mapped on uniform space-time grid 

scales at reduce resolution 

Grid 

Level -4  Geophysical variables derived from lower level data (i.e., 

variables are not measured by the instrument, but instead are 

derived from these measurements by an analysis model) 

Grid  

The typical data formats of NASAEOS satellite data are HDF (Hierarchical Data Format, http://www.hdfgroup.org/ ), 

HDF-EOS (Hierarchical Data Format - Earth Observing System, http://hdfeos.org/, 

http://www.hdfgroup.org/hdfeos.html ), or NetCDF (Network Common data Form, 

http://www.unidata.ucar.edu/software/netcdf/ ).  All these data formats are self-describing, enable an application to 

interpret the data structure and contents without any outside information, and are platform transparent.  Commercial and 

free tools are available to support above data formats.     

1.3 NASA Land surface model data: GLDAS 

The Global Land Data Assimilation System (GLDAS) is a land surface data assimilation system developed by the 

Hydrological Science Branch at NASA Goddard.  The system ingests satellite and ground-based observational data 

products, using advanced land surface modeling and data assimilation techniques, for generating optimal fields of land 

surface states (e.g., soil moisture and surface temperature) and fluxes (e.g., evaporation and sensible heat flux) 

parameters (Rodell et al., 2004).  The current GLDAS includes data from four land surface models: Mosaic, Noah, the 

Community Land Model (CLM), and the Variable Infiltration Capacity (VIC). More details about GLDAS models can be 

found at GLDAS Readme (ftp://agdisc.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS.pdf) and NASA Land Data 

Assimilation System website (http://ldas.gsfc.nasa.gov/).  

The temporal resolution for the GLDAS products is 3-hourly. Monthly products are also generated through temporal 

averaging of the 3-hourly products.  Data is available from January 1 1979 to present. The spatial resolutions are 0.25 and 



 

 

 

1 degree.  The data are archived and distributed by the NASA Goddard Earth Science Data and Information Services 

Center (GES DISC) (http://disc.sci.gsfc.nasa.gov/) through ftp and Mirado (http://mirador.gsfc.nasa.gov/). The GLDAS 

data are also provided to GrADS Data Server (GDS) users via http://agdisc.gsfc.nasa.gov/dods/.  GDS allows a user to 

access the data, perform subsetting and analysis operations without first downloading them. More advanced online 

visualization and analysis tool (Giovanni) (http://disc.sci.gsfc.nasa.gov/giovanni/, Berrick, et al. 2009 ) is also available 

to GLDAS data, which provides a simple and intuitive way to visualize, analyze, and access vast amounts of data without 

having to download the data.  

2. Order NASA Earth Science data products 

2.1 NASA Earth science data centers 

NASA Earth sciences data are archived and distributed by twelve Distributed Active Archive Centers (DAACs) at 

different locations. Each center serves a specific Earth system science discipline and provides users with data products, 

services, and data-handling tools unique to the center's specialty (http://nasadaacs.eos.nasa.gov/about.html).  The data 

product can be found through the centralized searching and ordering system such as WIST/ECHO or from a specific data 

center where data are archived,   such as LP DAAC, GES DAAC, NSIDS, and OBPG, etc.. A brief summary of these 

DAACs are listed in the section 2.4.  The following sections give examples to search and order data from centralized 

services and from data center GES DISC.   

 

2.2 Find and order data from the centralized system 

2.2.1 Order data from WIST 

http://wist.echo.nasa.gov 

Wherehouse Inventory Search Tool (WIST) is a primary access point of more than two thousands NASA EOS and other 

Earth science data sets.   WIST system requires a user to register.  You may browse data products without login.  Here is 

an example of steps to order MODIS monthly land surface temperature: 

a) Type “MODIS” in Text Search, click go. It will display all MODIS products in the WIST database; or select 

“MODIS/Aqua” under Category “Land”, which will list all land products of MODIS/Aqua 

b) Select one or more data set, say “MODIS/Aqua Land Surface Temperature/Emissivity Monthly L3 Global 0.05 

Deg CGM V005” 

c) Select search area by click, hold, and drag on the map, or enter four corners. The default area is global. In this 

case, the default option is selected.  

d) Give temporal range as “2009-01-01” to “2009-12-31” 

e) Use default options for “Additional Options” 

f) Click “Start Search” 

g) Select item (granules) and click on “Add selections to cart” 

h) Click on “Accept-continue to Shopping Cart” 

i) Specify ordering options 

j) Fill the ordering form  



 

 

 

k) Review and submit order 

l) Will receive an e-mail in a minutes that contains data downloading instruction  

2.2.2 Find data from ECHO 

https://www.echo.nasa.gov/ 

NASA EOS Clearinghouse (ECHO) is a wharehouse database to archive EOS product metadata from a variety of science 

disciplines and domains, including Climate Variability and Change, Carbon Cycle and Ecosystems, Earth Surface and 

Interior, Atmospheric Composition, Weather, and Water and Energy Cycle. All products in WIST system are in ECHO 

database.  Products in ECHO can be navigated by topics, instrument, campaign, data center, etc.  On the search or 

navigation result page, product short description, temporal coverage, and the link to ordering page are provided.  ECHO 

has been working with other organizations to provide their Earth science metadata alongside NASA's for users to search 

and access. 

2.2.3 Find data from GCMD 

http://gcmd.gsfc.nasa.gov 

The Global Change Master Directory (GCMD) is a comprehensive source of satellite and in situ Earth science data, with 

broad coverage of the atmosphere, hydrosphere, oceans, solid Earth, and biosphere.  The system provides Key-word 

search and navigation to find a data product.   For example, on page http://gcmd.gsfc.nasa.gov: 

• Click on LAND SURFACE � LAND TEMPERATURE � LAND SURFACE, it lists 253 items, refine by text 

“MODIS”, it reduces items to 63.  (Note, the searched items subject to change since the system is updated actively).  

• Click “MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V005”, it  displays a 

page with metadata information of this product, including product description, geographic coverage, spatial resolution, 

instrument/platform, data source link,  etc.  

2.3 Find data from data centers and services: 

EOS Land products are archive and distributed at the following DAACS: 

• LP DAAC (https://lpdaac.usgs.gov/ ) 

LP DAAC processes, archives, and distributes land data and products derived from the EOS sensors. LP DAAC holds 

land data from MODIS and ASTER on Terra, and MODIS on Aqua. MODIS data are Level 2 (swath) and Level 3 (grid) 

in HDF-EOS format. The resolutions range of the Level 3 products vary from 250 m to 6000 m.  The ASTER data are 

Level 1 (swath), Level 2 (swath), and Level 3 (grid) in HDF-EOS or GeoTIFF format. The Level 3 data with resolution 1 

km or higher are stored in 10x10 degree tiled files. 

• GES DISC (http://disc.gsfc.nasa.gov/ ) 

GES DISC archives and distributes satellite data of multiple disciplines, including hydrology, atmospheric composition 

and dynamic, as well as land surface process. GES DISC archives and distributes data from land and atmospheric 

assimilation model.   The existing satellite land products are global 1x1 degree resolution from MODIS.  Higher 

resolution (1 km) land data from MODIS will be available for entire Asia region, which can be visualized through the 

online system Giovanni soon. NASA land surface model data are in GES DISC. 

• NSIDC (http://nsidc.org/daac/ ) 

The National Snow and Ice Data Center (NSIDC) is part of the Cooperative Institute for Research in Environmental 

Sciences at the University of Colorado at Boulder.  NSIDC provides cryosphere-related data and information, including 



 

 

 

snow, ice, glaciers, frozen ground, and climate interactions from field and satellite observation.  Example satellite land 

data are soil moisture, and snow water equivalent from AMSR-E. 

• OBPG (http://oceancolor.gsfc.nasa.gov/ ):  

The Ocean Biology Processing Group (OBPG) at NASA GSFC process and archive ocean biology data from sensors, 

such as SeaWiFS, MODIS, OCTS, and MERIS etc.  Land vegetation index (NDVI) at 4km and 9km resolution from 

SeaWiFS are produced and distributed by OBPG as additional products.  

Landsat data can be obtained from: 

• USGS GioVis, The Global Visualization Viewer (http://glovis.usgs.gov/): A web-based tool to search and order 

data by clicking on an interactive map or by entering the geographic coordinates (latitude and longitude) of the site you 

are searching for. 

• USGS earth Explorer (http://edcsns17.cr.usgs.gov/EarthExplorer/): A Web-based tool that allows you to custom 

tailor your search parameters for Landsat data. 

 Land data are also available from: 

• GLCF - Global Land Cover Facility at University of Maryland 

http://glcf.umiacs.umd.edu/index.shtml. This site provides satellite imagery of Land cover and other land products  from 

ASTER, IKONOS, Landsat, MODIS, QickBird, Orbview, and SRTM, as well as products from AVHRR, GOES, 

Landsat, and MODIS, etc.  

• LEDAPS – Landsat Ecosystem Disturbance Adaptive Processing System  

http://ledaps.nascom.nasa.gov/. This site is a NASA-funded project to map North American forest disturbance since 1975 

from the Landsat and ASTER satellite data. 

• Land Measurement Portal 

http://landportal.gsfc.nasa.gov/. This portal provides comprehensive metadata of land measurement from NASA EOS, 

NOAA and other Agencies and Institutions.  

2.4 Order data from GES DISC 

The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of twelve NASA Earth 

Science data archive and distribution centers. GES DISC holds data and information of Precipitation, Atmospheric 

Chemistry and Dynamics, and land surface process from satellite observation and atmospheric and land assimilation 

models. The center provides several methods to access data sets, including Mirado, OPeNDAP, GDS, OGC Web Map 

Service, and Giovanni.  All data from GES DISC are open to the public. No registration is required to access the data. 

Mirado (http://mirador.gsfc.nasa.gov/ ) is a major data search and order system at GES DISC.  Mirado has a very simple 

and easy to use interface that can perform Google-like keyword search.  Features such as data file hit estimator, an 

interactive shopping cart, and spatial and parameter subsetting (subsetting feature is available for some products) are 

available in Mirido. In addition, the system can search data through navigation of projects and science area by applying 

semantic web technology.  A list of product in Mirado is available by clicking “Data Holding” from the Mirado page. 

The following is an example for ordering soil moisture from GLDAS land surface model: 

• From page: http://mirador.gsfc.nasa.gov/ 

• Using Keyword Search: 

a) Keyword:  soil moisture  



 

 

 

Location [(minLat, minLon), (maxLat, maxLon)]: (15,55), (55,135) over China 

Time Span: 2000-01-01, 2000-01-31 

It returns a list of all products with soil moisture.  The list contains product information, file numbers, parameters, 

spatial & temporal resolution. 

If the list is too long, and you would like to narrow down it, go back to “keyword” search page, and add more 

keyword.  For example, add model name in Keyword as “GLDAS CLM soil moisture” 

b) select the product, say “GLDAS CLM Land Surface Model L4 Monthly 1.0 x 1.0 degree (GLDAS_CLM10_M)”, 

then click on “Add selected files to cart”  

c) select service by clicking available services, say “convert to NetCDF”  

d) click  “Continue to shopping cart” 

e) click “check out”  (you may modify the cart at this time)  

f)  Follows download instruction to download data.  There are multiple download methods. You may select one that 

works best for you.  

• Using Projects Navigation:  

There are two types of projects, one is satellite mission, such as AIRS, OMI, TRMM, the other is research project, 

such as A-Train, NEESPI, GLDAS.  

In this case, navigate in the following path to get the above same data: 

Projects � GLDAS � Common Land Model (CLM) � GLDAS_CLM10_M.001 � 2000 

Then do the steps c) to f) in Keyword.  

• Using Science Area Navigation: 

This is for navigation parameters starting with science areas, for example: 

Science Areas � Water and Energy Cycles � Soil � Average Layer Soil Moisture � GLDAS_CLM10_M.001� 

2000. Then do the steps c) to f) in Keyword. 

Some data are available through OPeNDAP and GDS, which are software framework that allows to access remote 

data.  Data in OPeNDAP can be accessed directly through many tools, such as IDV, Panoply, Ferret, and GrADS, etc.   

GrADS Data Service (GDS) provide subsetting and analysis services across the internet for any GrADS-readable 

dataset.  Sample data sets available through GDS are land surface model data (GLDAS), and atmospheric reanalysis 

data (MERRA). The following are examples to access GLDAS data in GDS service by using GrDAS. 

• Perform global averaging analysis for soil moisture content 

$ grads 

ga-> sdfopen http://agdisc.gsfc.nasa.gov/dods/_expr_{GLDAS_MOS10SUBP_3H}{aave(soilm3.1,lon=-

180,lon=180,lat=-60,lat=90)}{0:360,-60:90,1:1,00z22jan1980:21z22jan1980} 

ga-> d  

Result value = 443.626 mm 

• Sample GrADS script to access GLDAS data via GDS 

Save the foolowing script into a file named: map_gldas.gs 

'reinit', 'sdfopen http://agdisc.gsfc.nasa.gov/dods/GLDAS_NOAH025_M', 'set lon -180 180', 'set lat -60 90', 'set 

gxout grfill', 'set grads off', 'set t 92', 'd avgsurft', 'set rbcols', 'run cbarn', 'draw title GLDAS Noah Monthly 0.25 



 

 

 

degree Average Surface Temperature \ in October, 2007 [k]', 'printim 

GLDAS_NOAH025_M_avgsurft.A200710.001.gif white' 

Run script and generate the following map: 

$grads, ga->map_gldas 

 

Open Geospatial Consortium (OGC) Web Map Service (WMS) is an interface that allows the use of data and enables 

clients to build customized maps with data coming from a different network.  Currently, data in OGC WMS at GES 

DISC are these from AIRS, TRMM, and OMI.  

Many Level 3 and Level 2 satellite and model data are available through Giovanni, which is an online visualization and 

analysis tool. More will be described in the section 3.1. 

3. Online Visualization Services of NASA data 

A number of online visualization services are available for the NASA data. Five popularly used services will be 

described here. 

3.1 Giovanni 

http://disc.sci.gsfc.nasa.gov/giovanni/  

Giovanni (GES-DISC (Goddard Earth Sciences Data and Information Services Center) Interactive Online Visualization 

ANd aNalysis Infrastructure) is a Web-based application developed by GES DISC, which can visualize and analysis data 

online by a few clicks without downloading the data.  The Giovanni database holds more than a thousand of geophysical 

parameters. Visualization types include maps, time series, cross-section, profile, scatter plots, and correlation maps, etc.  

The Giovanni system generates images in formats as png and KMZ for Google Earth. The processed data can be 

downloaded in ASCII, hdf, and NetCDF formats.  To use Giovanni, only internet and a browser are needed, no need to 

install data processing software or downloading data. The current Giovanni system consists of more than thirty instances 

(interfaces) for different collections of data.  Sample Giovanni instances are: 

Land surface model GLDAS in Giovanni: 

http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=GLDAS10_M 

Data collection for MAIRS:  

http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=mairs_monthly  

Note: It is requested that the GES DISC be specifically and clearly acknowledged if Giovanni (or data downloaded from 

Giovanni) is used for data analyses and visualizations in publications, posters, oral presentations, reports, Web pages, and 

other types of scientific media. Please check Giovanni page to find sample acknowledge statements.  

Satellite Land Measurements in Giovanni include: 



 

 

 

• Precipitation:  

TRMM (1997.12 – present), GPCP (NASA Global precipitation climate project, 1979.01 – present) 

• Wind: 

QuikSCAT (1999.06 – present) 

• Land surface temperature: 

MODIS/Terra  (2000.03 – present), MODIS/Aqua (2002.07 – present) 

• Vegetation index: 

MODIS/Terra  (2000.03 – present), MODIS/Aqua (2002.07 – present) 

• Soil moisture: 

AMSR-E/Aqua (2002.07 – present) 

• Active fire: 

MODIS/Terra  (2000.03 – present), MODIS/Aqua (2002.07 – present) 

• Snow/ice  (Northern Hemisphere): 

NOAA/NESDIS (2000.01 – present) 

Assimilation Model Data in Giovanni: 

• GLDAS (Global Land Data Assimilation System), 1979-present, 1x1 degree, monthly, 

Contains land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and 

sensible heat flux) products simulated by four land surface models (CLM, Mosaic, Noah and VIC).  Please 

read GLDAS Readme for details: ftp://agdisc.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS.pdf  

• MERRA (MODERN ERA RETROSPECTIVE-ANALYSIS FOR RESEARCH AND APPLICATIONS), 

1979-present,  2/3x1/2 degree, monthly, Contains land surface diagnostic parameters like transpiration, 

vegetation greenness fraction, leave area index, top soil layer wetness, surface temperature of saturated 

(unsaturated, wilted) zone, etc.  Please read MERRA file specific document for details: 

http://gmao.gsfc.nasa.gov/research/merra/file_specifications.php  

A hands on sample cases for using Giovanni is available at: 

http://disc.sci.gsfc.nasa.gov/mdisc/documentation/demo_cases.doc 

3.2 MODIS Rapid Response System  

http://rapidfire.sci.gsfc.nasa.gov/ 

MODIS Rapid Response System provides high quality real-time and past-time true-color and false-color imagery to 

support monitoring and study fire, dust storm, and other natural hazards.  Images are at resolutions of 1 km, 500 m or 250 

m and in formats of gif, KMZ for GoogleEarth, and Worldfile for GIS.  Links are provided to data used to generate 

MODIS images. 

3.3 NASA Earth Observations (NEO) 

http://neo.sci.gsfc.nasa.gov/Search.html 

This tool is designed for outreach and education purpose.  A user can explore remote sensing products from an easy use 

Web interface by generating images on-the-fly.  The generated image can be mapped onto Google Earth. 

3.4 NASA Earth observatory  



 

 

 

http://earthobservatory.nasa.gov/ 

Earth Observatory is another outreach and education site of NASA.  In addition to pre-generated high quality, a 

story/article is written about the image.  Images and stories about natural hazards (fires, dust storms, floods, and droughts, 

Volcanoes and earthquakes) are documented.  You may sign up to receive daily or weekly electronic news letters to keep 

track of recent natural hazards stories.  Global maps and articles of precipitation, surface temperature anomaly, snow 

cover, vegetation, etc. are also available.  

3.5 NASA Visible Earth 

http://visibleearth.nasa.gov  

This is a huge archive of high quality images and animations from many instruments of NASA, NOAA, DOD, and non-

US agencies.  Images can be searched by key word, satellite, sensor, country, collection, and GCMD topics, etc, and be 

downloaded freely. 

4. Support Research Projects and sample use of data and service  

This section introduce a number projects at GES DISC to support researches on land cover and land use changes and 

climate variations by providing data and services. Sample plots from satellite observation and model data by using 

Giovanni are presented.  

4.1 NASA data to support research projects:  NEESPI and MAIRS 

The NASA NEESPI and MAIRS data centers at GES DISC are funded by the NASA land cover and land use change 

program to support international programs, Northern Eurasia Earth science Partnership Initiative (NEESPI) 

(http://neespi.org/ ) and Monsoon Asia Integrated Regional Study (MAIRS) (http://www.mairs-essp.org/  ), by providing 

satellite remote sensing and model data and information.  The NEESPI and MAIRS program focus on studies of land 

processing and climate variations at Northern Eurasia and Monsoon Asian regions, respectively.   

The NEESPI data support project (http://disc.sci.gsfc.nasa.gov/neespi/ ) was started in 2006 (Leptoukh, et al, 2007). 

Infrastructure of an automated data management system was established to support the data end-to-end, including data 

transfer, data format convert, and data ingest into archive and distribute system.  Tools are provided to read data and 

analysis data. Products collected and processed are land cover types, land surface temperature, soil moisture, vegetation 

index, active fire, and snow/ice.  The spatial resolution is 1x1 degree.  Customized Giovanni interfaces for monthly and 

daily data have been created to allow exploring easily data from multiple instruments of multiple disciplines 

(http://disc.sci.gsfc.nasa.gov/neespi/additional/visualization.shtml ) 

Following successful support of the NEESPI program with NASA satellite remote sensing data, the MAIRS data support 

project (http://disc.sci.gsfc.nasa.gov/mairs/ ) was started in 2009.  It uses and leverages the established data management 

and service infrastructure for NEESPI.   A customized Giovanni system has been created for MAIRS that contains 

satellite observations from multiple sensors and model output from the NASA Global Land Data Assimilation System 

(GLDAS), and from the NASA atmospheric reanalysis project, MERRA. Higher resolution satellite data, such as 5km 

and 1km land surface temperature, and vegetation index, etc. are under processing to support MAIRS regional studies. 

For data that are not archived at the GES DISC, a product metadata portal is under development to serve as a gateway for 

providing product level information and data access links, which include both satellite, model products and ground-based 



 

 

 

measurements information collected from MAIRS scientists. Due to the large overlap of geographic coverage and many 

similar scientific interests of NEESPI and MAIRS, these data and tools will serve both projects. 

4.2 Sample plots by using Giovanni  

4.2.1 Basic visualization features  

• Display maps with customized color, projection: 

           

• Display cross-section image, profile, and time series: 

 

Giovanni can generate time series for a selected area (left, precipitation from GPCP). For 3-dimensional data, a vertical 

profile (center, relative humidity from AIRS) or vertical cross-section map (right, relative humidity from AIRS) can be 

generated.   

• Display image with GoogleEarth:  

                       

• Comparison functions: difference, scatter plot, times series overlay: 

The color palette of images can be adjusted to 

get the best result.  Maps can be viewed in 

Equidistant Cylindrical, North/South polar 

stereographic, and Robinson projection.  The 

sample images are Chlorophyll a 

concentration from SeaWiFS (upper left), 

vegetation index from MODIS-Terra (upper 

right), ozone from OMI (lower left and right).  

Giovanni images can be saved as 

KMZ file which can be displayed 

by GoogleEarth. 



 

 

 

 

Left Panel: The difference of annual averaged surface temperature from two GLDAS models, CLM and MOS of year 

2009; Middle Panel: scatter plot of surface temperature of models CLM and MOD for Jan& Feb 2009; Right Panel: 

time series of global averaged surface temperature of models CLM and MOS from Jan 2008 to Dec 2009. 

• Study relationship between two parameters: correlation map, time series overplay: 

 

In addition to above plotting features, the Giovanni system can create animations; calculate zonal mean, 

histogram, trend of a time series; as well as perform anomaly analysis for some products. 

4.2.2 Monitoring natural hazard events 

• Dust storm over East China, March 1-2 2008: 

 

Left Panel: True Color images from MODIS Terra on Mar 1 03:20Z and Mar 2 02:25Z 2008 (from NASA MODIS Rapid 

Response System); Middle panel:  UV Aerosol index from OMI of above two days; Right panel: time series of daily UV 

Left: Correlation coefficient between 

rainfall rate and layer-1 soil moisture 

from model GLDAS NOAH for 2000-

2009.  

Right: Time series of rainfall rate and 

layer-1 soil moisture for selected two 

regions. 



 

 

 

aerosol index from Feb 22 to Mar 12 over (110
o
E-130

o
E, 30

o
N-44

o
N), indicating a significant aerosol increase on Mar 1-

2. 

• Forest fire in northeast China, October 14-19 2004: 

 

• Typhoon Choi-Wan (彩云) over the Western Pacific, Sep 11-20 2009: 

 

Typhoon Choi-Wan reached Category 5 strength on the Saffir-Simpson hurricane/typhoon scale, formed on Sep 11 2009 

over the Western Pacific near 15
o
N, 152

o
E. It moved to northwest and locked about 410 miles southeast of Tokyo, Japan 

on Sep 19 and moving further into the open North Pacific Ocean.  Upper right image shows the accumulated rainfall of 

Sep 11-19 2009, which indicates the Typhoon track. The maximum accumulated rainfall along the track exceeded 500 

mm.  The upper left image is the vertical cross-section of the cloud reflectivity from CloudSat overlay on MODIS true 

color images on Sep 15 200 displayed with GoogleEarth. 

4.2.3 Studying seasonal and ineterannual variations  

• Variation of active fire in temperate Europe. This is from the work of Shen et al. (2009): 

Left: MODIS fire pixel counts of Oct 2004 (above). 

The forest fire broke out on Oct. 14 2004 afternoon in 

Heihe, Helongliang, China, lasted for about 6 days.  

Right: Averaged UV aerosol index, N2O from OMI, 

and CO at 407 hPa from AIRS for Oct 13-16 2004 

(right). 



 

 

 

 

Satellite observations show that in temperate Europe fires or hot spots occur mainly in croplands (upper left image, 

average of MODIS fire pixel count from 2002.01 to 2007.12). Time series of fire pixel count over the boxed area shows 

seasonal cycle of maximum in summer (Jul-Aug) and a second peak in spring (Mar-Apr) (curve in lower left panel), both 

may be associated with agricultural burning of crop residue for inexpensive and quick stubble removal while adding 

nutrients to the soil and killing weeds and pests at the same time. The value of 2003 summer is very low. It is found that 

the precipitation in spring to early summer is anomalous low which caused anomalous low crops in this region.  

• The urban heat effect shown clearly in the 1km land surface temperature data:  

NASA GES DISC MAIRS project are processing 1-km MODIS land surface temperature (LST) for MAIRS region.  

Above images are day-time LST from MODIS-Terra of summer season (Jun-Aug) for 2001 (left) and 2009 (right) over 

the Yangtze River Delta region, indicating that day-time LST is higher significantly than the rural areas.  The difference 

between 2001 and 2009 indicates the fast urbanization in the Yangtze River Delta region. 

 

4.3 Sample research results by using NASA satellite data 

NASA Earth system science data and service publishes featured research articles annually, named “Sensing Our Planet”, 

to illustrate the use of Earth observing remote sensing data from NASA earth science data centers.   The articles are 

available online at http://nasadaacs.eos.nasa.gov/articles/index.html. Hard copies can be ordered by sending email to 

nasadaacs@eos.nasa.gov 



 

 

 

Sample research results by using GLDAS and other data are available at: 

http://disc.sci.gsfc.nasa.gov/hydrology/additional/science-focus. For example,  

• “Monitoring water storage with GLDAS and GRACE”, based on the work of Rodell, et al. (2006):  Scientists 

use GLDAS to help interpret the valuable and unique but low resolution hydrological data provided by GRACE. 

• “Diurnal cycle of summertime precipitation from NLDAS data products”, based on works of several research 

papers.  The diurnal (day-night) cycle of rainfall in the summer over the United States is examined in this study 

utilizing NLDAS-2 data sets. 

Relevant Links: 

NASA EOS program:  http://eospso.gsfc.nasa.gov/ 

US Landsat program: http://landsat.gsfc.nasa.gov/ 

NASA MAIRS data support project:  http://disc.gsfc.nasa.gov/mairs/  

Web-based visualization tool, Giovanni:    http://daac.gsfc.nasa.gov/giovanni  

NASA Earth System Science Data and Services:  http://nasadaacs.eos.nasa.gov/ 

NASA EOS data order primary entry point, WIST: http://wist.echo.nasa.gov 

NASA EOS data and documents searching system, ECHO: http://www.echo.nasa.gov/  

Earth Science data, service, and information searching engine, GCMD: http://gcmd.gsfc.nasa.gov 

NASA Land Measurement Portal: http://landportal.gsfc.nasa.gov/ 
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Abstract

Snow water equivalent (SWE) is one of the key parameters for many applications in climatology, hydrology, and water resource planning and
management. Satellite-based passive microwave sensors have provided global, long-term observations that are sensitive to SWE. However, the
complexity of the snowpack makes modeling the microwave emission and inversion of a model to retrieve SWE difficult, with the consequence
that retrievals are sometimes incorrect. Here we develop a parameterized dry snow emission model for analyzing passive microwave data,
including those from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) at 10.65 GHz, 18.7 GHz, and 36.5 GHz
for SWE estimation. We first evaluate a multiple-scattering microwave emission model that consists of a single snow layer over a rough surface by
comparing model calculations with data from two field measurements, from the Cold Land Process Experiment (CLPX) in 2003 and from
Switzerland in 1995. This model uses the matrix doubling approach to include incoherent multiple-scattering in the snow, and the model combines
the Dense Media Radiative Transfer Model (DMRT) for snow volume scattering and emission with the Advanced Integral Equation Model
(AIEM) for the randomly rough snow/ground interface to calculate dry snow emission signals. The combined model agrees well with
experimental measurements. With this confirmation, we develop a parameterized emission model, much faster computationally, using a database
that the more physical multiple-scattering model generates. For a wide range of snow and soil properties, this parameterized model's results are
within 0.013 of those from the multiple-scattering model. This simplified model can be applied to the simulation of the microwave emission signal
and to developing algorithms for SWE retrieval.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Radiative transfer; Dry snow; Passive microwave remote sensing; Parameterization

1. Introduction

Characteristics of spatial and temporal distributed snow
properties play important roles in global energy and water
cycles. Snow cover significantly influences the Earth's surface
radiative balance and acts as the frozen storage term in the water

balance. Snow water equivalent (SWE) is important for
hydrological applications and water resource management. In
situ snow cover and SWE data, however, are available only at
point measurements in a few areas that are poorly distributed
globally (Robinson et al., 1993). Satellite passive microwave
imagery has been used as a source of snow cover information
because of all-weather imaging capabilities, rapid scene revisit
time, and the ability to derive quantitative estimates of SWE
(Derksen et al., 2000). Currently, there has been a growing use
of microwave radiometry satellite observation in weather and
climate prediction model (Marshall et al., 2005). It required
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high accuracy and fast simulations of the satellite observation
coupled with forecast modeling. Therefore, the accuracy and
efficiency of forecast model is basically linked to both the
accuracy and computation time of the radiative transfer model.

Passive microwave remote sensing of snow parameters, such
as snow extent, snow water equivalent, and wet/dry state, have
been investigated by many researchers using various micro-
wave sensors (Goodison & Walker, 1994; Foster et al., 1997;
Derksen et al., 2000; Pulliainen & Hallikainen, 2001, Kelly &
Chang, 2003; Roy et al., 2004; Tedesco et al., 2004; Derksen
et al., 2005a,b; Macelloni et al., 2005; Pulliainen, 2006). Over a
broad range of frequencies, 3–90 GHz, microwave brightness
temperature is sensitive to snow crystal characteristics, snow
density, and water equivalent (Wiesmann & Mätzler, 1999;
Pulliainen et al., 1999; Tsang & Kong, 2001; Macelloni et al.,
2001), but it also depends on the physical temperature and
properties of the underlying soil. At the lower frequencies,
emission from dry snow is mainly affected by underlying soil
dielectric and roughness properties; at higher frequencies,
emission is sensitive to snow water equivalent and snow particle
size since the volume scattering by snow particles becomes
important (Mätzler, 1996). Because dry snow emits consider-
ably less microwave radiation than soil, the brightness tem-
perature of snow is inversely related to the snow water
equivalent. When snow starts to melt, emission will signifi-
cantly increase because water droplets absorb and re-emit rather
than scatter microwave radiation (Foster et al., 2005).

In recent years, theoretical modeling of microwave emission
from snow has advanced significantly and has provided a better
understanding of snowpack scattering and emission processes
(Mäzler & Wiesmann, 1999; Wiesmann & Mätzler, 1999;
Pulliainen et al., 1999; Tsang & Kong, 2001). Snow is a dense
medium owing to the high volume fraction of ice grains (10% to
50%), and there are interactions between the emitted microwave
signal with the snow volume and surfaces. Snow volume
scattering include both coherent (dense medium effect) and
incoherent multiple-scattering. Several microwave snow emis-
sion models have been reported including the MEMLSmodel—
a multilayer and multiple-scattering radiative transfer model
(Wiesmann & Mätzler, 1999; Mäzler & Wiesmann, 1999) and
the HUT model (Pulliainen et al., 1999). The dense medium
radiative transfer (DMRT) model have been developed for
modeling microwave signals of snow cover with either Rayleigh
or Mie spherical scattering phase matrices with the quasi-
crystalline approximations (Chuah et al., 1996; Tsang et al.,
2000; Tsang & Kong, 2001). The DMRT takes into account the
coherent wave interactions by the pair distribution function of the
particle positions (Percus–Yevick equation) and is suitable for
snow application (Tsang & Kong, 2001). The DMRT model
predictions are in good agreement with numerical solutions of
Maxwell's equations based on three-dimensional simulations
(NMM3D), with laboratory controlled measurements (Chen
et al., 2003a), and with field measurements for a variety of snow
depths, grain sizes and densities (Tsang et al., 2000; Macelloni
et al., 2001; Jiang et al., 2004; Tedesco et al., 2006).

Furthermore, theoretical modeling of surface emission and
scattering has also significantly improved. The Integral

Equation Model (IEM) has demonstrated applicability to a
much wider range of surface roughness conditions compared
to conventional models. Recently, Chen et al. (2003b) extended
the original IEM and developed the Advanced Integral Equation
Model (AIEM), by removing some weak assumptions in the
original IEM model development. Comparisons of AIEM with
NMM3D-simulated data (Chen et al., 2003b) and field
experimental data over the frequency range from 6 to 37 GHz
(Shi et al., 2005) showed significantly better agreement than the
original IEM model over a wide range of surface dielectric,
roughness, and sensor frequencies. These efforts have estab-
lished a fundamentally improved understanding of the effects of
snow physical parameters and underlying surface dielectric and
roughness properties on the microwave measurements of snow-
covered terrain, making it possible to characterize microwave
emission more accurately.

Vector radiative transfer theory (VRT), which is based on
energy transport of partially polarized electromagnetic waves
inside a medium, has been used for studying snow's effects on
microwave signatures. A snow-layer emission model based on
VRT accounts for incoherent multiple-scattering effects within
the layer and the incoherent interactions between the volume and
the layer surfaces (Fung, 1994). The VRT equations for a snow
layer can be solved numerically using the eigen-analysis tech-
nique (Tsang et al., 2000; Tsang & Kong, 2001) or the matrix
doubling (MD) method (Ulaby et al., 1986; Tjuatja et al., 1993).
In terms of computation, matrix doubling is a more efficient
method for layers that are optically thick, as is usual with snow.

By combining the recent advancements of theoretical
modeling developments in each scattering and emission com-
ponents of snow layer and surface with the technique of the
multi-scattering radiative transfer solution, it is possible to de-
velop a new multiple-scattering snow emission model that im-
plements the most recent achievements in theoretical model
developments to improve our understanding of the effects of the
properties of the snow and of the underlying soil. However, a
multiple-scattering snow emission model is complex, in
general, and makes its direct application for analyses of mic-
rowave radiometer data or inferring snow parameters com-
putationally difficult. Therefore, the field needs a simple and
accurate snow emission model that can correctly represent the
characteristics and relationships of the emission signals, so that
a model can be used to drive algorithm development for SWE
retrieval by passive microwave remote sensing and to provide a
fast dry snow data assimilation model for applications in climate
prediction and land surface process modeling affords. The
major purpose of this study is to present such a model for
terrestrial dry snow cover.

The manuscript is organized as following: In Section 2,
we describe a dry snow multiple-scattering microwave emis-
sion model that implemented the recent achievements in theo-
retical model developments for each component. In Section 3,
we compare this model with results from two field experi-
ments. In Section 4, we demonstrate the development of a
parameterized snow microwave emission model using the
simulated data from our dry snow multiple-scattering micro-
wave emission model. Section 5 presents our conclusions.
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2. A slab multiple-scattering microwave emission model
for dry snow

We have implemented the recent advancements in theoretical
model development for both volume and surface emission
models. The matrix doubling approach is used to include
multiple-scattering and combines the Dense Media Radiative
Transfer Model (DMRT) (Tsang, 1992) for snow volume scat-
tering and emission, the Advanced Integral Equation Model
(AIEM) for soil emission (Chen et al., 2003b), and the inter-
actions of microwave signals between snow and soil with the
surface bistatic scattering model from the AIEM model (Chen
et al., 2003b) to calculate dry snow emission. Our multiple-
scattering model is a combined DMRT-AIEM-MD microwave
emission model for terrestrial dry snow cover with the con-
sideration of one snow layer over a rough soil or rock surfaces.

In VRT formulation, the volume scattering phase matrix
characterizes the coupling of intensities in any direction inside
the layer caused by scattering and is usually derived using the
electromagnetic wave formulation. The volume scattering phase
matrix of an optically thin (infinitesimal) layer is determined by
the properties of a collection of scatterers. A dry snow layer is a
heterogeneous medium composed of ice particles with different
sizes and microstructures. The shape and orientation of the
snow crystal have little effect on the snow microwave emission
(Foster et al., 1999, 2000), so the ice particles can be effectively
modeled as spheres. The high volume fraction of ice grains
causes the volume scattering to include both coherent scattering
(the dense medium effect) and incoherent multiple-scattering.
The multiple incoherent scattering is accounted for in the VRT
formulation. Several volume scattering models for dense media
account for the coherent interactions (Chuah et al., 1996; Tsang
et al., 2000; Tsang & Kong, 2001). This study utilizes Tsang and
Kong's (2001) volume scattering phase matrix for spatially-
correlated spherical scatterers based on the dense medium
radiative transfer (DMRT) model with the quasi-crystalline
approximation.

Emission of electromagnetic waves from dry snow combines
surface and volume scattering. To account for the surface
scattering and surface-volume interactions, the VRT equations
are subject to the boundary conditions at the air–snow and
snow–ground surfaces. In the matrix doubling formulation,
these boundary conditions are enforced by including the surface
scattering phase matrices (Ulaby et al., 1986; Tjuatja et al.,
1993; Fung, 1994). At the air–snow interface, the dielectric
contrast between dry snow and air is commonly small, and for
emission we neglect surface roughness. Therefore, we consider
the air–snow interface as smooth and the snow–ground surface
as rough.

To determine the total emission from a snow layer above
ground, consider the geometry shown in Fig. 1. The total
emission source within a layer can be separated into three
components: the total upwelling emission uu, the total down-
welling emission ud, and the ground emission into the layer ug.
The ground emission ug is determined by the temperature and
emissivity of the soil calculated by AIEM, that depends on the
underground soil moisture and roughness at snow–ground

interface. The upwelling and downwelling emissions, uu and
ud, are functions of the snow-layer temperature profile and its
volume scattering properties. For a snow layer with optical
thickness τ0, uu and ud are:

uu s0ð Þ ¼
Z s0

0
T0 sð Þ I � 1

4
S0 s0 � sð ÞS0 sð Þ

� ��1
I þ S0 s0 � sð Þ� �

1� að Þ K
k2

U�1T sð Þds

ð1Þ
ud s0ð Þ ¼

Z s0

0
T0 s0 � sð Þ I � 1

4
S0 sð ÞS0 s0 � sð Þ

� ��1
I þ S0 sð Þ� �

1� að Þ K
k2

U�1T sð Þds

ð2Þ
where S0(δ) and T0(δ) are the zeroth-order Fourier components
in the backward and forward scattering phase matrices of the
snow layer, they are calculated by the spherical Mie scattering
phase matrices with the quasi-crystalline approximation (QCA)
and the pair distribution function of the particle positions and
coherent wave interactions using Percus–Yevick equation
(Tsang & Kong, 2001). I is the identity matrix, U is the direc-
tional cosine matrix for the polar angles, K is the Boltzmann
constant, T is the temperature profile of the layer, a is the
albedo, and λ is wavelength.

The total emission from the snow layer, uT, is

uT ¼ Luuu þ Ldud þ Lgug ð3Þ

where the L's are multiple-scattering operators that account for
all surface and surface-volume multiple-scattering. The volume
scattering phase matrices S0 and T0 and the multiple-scattering
operators L's are solved using the matrix doubling method with
the snow/ground boundary conditions computed using AIEM
model (Chen et al., 2003a,b) for the surface reflectivity matrix.
In this way, the interactions between the scattering and emission
from snowpack and the ground rough surface can be taken into
account.

3. Comparisons of the model with experimental data

To validate the DMRT-AIEM-MD emission model, we
compared the model simulations with two field experimental
data sets that were obtained from the ground radiometer mea-
surements over dry snow covers. The first one is from the passive
microwave experiments of snowpacks in the Alps (Wiesmann
et al., 1996) measured on Dec. 22, 1995 at Weissfluhjoch (46°49,
83′N, 9°48, 62′E) in Davos, Switzerland. The other field ex-
perimental data set with both the ground radiometer and snow pit

Fig. 1. Geometry of a snow-layer emission problem.
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measurements at Fraser (39.9066°N, 105.8829°W) is from the
Cold Land Processes Experiment (CLPX) during Feb. 2003 in
northern Colorado, U.S.A.

3.1. Comparison with Weissfluhjoch data

In the Weissfluhjoch experiment on 22 Dec 1995, ground
radiometric measurements at 11, 35, and 94 GHz were obtained
with a set of portable linearly polarized Dicke radiometers, about
160 cm above the surface. The measurements were obtained
with incidence angles from 20° to 70° at 5° intervals. Snow
properties — collected nearly simultaneously with the radio-
metric measurements — included snow depth, grain shapes,
temperature, permittivity, density and weather conditions. A
snow profile was measured with temperature, grain shape, per-
mittivity, and density in 10 cm steps. Permittivity was measured
with open coaxial resonators (Mätzler, 1996), and grain shapes
were classified according to the international classification for
seasonal snow (Colbeck, 1986).The ground is covered with
stones and rocks composed of serpentine. The experiment was
carried out during a sunny day, with low sky microwave
brightness temperatures — 5.7 K, 11.7 K, and 29.0 K at 11, 35
and 94 GHz. The total emissivity (e) of the snowpack observed
by the radiometer is

e ¼ Tb � Tsky
Ts � Tsky

ð4Þ

where Tb, Ts are the observed radiation and snow physical
temperature and Tsky is the brightness temperature of the down-
welling atmospheric radiation.

Table 1 shows the snow profile data (Wiesmann et al., 1996).
In a winter snowpack of 60 cm depth, the top layer consists of
20 cm of new snow above a thin crust. Below the crust, the
bottom layer consisted of coarse grains. Snow temperature was

271.2 K. The vertical profiles of snow grain shape and density
were also available as shown in Table 1. Due to the fact that the
DMRT-AIEM-MD model is a one-layer snow model, snow
input parameters for the model were a density of 220 kg m−3

and a grain radius of 0.4 mm that were determined by fitting the
high frequency measurements at 94 GHz because the measure-
ments at 94 GHz cannot “see” the soil surface 60 cm below.
There were no observations of the ground surface roughness
and soil moisture during the field experiment. The ground
surface dielectric and roughness parameters are treated as fitting
parameters with the minimum mean square difference between
the modeled and the measured brightness temperatures at
11 GHz, where the subsurface emission signals are the domi-
nant emission source. Results are 1 cm of surface rms height and
20 cm of surface correlation length. The ground surface soil
dielectric constant was computed using 10% volumetric soil
moisture (Dobson et al., 1985).

Fig. 2 shows the observations and the model calculations for
vertical and horizontal polarization. At all three frequencies, the
DMRT-AIEM-MD model predictions are able to match the
measured snow emissivity data reasonably well in terms of
magnitudes in both polarizations and in difference between
polarizations. Snow emissivity decreases at both v and h polari-
zations as frequency increases. Similarly, the polarization
difference between v and h polarizations also decreases, es-
pecially at incidence angle less than 55°. Table 2 summarizes
the root mean square error (RMSE) between the model pre-
dictions and the measured snow emission data at each fre-
quency. It shows very good agreement in v polarization at all
three frequencies with maximum RMSE less than 0.015. How-
ever, the results for h polarization are not as good, as with
maximum RMSE 0.039. The overall RMSE for all three
frequencies is 0.013 for v and 0.033 for h polarization. The
reason for the discrepancy between the model and measure-
ments is mainly due to underground signal fitting is poor in
h polarization with RMSE 0.038 at X-band, which can result in
a poor calculation at Ka-band as shown in Table 2. The other
reason might be because the DMRT-AIEM-MD emission model
is a slab emission model with the average snow properties from
the vertical snow profile, which were taken with a slight ad-
justment from the high frequency measurements as our model
inputs for all frequencies. At lower frequencies, more emis-
sion would come from the lower part of the snowpack. The

Table 1
Snow profile data on December 22, 1995 at Weissfluhjoch

Height (m) Grain Shape Temperature of snow (°C) Snow density (kg/m3)

0.40–0.60 ++ −2.2 109.0
0.25–0.40 / \ – 177.0
0.00–0.25 □ □ −0.7 259.0

Fig. 2. Emissivity versus incidence angle at 11 GHz, 35 GHz, and 94 GHz. Solid lines show model calculations for vertical polarization, dotted lines for horizontal.
Letters represent the corresponding field measurements.
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underground emission signal might play an important role. At
high frequency, however, the underground emission signal
might not be significant. The emission signal might mainly
come from the upper part of the snowpack due to its limited
penetration capability. The simulated emissivity at 94 GHz is
very sensitive to snow density, so only a slight change in snow
density would result in a significant change in the simulated
emissivity. It indicates that the microwave measurements at
different frequencies may look at the different snow properties
at the different depth depending on its penetration capability.
The average snow parameters from the vertical profile mea-
surements may not be the optimal snow parameters for mic-
rowave modeling. In addition, the ice lens or a thin crust layer
inside the snowpack can considerably affect the spectral be-
havior of emissivity at the horizontal polarization but not at the
vertical polarization (Wiesmann et al., 1998).

3.2. Model comparisons with CLPX'03 data

The Cold Land Process Experiment in 2003 included mea-
surements with the ground-based passive microwave ra-
diometer (GBMR) from the University of Tokyo at three
frequencies — 18.7 GHz, 36.5 GHz, and 89 GHz — at both
vertical and horizontal polarizations (Graf et al., 2003). The
measurement site had an area about 100 m×100 m at Fraser
(39.9066°N, 105.8829°W) in the Rocky Mountains of Color-
ado. The study area has flat topography and is surrounded by a
uniform pine forest and a discontinuous pine forest. Data used
in this study were the measurements from dry snow conditions
during February 2003. There were two experiment setups, one
with a constant incidence angle at 55° and measurements
averaged over all azimuths, the other with incidence angles
from 30° to 70° but with a fixed azimuth. Each experimental
setup was performed at every other day.

During the experiment, there were two light snowfalls on
February 20 and 24, and a larger snowfall on 22 February,
which added about 20 cm of new fresh snow. Snow pit data
were collected around noon from two different snow pit

locations within 10 m of the area observed by the radiometer.
Faceted crystals were the most plentiful type of ice crystal for
this site except on the last day (25 February), when rounded
particles and wet agglomerates appeared. This may cause some
discrepancy between the real and modeled shapes of ice
particles.

The model input parameters were the mean snow depth and
density obtained from the ground measurements (Hardy et al.,
2003). Snow grain size measurements include the information on
minimum, average, and maximum determined by the product of
two-dimension optical grain length with a range from about
0.2 mm to 7 mm for each grain size group: small, moderate, and
large gain groups. Therefore, the input ice particle size for the
model was a fitting parameter selected within the grain size
measurement range, which actually was smaller than the ob-
served mean particle size from all measurements. The volumetric
soil moisture of 24%measured at 1.5 cm near the site was used to
calculate soil dielectric constant (Dobson et al., 1985). It varied
little during the entire experiment. The soil roughness properties
were the fitting parameters. Since there were no sky brightness
temperature observation during this experiment, we calculated
Tsky for clear-sky conditions (Ulaby et al., 1986; Westwater et al.,
1990) at 18.7 GHz, 36.5 GHz and 89 GHz at 18 K, 30 K, and
80 K, respectively. All model input parameters used for
simulation are shown in Table 3.

Fig. 3 shows the comparisons between the DMRT-AIEM-
MD model emissivities and the measurements. The top plot
shows variability with observations angles, and the bottom plot
shows a time-series. They show that the predictions of the
DMRT-AIEM-MD model compare well with the measurements
at the different incidence angles and at all three frequencies. As
Table 4, shows the RMSEs are 0.024, 0.019 and 0.017 for v
polarization and 0.023, 0.022 and 0.009 for h polarization at
18.7 GHz, 36.5 GHz, and 89 GHz. Some discrepancies between
the measurements and the model calculations exist and can be
also explained by the possible reasons as described in analyses
of Weissfluhjoch data and model comparison in Section 3.1. For
CLPX experimental data, our model performance is better at
36.5 GHz and 89 GHz than at 18.7 GHz. Observed emissivity at
18.7 GHz for both v and h polarizations increases from 65° to
70° incidence, but at 36.5 GHz and 89 GHz emissivity does not
increase. One possible reason might be that the radiometer
observed different footprints at difference incidence angles,
because the instrument was installed at a fixed height above
ground. There may have been different soil properties at the
different incidence angles, but these would not affect the signal
at the higher frequencies.

Table 2
RMSE of the comparison of the DMRT-AIEM-MD model with the experiment
data on December 22, 1995 at Weissfluhjoch

Frequency

Polarization 11 GHz 35 GHz 94 GHz Overall

v-pol 0.015 0.009 0.015 0.013
h-pol 0.038 0.039 0.015 0.033

Table 3
Averaged snow parameters at Fraser

Date Feb. 19 Feb. 20 Feb. 21 Feb. 22 Feb. 23 Feb. 24 Feb. 25

Depth (m) 0.80 0.83 0.78 1.02 0.99 1.08 0.99
Density (kg/m3) 227 228 204 202 206 212 214
Radius (mm) 0.38 0.39 0.36 0.35 0.34 0.33 0.33
Tsnow (°C) −2.0 −2.0 −1.0 −0.0 −3.0 −3.0 −2.0
Tground (°C) −0.0 −0.0 −0.0 −0.0 −0.0 −1.0 −0.0

361L. Jiang et al. / Remote Sensing of Environment 111 (2007) 357–366



Author's personal copy

In the time-series observations, RMSEs are 0.011, 0.023 and
0.024 for v polarization and 0.013, 0.031 and 0.04 for h
polarization at 18.7 GHz, 36.5 GHz, and 89 GHz, respectively
(Table 4). The significant jump in the 89 GHz observations on
25 Feb is probably caused by melting snow in the surface layer.

Recognizing there are also uncertainties in the field data, we
believe that the model and observations agree reasonably well.

4. Development of a parameterized model

At low frequencies, the commonly used ω–τ model is
derived from the analytical solution of the 0th-order radiative
transfer equations. Without considering snow and ground tem-
perature, total emissivity Ep

t is

Et
p ¼ Ev

p þ Ev
p � Lp � Re

p þ Lp � Es
p

� �
�Wp ð5Þ

The superscripts t, v, and s represent the emissivity com-
ponents for total, volume, and surface. The subscript p represents
the polarization status v or h. ψ is the power transmittivity at
the air–snow interface. Lp=exp(−τ / cos(θr)) is the attenuation
factor. θr is the refractive angle in the snow layer and τ is snow
optical thickness. Rp

e = l−Ep
s is the ground surface effective

reflectivity. Eq. (5) is commonly considered as a three-com-
ponent model. The first term is the direct snow emission com-
ponent Ep

v = (1−ω) · (1−Lp) where ω is the snow volume
scattering albedo. The second term in Eq. (5) is the snow–
ground interaction term and represents that the downward snow
emission signal is reflected back through the snow layer again.
The last term in Eq. (5) represents the underground emission
signal after passing through snowpack.

The 0th-order and 1st-order radiative transfer models cannot
predict emission very well when the snow volume scattering
albedo and optical thickness are large (Ulaby et al., 1986; Fung,

1994). They commonly underestimate snow emission signals.
On the other hand, the multiple-scattering snow emission model
is very complex, without an analytic solution, and computa-
tionally intensive. It is unrealistic to apply the multiple-scat-
tering model directly in analyses of satellite measurements and
for SWE algorithm development. Therefore, it is necessary to
develop a simple but accurate dry snow emission model that can
be used for both fast forward simulation and development of
SWE inversion models. To avoid the weakness of some em-
pirical approaches, we use a database generated by the multiple-
scattering model that covers most possible snow and soil
surface conditions. For specifications of a simple model, we
have adopted the following constraints:

• The model must be accurate at each frequency and polar-
ization that is used in the remote sensing application.

• The model must use the snow's physical characteristics, as
indicated by the simple radiative transfer model.

Although the low scattering-order models such as 0th-order
or 1st-order radiative transfer models that do not take multiple-
scattering into account, they provide basic descriptions of the
characteristics of microwave emission signal in responding to
snow and soil properties. They are valid when snow scattering

Table 4
RMSE of the comparisons of the DMRT-AIEM-MD model with the experiment
data at Fraser

Frequency

Polarization 18 GHz 36 GHz 89 GHz Overall

v-pol (time-series) 0.011 0.023 0.024 0.0205
h-pol (time-series) 0.013 0.031 0.040 0.030
v-pol (angular) 0.024 0.019 0.017 0.020
h-pol (angular) 0.023 0.022 0.009 0.019

Fig. 3. Comparison of the model with observation at different angles (bottom) on 22 Feb 2003 (top) and with time-series observation at 55° incidence angle from
19–25 Feb 2003 (bottom). Solid and dotted lines show model calculations for v and h polarization. Letters show the measurements.
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albedo and optical thickness are not too large. For large snow
albedo and optical thickness, the low scattering-order models
underestimate the emission signals, as Fig. 4 shows. The simu-
lated emissivities by the different scattering-order models clear-
ly show the same trend, i.e., the emission signal decreases as the
scattering albedo increases. Although the 0th-order radiative
transfer model underestimates the brightness temperature, it is
possible to select this model as the basic form and add cor-
rections to include multiple-scattering for our parameterized dry
snow emission model.

To start, we simulated dry snow emission for both v and h
polarizations at an incident angle of 55° using our DMRT-
AIEM-MD model, using AMSR-E frequencies 10.65 GHz,
18.7 GHz, and 36.5 GHz. The simulations cover a wide range of
snow and soil dielectric and roughness values as summarized in
Table 5. The commonly used Gaussian correlation function for
the soil surface was used in the simulation since it is a better
approximation for high frequency microwave measurements
than the exponential correlation function. With the different
combinations of each snow and ground parameter, there are
153,600 DMRT-AIEM-MD model simulated emissivities at
each frequency and polarization.

The 0th-order radiative transfer model (4) can be rearranged
to a two-component model as

Et
p ¼ Ev

p � 1þ Lp
� 	þ Lp � 1� Ev

p

� �
� Es

p

� �
�Wp

¼ Intercept þ slope � Es
p

� �
�Wp ð6Þ

The total emission and soil emission signals can be described
as a linear function with the slope and intercept that depend only

on snowpack emission and attenuation properties or that are
affected only by snow properties. Based on this description, we
first divided the DMRT-AIEM-MD model simulated emissivity
by the power transmissivity Ψp, then carried out the linear
regression analyses between a set of all simulated ground sur-
face emission signals and the corresponding total emission
signals for a given snow grain size and density. In this way, the
linear regression coefficients represent the snowpack emission
and attenuation properties with the multiple-scattering effects
for that snow grain size and density. By looping through dif-
ferent combinations of snow grain size and density in the ranges
as listed in Table 5, all slopes and intercepts can be determined
for all snow grain sizes and densities. Unfortunately, this tech-
nique can be only applied to the conditions when the soil
emission signals can penetrate the snowpack. Therefore, we
limit our analyses to the data with snow optical thickness τ≤2
at each frequency in our simulated database.

Through our analyses and comparison with the components
of the 0th-order radiative transfer model, we develop our
parameterized dry snow emission model that includes multiple-
scattering:

Et
mpc Ev

p � Cf vp þ Lp � 1� Ev
p

� �
� Cf svsp Es

p

� �
�Wp ð7Þ

Emp
t is the total emissivity simulated by our multiple-scat-

tering model. The first term Ep
v·Cfp

v is the intercept determined
in the linear regression analyses. Ep

v is direct snow volume
emissivity in the 0th-order form as given in Eq. (5).Cfp

v is the
multiple-scattering correction factor that corrects for the
difference in the direct volume emission signal between the
0th-order and the multiple-scattering models:

Cf vp ¼ aþ b � xþ s0 � cþ d � xþ e � x2
� 	 ð8Þ

where τ′=τ / cos(θr) is the optical path length and where the
coefficients a, b, c, d and e are determined by the linear
regression analysis and are given in Table 6.

The second term in Eq. (7), excluding the underground
emissivity Ep

s, Lp (l−Ep
v) Cfp

svs represents the slopes determinedTable 5
Snow and ground parameters for the database simulation

Input parameters Minimum Maximum Step Units

Snow density 150 450 100 Kg m−3

Grain radius 0.2 1.6 0.2 Mm
Snow depth 0.1 2.0 0.1 m
Ground rms height 0.5 3.0 0.5 cm
Ground surface rms slope 0.05 0.25 0.05 –
Soil moisture 5 40 5 %

Table 6
Coefficients in Eq. (8) for calculating Cfp

v

Frequency
(GHz)

a b c d e

10.7 2.098563 −0.8514113 0.07340312 0.4980226 −1.874751
18.7 2.112606 −0.8829258 0.108098 0.5742384 −1.279307
36.5 2.120885 −0.7705214 0.07772004 0.3342744 −1.280769

Fig. 4. Emission comparison for different scattering-order solutions at 55°
incidence angle at vertical polarization (MD— matrix doubling method, 1st—
first-order solutions, 0th — the zeroth-order solutions).

Table 7
Coefficients in Eq. (9) for calculating Cfp

svs

Frequency (GHz) A B C D

10.7 −0.0268096 0.43702293 0.89230177 −0.75151270
18.7 −0.0737394 0.52525146 0.71524232 −0.61666468
36.5 −0.1397970 0.6268216 0.5559191 −0.4737233
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by the linear regression analyses. The multiple-scattering
correction factor Cfp

svs can be expressed as

Cf svsp ¼ exp s0 � Aþ B � xð Þ þ s02 � C � xþ D � x2
� 	
 � ð9Þ

Similarly, the coefficients A, B, C, and D are constants
determined by regression analysis, given in Table 7.

Fig. 5 (top row) shows the comparisons between the inter-
cepts that were determined by the linear regression analyses and
the model for the first term in Eq. (7): Ep

v ·Cfp
v. The differences

between these two are extremely small with RMSEs of 0.0017,
0.0033, and 0.007 for 10.65, 18.7, and 36.5 GHz, respectively.
Fig. 5 (bottom row) shows the comparisons between the slopes
that were determined by the linear regression analyses and the
model in the second term of Eq. (7): Lp (l−Ep

v) Cfp
v. Similarly,

the errors are also very small with RMSEs of 0.0015, 0.0039
and 0.0081 for 10.65, 18.7, and 36.5 GHz, respectively.

Fig. 6 (top row) shows the comparisons between the DMRT-
AIEM-MD model simulated emissivities and the simple para-

meterized model for v polarization at 10.65, 18.7, and 36.5 GHz.
The bottom row in Fig. 6 shows these for h polarization. The
differences between these two models are extremely small with
RMSEs of 0.0041, 0.0071, and 0.010 for v polarization at the
frequencies of 10.65, 18.7, and 36.5 GHz, respectively. These for
h polarization are 0.0052, 0.0087, and 0.013 at 10.65, 18.7, and
36.5 GHz. This simple parameterized model approaches the
complex multiple-scattering model fairly well. The RMSEs at
10.7 GHz are the smallest among these three frequencies because
multiple-scattering at lower frequency is smaller than that at
higher frequencies. From these comparisons, the errors resulted
in Eqs. (7–9) are not significant. The simple parameterized
model provides both a fast way to simulate dry snow emission
signals and a future possibility for improving algorithms for
remote sensing of snow water equivalent. The newly developed
dry snow emission model Eq. (7) is very simple and suitable for
the microwave remote sensing applications with the negligible
error in comparison to the complex multiple-scattering model
simulations.

Fig. 5. Comparison of the interceptions (top row) and slopes (bottom row) determined by the DMRT-AIEM-MD model simulated data and these modeled by (7) for
frequencies of 10.7, 18.7, and 36.5 GHz from left to right.

Fig. 6. Comparison of the total emissivities calculated by the DMRT-AIEM-MD model simulated data and these modeled by (7) for v polarization (top row) and
h polarization (bottom row) at the frequencies of 10.7, 18.7, and 36.5 GHz from left to right.
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5. Conclusions

The recent improvements in both volume and surface scat-
tering models have made it possible to simulate dry snow
emission signals for a very wide range of snow and soil con-
ditions. We have integrated these recent developments into the
DMRT-AIEM-MD emission model to simulate dry snow mic-
rowave emission with multiple-scattering. Comparisons with
field data at Weissfluhjoch and CLPX'03 show good agreement
for all frequencies and both polarizations.

With confirmed confidence in our multiple-scattering snow
emission model, we develop a parameterized multi-frequency-
polarization dry snow emission model for fast simulation and
analyses of the passive microwave satellite measurements from
AMSR-E. This model has a simple form similar to the 0th-order
radiative model but adjusted with multiple-scattering correction
factors. The differences between the simple parameterized
model and the multiple-scattering model DMRT-AIEM-MD are
extremely small, with the RMSEs in 10−3 range for all three
study frequencies at 10.65, 18.7, and 36.5 GHz and both v and
h polarizations, except the RMSE is 0.013 at 36.5 GHz and
h polarization. This simple model provides a simple, accurate
connection between dry snow emission at different frequencies
and polarizations. It can be applied to the conditions with the
snow optical thickness τ≤2 at each of the three studied fre-
quencies and with the dielectric homogeneous half space un-
derground. The simple dry snow emission model developed in
this study should be useful in understanding and analyzing the
current and past passive microwave satellite measurements of
the fully snow-covered pixels. In global SWE monitoring,
however, the sub-grid heterogeneity is expected to have the
significant impact and has to be taken into account. This issue
needs to be further studied.
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PART II: LAND SURFACE MODELING 

 

 

 

This part depicts the development of land surface modeling, proposes some novel 

skills to characterize the atmosphere-land surface coupling processes, and show 

application cases in typical regions.  Moreover, there is a special focus on the 

parameter estimation and the uncertainty quantification and analysis for the complex 

earth system. 
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[1] Evidence is presented that exchanges of water and energy between the vegetation and
the atmosphere play an important role in east Asian and West African monsoon
development and are among the most important mechanisms governing the development
of the monsoon. The results were obtained by conducting simulations for five months of
1987 using a general circulation model (GCM) coupled with two different land surface
parameterizations, with and without explicit vegetation representations, referred to as the
GCM/vegetation and the GCM/soil, respectively. The two land surface models produced
similar results at the planetary scale but substantial differences at regional scales,
especially in the monsoon regions and some of the large continental areas. In the
simulation with GCM/soil, the east Asian summer monsoon moisture transport and
precipitation were too strong in the premonsoon season, and an important east Asian
monsoon feature, the abrupt monsoon northward jump, was unclear. In the GCM/
vegetation simulation, the abrupt northward jump and other monsoon evolution processes
were simulated, such as the large-scale turning of the low-level airflow during the early
monsoon stage in both regions. With improved initial soil moisture and vegetation
maps, the intensity and spatial distribution of the summer precipitation were also
improved. The two land surface representations produced different longitudinal and
latitudinal sensible heat gradients at the surface that, in turn, influenced the low-level
temperature and pressure gradients, wind flow (through geostrophic balance), and
moisture transport. It is suggested that the great east-west thermal gradient may contribute
to the abrupt northward jump and the latitudinal heating gradient may contribute to the
clockwise and counterclockwise turning of the low-level wind. The results showed that
under unstable atmospheric conditions, not only low-frequency mean forcings from the
land surface, such as monthly mean albedo, but also the perturbation processes of
vegetation were important to the monsoon evolution, affecting its intensity, the spatial
distribution of precipitation, and associated circulation at the continental scale. INDEX
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1. Introduction

[2] Monsoons are macroscale phenomena. Differential
heating of the land and the ocean, latent heat release into
the atmosphere, and planetary rotation are considered to be
the factors that determine the strength, duration and spatial
distribution of large-scale monsoons [Webster et al., 1998].
Land surface characteristics of the continents have also
been suggested to be an important factor in the modulation
of the monsoon circulation and surface hydrology
[Webster, 1987]. Despite the importance of the monsoon
systems in providing water for agriculture in some of the
Earth’s most populous regions monsoons have not been
adequately modeled (see Webster et al. [1998] for a
comprehensive review) and the role of land surface
processes in the systems are still not well understood.
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[3] In the case of the Indian monsoon, for example, the
role of Eurasian snow cover is not agreed. Although many
observational studies [e.g., Hahn and Shukla, 1976; Dey
and Bhanu Kumar, 1982; Liu and Yanai, 2002] generally
show a negative correlation between Eurasian snow cover
and subsequent summer Indian monsoon, modeling studies
with general circulation models of the atmosphere (GCM)
and regional models [e.g., Barnett et al., 1989; Yasunari et
al., 1991; Vernekar et al., 1995; Douville and Royer, 1996]
indicate that the effects of anomalous snow cover over
Eurasia on the Indian monsoon are highly variable (see
Douville and Royer [1996] for a review). A recent study
using observational data has challenged this relationship
[Robock et al., 2003].
[4] In addition to snow, a number of studies have

explored the roles of other land surface processes and the
mechanisms that govern land surface/monsoon interactions
in monsoon systems. In an investigation of the relative roles
of land surface evaporation and sea surface temperature
(SST) on the Asian monsoon [Lau and Bua, 1998], it was
found that land/atmosphere interactions did not seem to
alter basic, planetary-scale features, but local effects over
east Asia/Indochina were quite pronounced. In a sensitivity
study, Meehl [1994] found that stronger Asian summer
monsoon were associated with lower surface albedo, greater
soil moisture, less snow cover, and greater sea/land contrast.
Douville et al. [2001] indicated that although African
summer rainfall increased with increased soil moisture,
there was no response in the Indian subcontinent, which
they attributed to the more dynamic and chaotic nature of
the Asian monsoon. A GCM simulation of the desertifica-
tion in Mongolian and Inner Mongolian grassland [Xue,
1996] produced negative monsoon rainfall anomalies in
northern and southern China and positive rainfall anomalies
along the Changjiang (Yangtze) river region, which were
generally consistent with observed anomalies. The large
reduction in evaporation due to land degradation resulted in
less convection and lowered atmospheric heating rates,
which was associated with relative subsidence and, in turn,
weakened the northward movement of the monsoon flow
and lowered the rainfall and evaporation, leading to a
positive feedback system.
[5] In this study, we used the National Center for Envi-

ronmental Prediction’s (NCEP) GCM which belongs in the
higher hierarchy of numerical models used for climate
studies [Kalnay et al., 1990; Kanamitsu et al., 1991]. The
Simplified Simple Biosphere model (SSiB) [Xue et al., 1991]
was coupled with the NCEP GCM for this study. The
simulations with the NCEP GCM/SSiB were compared with
those from the NCEP GCM coupled with a land scheme
where the biophysical processes were not explicitly param-
eterized. Using these comparisons, we explored the influence
of the soil and vegetation biophysical processes on intra-
seasonal monsoon development. This study focuses mainly
on the impact of land surface processes on monsoon precip-
itation. This paper discusses the monsoons in east Asia and
West Africa; in another paper we will focus on the Americas.

2. Model Descriptions

[6] The NCEP GCM (Kalnay et al. [1990], Kanamitsu et
al. [1991], http://sgi62.wwb.noaa.gov:8080/research/

mrf.html) was used with 28 levels and with T62 horizontal
resolution (slightly less than 2 degrees in equatorial and
midlatitude areas) for a range of model runs. The effects of
using the GCM coupled with a simple two-layer soil model
(NCEP GCM/SOIL), as used in the original NCEP GCM,
were compared with the GCM coupled with SSiB [Xue
et al., 1991] (NCEP GCM/SSiB), a comprehensive soil-
vegetation-atmosphere model. The two land parameteriza-
tion schemes represent land surface processes with two
different approaches.
[7] In NCEP GCM/SOIL the ground hydrology was

simulated by the soil model, and the distributions of
monthly mean vegetation albedo and surface roughness
length were separately prescribed on the basis of an existing
data set [Dorman and Sellers, 1989], which has similar
monthly mean values to those used in SSiB, but no explicit
biophysical processes are included. Soil temperature and
soil volumetric water content were computed in two layers
at depths 0.1 and 1.0 m in a fully implicit time integration
scheme [Pan and Mahrt, 1987]. The lowest atmospheric
model layer was the surface layer and the Monin-Obukhov
similarity profile relationship was applied to obtain the
surface stress and sensible and latent heat fluxes [Miyakoda
and Sirutis, 1986]. A bulk aerodynamic formula was used to
calculate the fluxes once the turbulent exchange coefficients
had been obtained. In this approach the land surface
properties that regulate land/atmosphere interactions were
regarded as separable parameters, which could be indepen-
dently prescribed as boundary conditions in the GCM for
each month.
[8] In NCEP GCM/SSiB the radiative transfer in the

canopy was simulated, which produces diurnal variation in
surface albedo. There were three soil layers and one
vegetation layer. Deardorff ’s [1977] force-restore method
was used to predict the surface and the deep soil temper-
atures. SSiB includes processes such as water interception
loss, direct evaporation from bare soil, and canopy tran-
spiration (controlled by photosynthesis), to describe the
surface water balance. The aerodynamic resistance controls
interactions of heat fluxes between the vegetated surface
and the atmosphere. Similarity theory was used to calcu-
late the aerodynamic resistance from the canopy to the
reference height. On the basis of the Paulson [1970] and
Businger et al. [1971] equations, a relationship between
the Richardson number, vegetation properties, and aerody-
namic resistance at the vegetated surface was developed.
Many GCMs use Louis’ [1979] parameterization to calcu-
late the aerodynamic resistance, where the total aerody-
namic resistance including both neutral and non-neutral
parts is a function of the Richardson number. This implies
that only one value of surface roughness length is used for
the parameterization. Although this parameterization is
simple and easy to use, it does not satisfy the vegetated
surface, where the range of values of surface roughness
length could be as large as 1 order of magnitude. In SSiB,
the resistance of the neutral part is dependent on vegeta-
tion and soil properties. In the non-neutral part, a param-
eterization is related to atmospheric stability conditions
and some adjustments based on the vegetation conditions
are introduced [Xue et al., 1991, 1996a].
[9] In the NCEP GCM/SSiB model, land surface proper-

ties were specified according to vegetation-cover type. A
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parameter set for each of the vegetation types was used on
the basis of a variety of sources [Dorman and Sellers, 1989;
Willmott and Klink, 1986; Xue et al., 1996a, 1996b], many of
which are invariant with season. Seasonally varying monthly
values of some vegetation properties, such as leaf area index
(LAI), green leaf fraction, and surface roughness length,
were prescribed for most vegetation types or calculated in
the model for the crop type [Xue et al., 1996b]. SSiB
provided fluxes of momentum, sensible heat and latent heat,
radiative skin temperature, visible and near-infrared albedo
for both direct and diffuse radiative to the GCM.

3. Experimental Design and Initial
and Boundary Conditions

[10] The GCM simulations consisted of five month-long
integrations through the boreal monsoon season. Initial
conditions were obtained from NCEP/NCAR Global
Reanalysis for three dates, 1, 3, and 4 May 1987. The date
2 May was skipped because of errors in the reanalysis data
for that day. 1987 was an ENSO year and was 1 of 2 years
for which a comprehensive soil moisture data set was
available. The results of the three model runs with different
initial conditions (1, 3, and 4 May) were averaged. The
NCEP GCM/SOIL and the NCEP GCM/SSiB runs are
referred to as cases C and S1, respectively (Table 1).
[11] The means of surface albedo for case C and case S1

were very similar during June-July-August (JJA) with the
exception of some, mostly dry, areas where SSiB simulated
slightly higher values (Figure 1). The 1987 NCEP/NCAR
Global Reanalysis [Kalnay et al., 1996; Kistler et al., 1999]
(referred to as Reanalysis) was used in both case C and case
S1 as the source of initial conditions (atmosphere, soil
moisture, and soil temperatures), ocean surface boundary
conditions (SST and sea ice), and initial snow depth for all
GCM runs, as originally used by NCEP for prediction/
forecasting. Comparisons between these two cases indicate
the effects of explicit description of biophysical processes in
the GCM.
[12] Soil moisture was simulated in both GCM/SSiB and

GCM/SOIL during model simulations without nudging.
Specified SST and sea ice were updated using the observa-
tional data during the simulation. Observational data for
verification were from the Climate Prediction Center
Merged Analysis of Precipitation (CMAP) [Xie and Arkin,
1997] in which observations from rain gauges were merged
with precipitation estimates from satellite system.
[13] The impact of initial soil moisture on the model

simulations was studied using soil moisture data from the
GEWEX soil wetness project (GSWP) [Dirmeyer et al.,
1999]. GSWP is a pilot study intended to produce a soil
wetness global data set by using 1987 and 1988 meteorolog-

ical observations and analyses to drive land surface models.
SSiB participated in this project and the results produced by
SSiBwere used for this study. The average of three runs using
initial soil moisture from GSWP in the NCEP GCM/SSiB is
referred to as case S2 and comparisons between cases S1 and
S2 indicate the effects of the different initial soil moisture.
[14] For numerical simulations with the NCEP GCM/

SSiB, a global vegetation classification map was used in
the coupled surface-atmosphere model to provide land
surface conditions required by the SSiB. A 1 km2 resolution
global land cover map, based on remote sensing [Hansen et
al., 2000] (referred to as NEW SSiBMAP) was used in cases
S1 and S2. The vegetation map was aggregated to the GCM
grid system by grouping the cover types into the 12 SSiB
vegetation types [Xue et al., 2001] and selecting the most
common type in each T62 cell (Figure 2a). The land cover
classes originally used in SSiB were based on the physiog-
nomic classification of Kuchler [1983] and the land use
database ofMatthews [1984, 1985] (referred to as OLD SSiB
MAP, Figure 2b). OLD SSiB MAP was used in case S3.
[15] The most significant differences between NEW SSiB

MAP and OLD SSiB MAP were in semi-arid and arid areas
(Figure 2). For example, OLD SSiB MAP classified central
Asia, including the Tibetan plateau, as desert, which is not
appropriate [Shi and Smith, 1992], while in NEW SSiB
MAP it was classified as grasslands or shrubs with bare soil.
OLD SSiB MAP classified the Sahara desert as bare soil
and shrubs with bare soil; NEW SSiB MAP classified it as
bare soil only. In addition to central Asia and the Sahara
desert, in NEW SSiB MAP, Europe had more cropped area
and India’s vegetation cover was changed from crops and
forests to wooded grassland and small areas of grassland
and shrubs. The comparison between cases S1 and S3
allowed comparison of the effects of the land cover maps.

4. Simulation Results

4.1. General Features

[16] The JJA period is the monsoon season for many
areas in the Northern Hemisphere. Case C simulated
the spatial distribution of JJA precipitation reasonably
(Figure 3) with the maximum values in the Inter-Tropical
Convergence Zone (ITCZ) and a second peak in the
midlatitudes of both hemispheres. The monsoon regions
in India, east Asia, Africa, and the Americas were evident.
The main deficiencies in the simulation were the rather
weak precipitation in the West Pacific (the Mei-Yu or
‘‘Plum’’ rainband of east Asia and southern Japan), too
strong precipitation in the east Pacific, and excessively large
area of light-precipitation at higher latitudes (Figure 3c).
[17] Case S1 produced very similar spatial distributions

of precipitation as case C at the planetary scale (not shown),
but there were substantial differences at regional/continental
scales (Figure 3d). These were mainly in tropical and
subtropical monsoon areas, and in midlatitude and high-
latitude continents. For instance, case S1 increased the
precipitation in Central America, reduced the precipitation
in southern China and India, including oceans nearby, and
increased precipitation along the Asian monsoon trough
(south and east of the Tibetan Plateau). It also eliminated
the excess precipitation in some continental areas and
increased the precipitation in West Africa. We next inves-

Table 1. Designations of the Model Runs and the Different Initial

and Boundary Conditions Used

Case Model Initial Conditions Land Cover Map

C NCEP/SOIL Reanalysis none
S1 NCEP/SSiB Reanalysis NEW SSiB MAP
S2 NCEP/SSiB Reanalysis and GSWP

initial soil moisture
NEW SSiB MAP

S3 NCEP/SSiB Reanalysis OLD SSiB MAP
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tigate whether these regional differences were associated
with land surface processes.

4.2. East Asian Simulation

[18] The east Asian monsoon covers China, Korea, Japan,
Indochina, as well as parts of surrounding countries and

nearby oceans and, together with the Indian monsoon,
forms the major part of the Asian Monsoon system [Flohn,
1957; Ding, 1994]. The observed precipitation over east
Asia had strong seasonal, interannual, and inter-decadal
variations, in particular a dramatic shift from dry condition
to wet condition in central eastern China and an opposite

Figure 1. NCEP GCM/SSiB land cover classification map. (top) OLD SSiB MAP; (bottom) NEW
SSiB MAP. Type 1, tropical rain forest; type 2, broadleaf deciduous trees; type 3, broadleaf and
needleleaf trees; type 4, needleleaf evergreen trees; type 5, needleleaf deciduous trees; type 6, broadleaf
trees with ground cover; type 7, grassland; type 8, broadleaf shrubs with ground cover; type 9, broadleaf
shrubs with bare soil; type 10, dwarf trees with ground cover; type 11, desert; type 12, crops; type 13,
permanent ice.
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shift in northern China in the 1970s [Chen et al., 1991;
Ding, 1994; Yatagai and Yasunari, 1994; Yanai and Tomita,
1998; Weng et al., 1999], related to the El Niño-like SST
anomalies [e.g., Yang and Lau, 1998; Weng et al., 1999],
midlatitude circulation, Indian monsoon [Chen et al., 1991;
Yatagai and Yasunari, 1995], and land surface processes
such as snow and land degradation [e.g., Yasunari et al.,
1991; Vernekar et al., 1995; Xue, 1996].
4.2.1. Evolution of the East Asian Monsoon
[19] The rainy season in east Asia starts from south of the

Changjiang river in April and moves southward to South
China in May with light precipitation. This is caused by the
confluence of cold air from north and the southwesterly
flow from subtropical high and westerly flow from the
subtropical region of south Asia, forming a typical sub-
tropical rain belt [Chen et al., 2001]. In mid-May, the
tropical monsoon develops in the South China Sea and
large amounts of moisture are transported northward into
the east Asian continent. Heavy precipitation occurs first in
South China and moves northward, indicating a pre-Mei-Yu
season. The CMAP precipitation for May 1987 (Figure 4a)
indicated a precipitation center in the coastal region of
South China with a northeast-southwest precipitation belt.
The 4–6 mm d�1 isohyet was located slightly north of the
Changjiang river.
[20] Case C simulated the south-north gradient of the

spatial distribution of the precipitation in the pre-Mei-Yu

season. The rainfall maximum was centered on the Chang-
jiang river with a south-north precipitation belt (Figure 4b).
The 4–6 mm d�1 isohyet extended much farther to the
north, almost reaching Inner Mongolia. Compared to case C,
the spatial distribution of the precipitation in case S1 was
shifted to the south (Figure 4c). The 4–6 mm d�1 isohyet
was located to the south of the Yellow River, and the center
of the maximum precipitation was located to the south of
the Changjiang river with a northeast-southwest precipita-
tion belt. The observed, case C, and case S1 average
precipitation over 110�E � 120�E and 20�N � 40�N was
5.96, 6.51 (±0.5), and 5.74 (±0.4) mm d�1, respectively.
The results for case S2 in Figure 4d will be presented in
Section 5.
[21] We focused on the results from the three case means

to minimize the effects of spurious results and standard
deviations are given for all the results presented in the paper
(in parentheses). To check the reliability of the results, we
also compared the precipitation patterns in Figure 4 with
those for each pair of runs in case C and case S1 and found
they were very similar. In all three initial conditions, the
positions of the 2–4 mm d�1 isohyets in case C were 5 to
10 degree to the north compared to those in case S1. The
monthly mean precipitation over 110�E � 120�E and
30�N � 40�N (north of the Changjiang river) was 6.48,
5.1, and 7.08 mm d�1 for runs in case C and 4.15, 3.25, and
4.44 mm d�1 for runs in case S1, which indicated a

Figure 2. JJA average albedo for (a) case C; (b) case S1–case C.
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consistently farther north extension of precipitation in case
C. The precipitation was 2.98 mm d�1 for observation over
that area. The highest rainfall in case S1 for this area was
lower than the lowest rainfall in case C. This showed that
the differences between cases S1 and C were significant.
[22] Both case C and case S1 produced spuriously heavy

rainfall in a region centered at 104�E and 33�N. Because the
Loess Plateau is to the north of this area and the Sichuan
Basin is to the south, there is a steep topographic gradient
and the complex regional topography may have contributed
to this simulation error. This spurious simulation of precip-
itation also occurred in the NCEP Reanalysis, and fifth
generation Penn State University/NCAR Meso-scale Model
(PSU/NCAR MM5) [Grell et al., 1994] with 50 km hori-
zontal resolution (W. Li, personal communication, 2002).

[23] The east Asian premonsoon and monsoon evolution
during the rainy season is illustrated by the zonally aver-
aged, 10-day mean precipitation between 105�E and 120�E
from May through September (Figure 5). The observed
time evolution of the May–September precipitation in
1987 (Figure 5a) was similar to that of Chen et al. [2001,
Figure 2a] and Lau et al. [1988, Figure 7], both of which are
the means of observational data, 1961–1995 and 1950–
1979, respectively.
[24] Intense precipitation originated around 27�N in early

May and by late May had moved southward to about 22�N
(Figure 5a, solid arrow). In June the heavy rain moved
abruptly northward (dashed arrow) and another precipitation
maximum appeared to the north of 30�N. This point marks
the start of the Mei-Yu rains. This development is an

Figure 3. JJA 1987 precipitation for (a) CMAP; (b) case C; (c) case C–CMAP; (d) case S1–case C
(mm d�1).
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important signature of the east Asian monsoon, and is
referred to as the abrupt monsoon northward jump and
has been described in numerous studies [e.g., Lau et al.,
1988; Chen et al., 1991; Ding, 1994]. According to clima-
tological data [e.g., Lau et al., 1988], the monsoon rain
expands farther into northern China (about 40�N) from July
to August and initiates another jump, leading to the start of
the monsoon season in northern China. In 1987, this second
jump was not clear and there was only a gradual expansion
of the rainfall band. There was a relatively dry area between
25�N and 30�N during part of July and August. The
monsoon then retreated southward in late August and early
September (solid arrow).
[25] There are clear differences between cases C and S1

simulations of the evolution of the monsoon (Figures 5b and
5c). Case C correctly simulated the rainy season, the south-
north precipitation gradient, as well as the rainfall peak in
July between 20�N and 25�N (Figure 5b). However, the
monsoon evolution process was unclear. In addition to the
overly extended precipitation in May as discussed above,
there was only one persistent wet season during the entire
period with the maximum precipitation located around 23�N
(coast of South China). This pattern persisted in all three
runs in case C. Furthermore, the simulated rain was more
intense than that indicated by the observations. Case S1, on
the other hand, simulated the features of the monsoon
evolution and captured the northward jump. The northward

jump, however, started about 10d earlier and extended over
a slightly longer period (Figure 5c, dashed arrow). The
rainfall maxima around 22�N and 32�N were simulated, but
expanded to northern China too early. The intensity was
also stronger than observed (Figure 3d). Overall, however,
the evolution processes were simulated, including the dry
area between 25�N and 30�N during July and August. All
three runs in case S1 were consistent, but with slightly
different dates for the start of the abrupt northward move-
ment and their durations. The results for case S2 and case
S3 in Figure 5 will be discussed in sections 5 and 6,
respectively.
4.2.2. Physical and Dynamic Mechanisms of Land
Surface and Atmospheric Effects
[26] The differences between cases C and S1 were caused

only by the different parameterizations of land surface
processes. These affect the water and energy balances on
land surface and then the atmosphere through land/atmo-
sphere interactions. In May, southwest airflow brought
moisture to the southern part of China and formed a
cyclone-like system according to Reanalysis (Figure 6a).
The strong convergence zone at 850 hPa to the south of the
Changjiang river was consistent with the observed precip-
itation. To the north of 35�N, westerly winds and diver-
gence prevailed. The bold lines in the figure show the
locations where the zonal wind was zero for a better view
of the circulation patterns. Case C produced a convergence

Figure 4. May 1987 precipitation for (a) CMAP; (b) case C; (c) case S1; (d) case S2 (mm d�1).
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band to the south and a divergence band to the north in east
Asia (Figure 6b), however the southwesterly flow was
unrealistically strong, pushing the convergence zone farther
to the north. The cyclonic flow was too weak and the easterly
wind between 30�N and 35�N almost disappeared. Case S1
produced circulation and associated convergences and diver-
gences that were closer to the Reanalysis (Figure 6c). These
differences in wind fields were consistent with those in
precipitation (Figure 4). Each run in case C and case S1 gave
very similar patterns.
[27] Many studies have investigated the mechanisms

responsible for the atmospheric circulation. It has been
found that the circulations in summer subtropics seem to
be more related to thermal forcing, and the formation

mechanism is more complicated compared with other lat-
itudes [Hoskins, 1987]. In this study, it was found that
circulations in May and June had the largest differences
between two cases. To understand the causes, we analyzed
the differences in surface heating. Table 2 shows the May
average upward heating differences between case S1 and
case C over the east Asian continent, and indicates the
difference in sensible heat flux was dominant in the upward
heating components. The May sensible heat flux, 850 hPa
geopotential height, and the differences between cases C
and S1 (Figure 7) showed that in case C, the east Asian area
to the south of 30�N was a heat sink and the area to the
north of 30�N was a source. In contrast, in case S1, the
entire east Asian continent was a heat source. Therefore

Figure 5. Temporal evolution of the 10-day mean precipitation (mm d�1) averaged over 105�–120�E
from May through September. (a) CMAP; (b) case C; (c) case S1; (d) case S2; (e) case S3.
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the gradients of geopotential height in southeastern China
were stronger in case C than in S1 (Figures 7a and 7b),
consistent with the large heating gradient, which produced
strong southwesterly in case C (Figure 6b).
[28] The counterclockwise turning of the low-level flow

between 25�N and 32�N (Figure 6c) was consistent with
the pressure gradient difference and the associated easterly
wind anomaly between cases S1 and C in that region.
Case S1 produced relative lower pressure to the south and
relative higher pressure to the north (Figure 7c). An anom-

alous eastward wind in case S1 would be produced while
Coriolis forcing balanced the pressure gradient force based
on geostrophic balance. In June, case S1 still produced the
counterclockwise turning while case C did not, because of
the same cause as in May (not shown). In July and August,
while the monsoon was mature, both cases S1 and C
produced the turning. In another study [Wu and Liu,
2003] the July Reanalysis from 1980 to 1997 was used to
analyze the relationship between circulation and boreal
summer subtropical heating, which included vertical distri-

Figure 6. May 1987 wind field (m s�1) and divergence (10e�6 s�1) at 850 hPa (a) Reanalysis;
(b) case C; (c) case S1. To clarify the circulation patterns, the bold lines show the locations where the
zonal wind was zero.
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butions of long-wave radiative cooling, sensible heating
and condensation heating in atmosphere. Condensation
heating was identified as the main heating source in the
east Asian lowland, which influenced the July monsoon.
Our study reveals the role of vegetation processes, espe-

cially the spatial distribution of the surface heating in the
processes, in the early stages of monsoon.
[29] Figure 8 shows the differences in JJA mean precip-

itation, vertically integrated moisture flux and its diver-
gence, and evaporation between cases S1 and C. The

Figure 7. May sensible heat flux (W m�2) and 850 hPa geopotential height (gpm). (a) Case C;
(b) case S1; (c) case S1–case C.

Table 2. Monthly Mean Surface Upward Heating Fluxes and Low-Level Air Temperaturea

Latent
Heat Flux

Sensible
Heat Flux

Short
Wave Up

Long
Wave Up T (925 hPa) T (850 hPa)

May, case S1–case C �15.9 26.9 �9 6.5 0.33 0.87
June, case S1–case C �9.4 35 �7.7 16.2 2.54 2.08

aHeating fluxes are given in W m�2, and temperatures are given in �C (25�–35�N, 110�–120�E).
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northeast-southwest band with positive precipitation differ-
ence between 45�N and 25�N in Figure 8a was consistent
with stronger moisture flux convergence (Figure 8b). The
lower precipitation to the south of the Changjiang river and
west of the Yellow river was located in the divergence areas
(Figure 8b). Most changes in evaporation only appeared in
the Indochina Peninsula and north of the Yellow River
(Figure 8c). This indicates that the main differences in the
monsoon precipitation simulation between cases C and S1
were related more closely to moisture-divergence field, the
patterns of which were similar to the low-level wind field
(not shown), rather than surface evaporation. Therefore it is
necessary to examine the influence of land surface processes

on the circulation to understand the evolution of the
monsoon rainfall.
[30] The latitudinal and longitudinal means of several

variables were evaluated to examine how land surface
processes affected the northward jump. It was found that
cases C and S1 had large differences in northward low-level
moisture transport. Figure 9 shows the 10-day mean of
925 hPa specific humidity zonally averaged over 105�E
and 120�E for cases C and S1. In early May, the northward
transport of the moisture in case Cwas stronger and produced
relatively wetter condition than case S1, as discussed in
section 4.2.1 (Figure 4b). In the late part of June, the moist
region in case S1 had a dramatic northward expansion

Figure 8. JJA mean differences between case S1 and case C (a) precipitation (mm d�1); (b) Vertically
integrated moisture flux (kg m�1 s�1) and divergences (mm d�1); (c) evaporation (mm d�1).
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between 25�N and 40�N, which was consistent with the
timing of the northward jump of the precipitation band
(Figure 5c) and provided the necessary moisture. Case C,
on the other hand, did not show such dramatic northward
expansion. The maximum humidity (17 g kg�1 contour line)
was confined to the south of the Changjiang river (at 30�N).
Further analysis showed the differences in moisture fields
were consistent with the differences in simulated meridional
wind. The meridional wind at 925 hPa in case S1 also
increased dramatically in the late part of June (Figure 10b),
when the northward expansion of wet region occurred
(Figure 9b). The 5 m s�1 contour line reached around
37�N. Case C, on the other hand, did not have an increase
in meridional wind during June (Figure 10a). The 4 m s�1

contour line was confined to around 30�N. Since northward
transport of the water vapor was the main moisture source of
the east Asian summer monsoon (Figure 6), the differences
shown in Figures 9 and 10 would have great impact on
monsoon development. In the following, we further explore
how land surface processes contribute to these differences.
[31] The abrupt northward jump in the east Asian mon-

soon is an important feature. Thus far there have only been
theoretical studies of its cause, based on a quasi-geostrophic
vorticity equation for a barotropic dissipative system with
thermal forcing to investigate the mechanism of abrupt
change of equilibria state [Liu and Tao, 1983; Miao and

Ding, 1985; Wang, 1986]. These studies found that season-
ally varying thermal forcing and interactions between ther-
mal forcing and nonlinear motion of atmosphere under
certain geographic conditions could produce abrupt changes
in atmospheric circulation, but the abrupt change would not
occur under weak meridional or zonal thermal gradients.
[32] Enlightened by these studies, we examined the

surface heating sources to understand the role of land
surface processes in the northward abrupt jump of rainfall
band. The low-level temperature in case S1 in June was
higher than in case C (Table 2), which would enhance the
land-sea temperature gradient since the temperatures over
the ocean were the same for the two cases (not shown).
Table 2 shows the differences in radiative heating were not
large, and case S1 had slightly less latent heat release from
the surface. The major differences were in the sensible heat
flux as in May. On the basis of the geostrophic balance in
midlatitude, the northward wind (shown in Figure 10b)
should be produced by the east-west pressure gradient.
Among surface upward heating components, only sensible
heat fluxes exhibited a clear east-west gradient.
[33] Figure 11 shows the 21–30 June mean sensible heat

flux and geopotential height and the differences in 850 mbar.
There was no clear gradient of sensible heat flux between
the eastern part of the east Asian continent and the Pacific

Figure 9. Temporal evolution of the 10-day mean specific
humidity (g kg�1) at 925 hPa averaged over 105�–120�E
from May through September. (a) Case C; (b) case S1.

Figure 10. Temporal evolution of the 10-day mean
meridional wind (m s�1) at 925 hPa averaged over
105�–120�E from May through September. (a) Case C;
(b) case S1.
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Ocean in case C (Figure 11a). In fact, many parts of the land
were heat sinks during June. In contrast to case C, S1
produced substantial east-west gradients of sensible heat flux
between land and ocean, which in turn produced greater
temperature gradients and consequent pressure gradients
in the lower atmosphere (Figure 11b). The additional north-
ward meridional wind was evident (Figure 11c). On the
basis of these analyses and previous theoretical studies, we
suggest that the greater east-west thermal gradient, which
produced strong northward transport of moisture and a
cyclone condition, may contribute to the abrupt northward
jump of the monsoon.

4.3. West African Simulation

[34] The West African monsoon is relatively weak com-
pared to the Asian monsoon [Griffiths, 1972; Nicholson,

1976]. The similarity of the climate in the east-west direc-
tion contrasts dramatically with the strong North-South
gradient. The relationship between SST and seasonal to
interannual rainfall variations in the Sahel region has long
been discussed. Several observational and modeling studies
have suggested that the Atlantic SST anomalies and global
SST anomalies play important roles in producing rainfall
anomalies over the Sahel and the adjoining regions [e.g.,
Lamb, 1978; Hastenrath, 1984; Lamb and Peppler, 1991;
Folland et al., 1991; Palmer et al., 1992; Rowell et al.,
1995]. Meanwhile, the role of biophysical feedbacks in the
Sahel region has also been examined [e.g., Charney et al.,
1977;Walker and Rowntree, 1977; Sud and Fennessy, 1982;
Laval and Picon, 1986; Kitoh et al., 1988; Wang and
Eltahir, 1999]. These studies consistently demonstrated
impacts of land surface conditions on the climate of the

Figure 11. The 21–30 June sensible heat flux (W m�2) and 850 hPa geopotential height (gpm). (a) Case
C; (b) case S1; (c) case S1–case C.
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Sahel. Furthermore, biophysical models coupled with atmo-
spheric models [e.g., Xue and Shukla, 1993; Xue, 1997;
Clark et al., 2001; Wu et al., 2002; Xue et al., 2003] have
explored the role of land degradation in decadal Sahelian
regional climate anomalies, including anomalous precipita-
tion, higher surface temperature, lower river runoff, and the
mechanisms responsible for the extended Sahel drought.
[35] In this section we present the results for the impact of

two land surface parameterizations on the monsoon evolu-
tion and atmospheric circulation in northern Africa. Despite
improvements in simulated total precipitation during the
five-month simulation in case S1 (see Figure 3 for JJA
mean) the processes of zonally mean monsoon evolution for
the central and western Africa were not substantially dif-
ferent in cases C and S1 (Figure 12). In both the monsoon
moved north in May and reached a maximum in August, but
the intraseasonal variations were not well simulated. Sultan
and Janicot [2000] identified a northward jump in the
African monsoon from 5�N in May–June to 10�N in
July–August (Figure 12a), which they attributed to African
easterly waves and topographic effects. The models used
here only produced a weak rainfall high in May, and
showed no clear northward jump possibly because of
limitation of the horizontal resolution. The May and June
1987 oscillation was a single year event, mainly because of
internal variability (S. Janicot, LMD, personal communica-
tion, 2003), and was not simulated.
[36] Numerous studies have demonstrated the sensitivity

of the Sahel regional climate to the land surface condition as
mentioned above. Cases C and S1 had similar monthly

mean albedo, surface roughness length, and initial soil
moisture. Albedo and surface roughness are the two most
important land parameters influencing the climate in the
Sahel region [Xue et al., 1997] and, unlike the midlatitudes,
the interaction between one land parameter and atmosphere
may be more important than multiple interactions [Niyogi et
al., 2002]. The similar monthly mean surface albedo and
roughness lengths in cases C and S1 could explain why
there was little difference in the simulated evolution of
zonal mean precipitation in the Sahel. However, the differ-
ences in spatial distributions of simulated circulation as well
as precipitation were still evident.
[37] The effects of land surface processes were mani-

fested in wind fields and divergence. In the Reanalysis
(Figure 13a), the southeasterly airflow from the Indian
Ocean at 850 hPa became southwesterly after crossing the
equator in central Africa, and formed a northeast-southwest
convergence band between 10�E and 35�E, and between
20�S and the equator. The confluence of the southwesterly
and northeasterly airflows formed another convergence
zone over the Sahel, which was relevant to the summer
monsoon in the region. Both cases C and S1 simulated the
Sahel convergence zone well, although with different
intensity (Figures 13b and 13c). Case C, however, failed
to simulate a southwest-northeast convergence band from
10�E to 30�E because the turning of the southeasterly from
the Indian Ocean was not as strong as in the Reanalysis
(Figure 13a). In fact there was a stronger heating source
along 10�N between 20�E and 40�E in case S1 (not shown).
After crossing the equator, the heating induced airflow

Figure 12. Temporal evolution of the 10-day mean precipitation (mm d�1) averaged over 15�W to 25�E
from May through September. (a) CMAP; (b) case C; (c) case S1; (d) case S2.
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turned clockwise. This mechanism was consistent with the
east Asian simulation (Figure 6). This heating source was
missing in case C. The differences in wind fields also
existed at 500 hPa. Convergence prevailed in central Africa
in case C, which was opposite to that in the Reanalysis and
case S1. The differences between case C and case S1 at
850 hPa and 500 hPa were also found in May and July.
[38] In addition to the circulation, cases C and S1 differed

in rainfall intensity. In east Asia the differences in precip-
itation generally correlated with the changes in moisture
flux (Figure 7) and it is interesting to examine the same

relationship in Africa. We select the differences of these
variables in June and August to exhibit the extremes
(Figures 14 and 15). In June, although the evaporation
reduction in East Africa and the coastal area of West Africa
may have contributed to the precipitation decrease, the
major rainfall change in the Sahel was consistent with the
changes in moisture flux. Case S1 produced stronger
moisture convergence and rainfall in the Sahel. A stronger
moisture divergence in the coastal area and lower evapora-
tion also contributed to the rainfall reduction (Figures 14a
and 14b). In August the effect of evaporation prevailed

Figure 13. June 1987 wind field (m s�1) and divergence (10e�6 s�1) at 850 hPa (a) Reanalysis;
(b) case C; (c) case S1.
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(Figure 15) and contributed to the large rainfall reduction in
the Sahel, consistent with Xue [1997]. Compared with the
east Asia, land surface evaporation played a more important
role in the variation of West African monsoon. In addition
to the Sahel region, the wind field and moisture convergen-
ces in case S1 and C also differed in central Africa
(Figures 13c, 14b, and 15b), but there was not much
precipitation in central Africa during the monsoon season
and these differences did not affect the precipitation simu-
lations there (Figures 14a and 15a).

5. Impact of Initial Soil Moisture

[39] Soil moisture is an important surface variable
affecting the surface water and energy balances. Case S2

explored the effect of using the GSWP soil moisture as
the initial condition for the NCEP GCM/SSiB (Figure 16).
In general the soil in GSWP was drier than that in
the Reanalysis except in West Africa, India and Bangla-
desh, East China, northwest South America, and south-
west Australia (no GSWP data for Greenland and the
Antarctic).
[40] It is clear that the JJA changes in precipitation and

soil moisture were positively correlated, but the changes in
soil moisture did not necessarily lead to changes in precip-
itation (Figure 17). Case S2 reduced the extra precipitation
over the large continents and enhanced the Indian monsoon,
but it was slightly dry in Africa (Figure 12d). Dirmeyer
[2000] specified soil moisture during his entire model
integration for 1987 and 1988, and found an improvement

Figure 14. June differences between case S1 and case C (a) precipitation (mm d�1); (b) vertically
integrated moisture flux (kg m�1 s�1) and divergences (mm d�1); (c) evaporation (mm d�1).
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in the simulation of the pattern of precipitation globally and
regionally, especially in monsoonal Asia.
[41] In this study the improvement in precipitation simu-

lation in south Asia and east Asia was substantial. The year
1987 was an anomalously dry year over India. A counter-
monsoon circulation anomaly at low level, associated with
weaker Somali jet and Arabian Sea circulation, contributed to
this summer drought [Krishnamurti et al., 1989]. Cases C,
S1, and S2 failed to catch the special features of the Indian
monsoon for this year, but cases S1 and S2 still showed some
improvements in monthly and seasonal means. For the Indian
monsoon area (70�E to 85�E, 10�N to 25�N), the JJA
precipitation was 6.2, 8.7 (±0.4), 6.7(±0.2), and 7.6(±0.8)
mm d�1 for CMAP, cases C, S1, and S2, respectively. For

the same area, but with land only, the JJA precipitation
was 5.6, 6.7(±0.5), 4.6(±0.4), and 5.4(±0.8) mm d�1, respec-
tively. Case S1 produced the best simulation for the Indian
monsoon as a whole. Case S2 had the best simulation for
the Indian monsoon over land, but the standard deviations
were large.
[42] The improvement in the east Asian simulation by

case S2 was substantial, producing precipitation that was
very similar to the May observation, with most heavy
precipitation to the south of the Changjiang river and
highest values near the coast of South China (Figure 4d).
Case S2 also simulated the major features of the east Asian
monsoon evolution processes (Figure 5d), with some differ-
ences in detail and intensity from case S1, providing further

Figure 15. August differences between case S1 and case C (a) precipitation (mm d�1); (b) vertically
integrated moisture flux (kg m�1 s�1) and divergences (mm d�1); (c) evaporation (mm d�1).
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evidence that vegetation processes contribute to the north-
ward jump of the monsoon. In fact, with the accurate initial
soil moisture field, the simulated abrupt northward jump
was closer to the observations (Figure 5d, dashed arrow),
which suggests the soil moisture might influence the speed
of the jump. A more detailed analysis revealed that most
differences of precipitation between case S2 and S1were
caused by the changes in convective precipitation.

6. Impact of the Land Cover Classification Map

[43] The impact of the specification of vegetation is
illustrated by a comparison of case S3, using OLD SSiB
MAP, and case S1, using NEW SSiB MAP. These
produced different precipitation in tropical and subtropical
regions (Figures 18a and 19a). Evaporation was the main

cause of variations in precipitation on the Eurasian
continent north of 40�N (Figure 18c). In the Inner
Mongolian grassland and northeastern east Asia, the
desert in case S3 produced less evaporation and precip-
itation. Divergence in northeastern east Asia was another
factor that might have contributed to the reduction in
precipitation (Figure 18b). On the other hand, in most
parts of east Asia to the south of 40�N, the precipitation
changes were associated with the dominant moisture flux
convergence, consistent with the discussions in previous
sections (Figure 8b). The desert in central Asia in case S3
produced a divergence region along 20�N and 30�N and a
convergence region to the south. This was in general
agreement with Xue [1996]. In east Asia the northward
jump of the east Asian monsoon in case S3 was still
evident (Figure 5e), but the timing was delayed by about

Figure 16. Initial volumetric soil water content for (a) Reanalysis; (b) GSWP; (c) GSWP–Reanalysis.

D03105 XUE ET AL.: LAND SURFACE PROCESSES IN MONSOON DEVELOPMENT

18 of 24

D03105



one month, indicating that land cover change can modify
the timing of the onset of the east Asian monsoon.
[44] In the Indian subcontinent there were no dramatic

vegetation cover differences between NEW and OLD
SSiB MAP. The precipitation differences between India
and its surrounding ocean were mainly associated with
changes in moisture fluxes, which was probably a
response to land cover change in Eurasia to the north
(Figures 18a and 18b). Although many studies have
investigated the relationship between Eurasian snow cover
and Indian monsoon, there have not been any studies
investigating the relationship between Eurasian vegetation
and Indian monsoon.
[45] The Sahara desert, where the vegetation classifica-

tions differed, had insufficient precipitation to exhibit any
effect (Figure 19a) but there was an increase in induced

divergence over a region between 10�N and 20�N and a
convergence region to the south along the coastal area
(Figure 19b): a dipole type of change noted by others
[e.g., Xue, 1997]. The precipitation changes in case S3 in
the African continent were coincident with these divergence
and convergence regions. Since there was no substantial
land cover change in central Africa, the reduction in
evaporation (Figure 19c) was probably a response to the
reduction in precipitation.
[46] NEW SSiB MAP improved the simulation of pre-

cipitation substantially in some important monsoon regions.
For example, over northern Africa (10� to 40�E, and 0�N to
10�N), the JJA precipitations were 4.65, 4.41(±0.40), and
3.05(±0.35) mm d�1 for observation, case S1 and case S3,
respectively. Even in southern China (between 110�E and
120�E and 25�N and 30�N), the error in simulation for JJA

Figure 17. JJA differences between case S2 and case S1; (a) volumetric soil water content;
(b) precipitation (mm d�1).
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precipitation was reduced from 1.17 mm d�1 in case S3 to
0.39 mm d�1 in case S1.

7. Discussion and Summary

[47] This study explores the impact of land surface
processes on the structure and characteristics of the mon-
soon system with an emphasis on the evolution of precip-
itation. The results were obtained using the NCEP GCM
coupled with two different land surface parameterizations
that included or did not include vegetation processes.
Because the study focused on intraseasonal variability with
a temporal scale, in some cases, of only 5–10 days, three

scenarios, differing in initial soil moistures and vegetation
maps, with three initial conditions were used for each land
surface parameterization to evaluate the robustness of the
model results.
[48] In addition to the results for east Asia and West

Africa, discussed above, we also examined the global mean
precipitation and the precipitation over the land (Table 3).
The standard deviations were substantially smaller than the
differences between case C and case Ss and were of the
same order of magnitude for each month. Case C simulated
the global climate with reasonable accuracy. Cases S1 and
S3 provided small, but consistent improvements for each
month in the simulations, which indicated that the improve-

Figure 18. June differences between case S3 and case S1 in Asia (a) precipitation (mm d�1); (b) vertically
integrated moisture flux (kg m�1 s�1) and its divergence (mm d�1); (c) evaporation (mm d�1).
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ments at a regional scale were not at the cost of global
realism. It was interesting to note that case S3 had the best
simulation of the global mean (Table 3). This was mainly
because, after classifying most of east Asia as desert, the
wet bias in the model simulation was substantially reduced.
For the area between 105�E and 125�E and 30�N and 50�N,
the observed, case S1 and case S3 JJA precipitation was
3.73, 5.89(±035), and 4.08(±0.33) mm d�1, respectively.
Therefore the underlying cause of the ‘‘better’’ global mean
precipitation in case S3 was most likely due to weakness
in the GCM and/or land surface model or problems in
vegetation parameter specification. There are no direct

measurements of the vegetation and soil parameters for
most parts of the world.
[49] Although the simulations by using the two param-

eterizations were compared with each other and with
observations, the aim of this study was principally to
understand better the influence of biophysical processes
on the processes of monsoon development. The results
show that at the planetary scale, two different land surface
parameterizations produced similar monthly mean simu-
lations of precipitation (Figure 3). The differences in
global means were small (Table 3). However, at the
continental and synoptic scales, more complete represen-

Figure 19. June differences between case S3 and case S1 in Africa (a) precipitation (mm d�1);
(b) vertically integrated moisture flux (kgm�1 s�1) and its divergence (mm d�1); (c) evaporation (mm d�1).
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tation of land surface processes improved the simulation
of the structure and characteristics of the monsoon
systems.
[50] Cases S1 and C used the similar monthly mean

albedo as well as surface roughness length, and the same
initial soil moisture. However, the two land surface
schemes produced different surface water and energy
balances, different partitioning of latent heat and sensible
heat fluxes (the Bowen ratio), and different latitudinal and
longitudinal thermal gradients at the surface. The effects
were mainly manifested in the temporal evolution of the
monsoon, its strength, the spatial distribution of precipita-
tion, and associated circulation at continental and synoptic
scales. Under the three scenarios, the GCM with a
biosphere model consistently simulated the abrupt north-
ward movement of the east Asian monsoon unlike the
GCM/SOIL model runs.
[51] Furthermore, this study shows the surface processes

influenced the turning of the low-level wind counterclock-
wise or clockwise during the premonsoon or early monsoon
stages, the low-level land/sea temperature gradient, wind
flow, and moisture transport, which were related to the
monsoon development. This study shows that under unsta-
ble conditions, not only the low-frequency mean forcings
from the land surface, but also the perturbation processes of
vegetation forcing described in SSiB on much shorter
timescales, such as radiative flux/canopy interaction and
transpiration, may be crucial in the evolution of the
monsoon. Since 1987 alone was simulated for this study,
further investigations under different scenarios (such as
different SSTs) will be necessary to confirm this finding.
[52] In previous studies, we found that specifications of

land degradation in Sahel and east Asia allowed climate
simulations to reproduce decadal anomaly patterns of pre-
cipitation and surface temperature [Xue and Shukla, 1993;
Xue, 1996, 1997]. Furthermore, better representations of
land surface processes in a regional model improved the
short-term (24 and 48 hours) simulations of extreme climate
events, such as the 1993 U.S. flood [Xue et al., 2001]. The
results from this study show that land surface processes may
also be important for intraseasonal simulations. However,
the land/atmosphere interactions are complex and nonlinear
as shown in Figure 3 and the dominant mechanisms depend
on temporal and spatial scales and background climate
conditions.
[53] Our findings show that better specification of the

initial soil moisture improved seasonal simulation, mainly
in the intensity of the simulated variables. It also suggests
possible relationships between vegetation distribution in the
Eurasian continent and the Indian monsoon intensity, as
well as land degradation in east Asia and timing of the east

Asian monsoon onset, indicating the importance of accurate
land cover maps.
[54] Both the NCEP soil submodel and SSiB are physi-

cally based models, which was evident by the fact that no
empirical tuning was needed in this study when the soil
model was replaced with SSiB, and the differences between
the simulations by the two models could be clearly related
to physical and dynamic processes, even in the complexity
of a GCM. These conclusions, however, need to be evalu-
ated using different models. Although this version of the
NCEP GCM produced substantially better east Asian sim-
ulations than, for example, by Xue [1996], substantial biases
were still evident (e.g., Figure 3). The accurate simulation
and prediction of monsoons, especially the Asian monsoon,
is a formidable task and some crucial improvements remain
to be made, such as the simulation of precipitation in south
Asia. This study showed that high-quality observational
data of land cover and assimilated soil moisture help
identify the role of land surface parameterizations in mon-
soon simulation and, more generally, in land/atmosphere
interactions.

[55] Acknowledgments. The authors thank Masao Kanamitsu,
UCSD, for providing the NCEP GCM code and for his support; Song-
You Hong and Hua-Lu Pan, NCEP, for help in this work; Eugenia Kalnay,
University of Maryland, for her support; C. Roberto Mechoso of UCLA
Xiuji Zhou of the Chinese Academy of Meteorological Sciences (CAMS),
and Serge Janict of the Laboratoire de Meteorologie Dynamique, France,
for discussions; Pingping Xie of NCEP for meteorological data; and Paul
Dirmeyer of COLA for GSWP data. Michio Yanai of UCLA, Guoxiong Wu
of the Institute of Atmospheric Physics, Chinese Academy of Sciences,
Longxun Chen and Weiliang Li of CAMS, Akiyo Yatagai of the Research
Institute of Humanity and Nature, Japan, and K.-M. Lau of NASA have
provided comments for this manuscript. Funding was provided by NSF
grants EAR 9706403 and ATM-0097260 and NASA grants NAG5-9014
and NAG5-9329. The model runs were carried out on the NCAR and NCEP
supercomputers.

References
Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif (1989),
The effect of Eurasian snow cover on regional and global climate varia-
tions, J. Atmos. Sci., 46, 661–685.

Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. G. Bradley (1971), Flux-
profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28,
181–189.

Charney, J. G., W. K. Quirk, S.-H. Chow, and J. Kornfield (1977), A
comparative study of the effects of albedo change on drought in semi-
arid regions, J. Atmos. Sci., 34, 1366–1385.

Chen, L., Q. Shu, and H. Lu (1991), East Asian Monsoon (in Chinese),
362 pp., China Meteorol. Press, Beijing.

Chen, L., W. Li, and P. Zhao (2001), On the process of summer monsoon
onset over east Asia, Acta Meteorol. Sin., 15, 436–449.

Clark, D. B., Y. Xue, R. Harding, and P. J. Valdes (2001), Modeling the
impact of land surface degradation on the climate of tropical North
Africa, J. Clim., 14, 1809–1822.

Deardorff, J. W. (1977), Efficient prediction of a ground surface tempera-
ture and moisture with inclusion of a layer of vegetation, J. Geophys.
Res., 83, 1889–1903.

Table 3. Mean Precipitation Over Land and Over the Globea

May June July August JJA s.d. JJA

Xie and Arkin [1997] 1.84 (2.74) 2.10 (2.75) 2.16 (2.81) 2.23 (2.77) 2.04 (2.77)
Case C 2.41 (2.98) 2.36 (3.07) 2.62 (3.04) 2.58 (2.99) 2.52 (3.03) 0.04 (0.01)
Case S1 2.13 (2.89) 2.30 (3.02) 2.56 (3.00) 2.45 (2.90) 2.43 (2.97) 0.04 (0.01)
Case S2 1.87 (2.88) 2.16 (2.95) 2.46 (2.97) 2.34 (2.89) 2.32 (2.94) 0.02 (0.01)
Case S3 1.73 (2.82) 2.01 (2.96) 2.27 (2.90) 2.31 (2.85) 2.20 (2.90) 0.06 (0.005)

aMean precipitation over the globe is given in parenthesis. Values are in mm d�1. Here, s.d., standard deviation.

D03105 XUE ET AL.: LAND SURFACE PROCESSES IN MONSOON DEVELOPMENT

22 of 24

D03105



Dey, B., and O. S. R. U. Bhanu Kumar (1982), An apparent relationship
between Eurasian snow cover and the advanced period of the Indian
summer monsoon, J. Appl. Meteorol., 21, 1929–1932.

Ding, Y. (1994), Monsoon in China, 419 pp., Kluwer Acad., Norwell,
Mass.

Dirmeyer, P. A. (2000), Using a global soil wetness dataset to improve
seasonal climate simulation, J. Clim., 13, 2900–2922.

Dirmeyer, P. A., A. J. Dolman, and N. Sato (1999), The pilot phase of the
Global Soil Wetness Project, Bull. Am. Meteorol. Soc., 80, 851–878.

Dorman, J. L., and P. Sellers (1989), A global climatology of albedo,
roughness length and stomatal resistance for atmospheric general circula-
tion models as represented by the Simple Biosphere Model (SiB), J. Appl.
Meteorol., 28, 833–855.

Douville, H., and J.-F. Royer (1996), Sensitivity of the Asian summer
monsoon to an anomalous Eurasian snow cover within the Météo-France
GCM, Clim. Dyn., 12, 449–466.

Douville, H., F. Chauvin, and H. Broqua (2001), Influence of soil moisture
on the Asian and African monsoons. Part I: Mean monsoon and daily
precipitation, J. Clim., 14, 2381–2403.

Flohn, H. (1957), Large-scale aspects of the ‘‘summer monsoon’’ in South
and east Asia, J. Meteorol. Soc. Jpn., 75, 180–186.

Folland, C. K., J. Owen, M. N. Ward, and A. Colman (1991), Prediction of
seasonal rainfall in the Sahel region using empirical and dynamical meth-
ods, J. Forecast., 1, 21–56.

Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), A description of the fifth
generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech.
Note NCAR/TN-398+STR, 121 pp., Natl. Cent. for Atmos. Res., Boulder,
Colo.

Griffiths, J. F. (1972), General climatology, in Climates of Africa, edited by
J. F. Griffiths, pp. 1–35, Elsevier Sci., New York.

Hahn, D. J., and J. Shukla (1976), An apparent relationship between
Eurasian snow cover and Indian monsoon rainfall, J. Atmos. Sci., 33,
2461–2462.

Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and R. Sohlberg (2000),
Global land cover classification at 1 km spatial resolution using a classi-
fication tree approach, Int. J. Remote Sens., 21, 1303–1330.

Hastenrath, S. (1984), International variability and annual cycle: Mecha-
nisms of circulation and climate in the tropical Atlantic sector, Mon.
Weather Rev., 112, 1097–1107.

Hoskins, B. J. (1987), Diagnosis of forced and free variability in the atmo-
sphere, in Atmospheric and Oceanic Variability, edited by H. Cattle,
pp. 57–73, James Glaisher House, Bracknell, UK.

Kalnay, E., M. Kanamitsu, and W. E. Baker (1990), Global numerical
weather prediction at the National Meteorological Center, Bull. Am.
Meteorol. Soc., 71, 1410–1428.

Kalnay, E., et al. (1996), The NMC/NCAR 40-year Reanalysis Project,
Bull. Am. Meteorol. Soc., 77, 437–471.

Kanamitsu, M., J. C. Alpert, K. A. Campana, P. M. Caplan, D. G. Deaven,
M. Iredell, B. Katz, H.-L. Pan, J. Sela, and G. H. White (1991), Recent
changes implemented into the global forecast system at NMC, Weather
Forecast., 6, 425–435.

Kistler, E., et al. (1999), The NCEP/NCAR 50-year Reanalysis, Bull. Am.
Meteorol. Soc., 82, 247–268.

Kitoh, A., K. Yamazaki, and T. Tokioka (1988), Influence of soil moisture
and surface albedo changes over the African tropical rain forest on sum-
mer climate investigated with the MRI-GCM-I, J. Meteorol. Soc. Jpn.,
66, 65–85.

Krishnamurti, T. N., H. S. Bedi, and M. Subramaniam (1989), The summer
monsoon of 1987, J. Clim., 2, 321–340.

Kuchler, A. W. (1983), World map of natural vegetation, in Goode’s World
Atlas, 16th ed., pp. 16–17, Rand McNally, New York.

Lamb, P. J. (1978), Large-scale tropical Atlantic surface circulation patterns
associated with sub-Saharan weather anomalies, Tellus, 30, 240–251.

Lamb, P. J., and R. A. Peppler (1991), West Africa, in Teleconnections
Linking Worldwide Climate Anomalies, edited by M. Glantz, R. W. Katz,
and N. Nicholls, pp. 121–189, Cambridge Univ. Press, New York.

Lau, K.-M., and W. Bua (1998), Mechanisms of monsoon-Southern
Oscillation coupling: Insights from GCM experiments, Clim. Dyn., 14,
759–779.

Lau, K.-M., G. J. Yang, and S. H. Shen (1988), Seasonal and intraseasonal
climatology of summer monsoon rainfall over east Asia, Mon. Weather
Rev., 116, 18–37.

Laval, K., and L. Picon (1986), Effect of a change of the surface albedo of
the Sahel on climate, J. Atmos. Sci., 43, 2418–2429.

Liu, C., and S. Tao (1983), Northward jumping of subtropical highs and
CUSP catastrophe, Sci. Sin., Ser. B, Engl. Ed., 26, 1065–1074.

Liu, X., and M. Yanai (2002), Influence of Eurasian spring snow cover on
Asian summer rainfall, Int. J. Climatol., 22(9), 1075–1089.

Louis, J.-F. (1979), A parametric model of vertical eddy fluxes in the atmo-
sphere, Boundary Layer Meteorol., 17, 187–202.

Matthews, E. (1984), Prescription of land-surface boundary conditions in
GISS GCM II: A simple method based on high-resolution vegetation data
bases, NASA Tech. Memo., NASA TM-86096, 20 pp.

Matthews, E. (1985), Atlas of archived vegetation, land-use and seasonal
albedo data sets, NASA Tech. Memo., NASA TM-86199, 53 pp.

Meehl, G. A. (1994), Influence of the land surface in the Asian summer
monsoon: External conditions versus internal feedbacks, J. Clim., 7,
1033–1049.

Miao, J., and M. Ding (1985), Catastrophe theory of seasonal variation, Sci.
Sin., Ser. B, Engl. Ed., 28, 1079–1092.

Miyakoda, K., and J. Sirutis (1986), Manual of the E-physics, Geophys.
Fluid Dyn. Lab., Princeton Univ., Princeton, N. J.

Nicholson, S. E. (1976), A climatic chronology for Africa: Synthesis of
geological, historical, and meteorological information and data, Ph.D.
thesis, Univ. of Wisc., Madison.

Niyogi, D. S., Y. Xue, and S. Raman (2002), Hydrological feedback in
land-atmosphere coupling: Comparison of a tropical and a midlatitudinal
regime, J. Hydrometeorol., 3, 39–56.

Palmer, T. N., C. Brankovic, P. Viterbo, and M. J. Miller (1992), Modeling
interannual variations of summer monsoons, J. Clim., 5, 399–417.

Pan, H.-L., and L. Mahrt (1987), Interaction between soil hydrology and
boundary layer developments, Boundary Layer Meteorol., 38, 185–202.

Paulson, C. A. (1970), Mathematical representation of wind speed and
temperature profiles in the unstable atmospheric surface layer, J. Appl.
Meteorol., 9, 857–861.

Robock, A., M. Mu, K. Vinnikov, and D. Robinson (2003), Land surface
conditions over Eurasia and Indian summer monsoon rainfall, J. Geo-
phys. Res., 108(D4), 4131, doi:10.1029/2002JD002286.

Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward (1995), Varia-
bility of summer rainfall over tropical North Africa (1906–92): Observa-
tion and modeling, Q. J. R. Meteorol. Soc., 121, 669–704.

Shi, L., and E. A. Smith (1992), Surface forcing of the infrared cooling
profile over the Tibetan Plateau. Part II: Cooling-rate variation over large-
scale Plateau domain during summer monsoon transition, J. Atmos. Sci.,
49, 823–844.

Sud, Y. C., and M. Fennessy (1982), A study of the influence of surface
albedo on July circulation in semi-arid regions using the GLAS GCM,
J. Clim., 2, 105–125.

Sultan, B., and S. Janicot (2000), Abrupt shift of the ITCZ over West Africa
and intra-seasonal variability, Geophys. Res. Lett., 27, 3353–3356.

Vernekar, A. D., J. Zhou, and J. Shukla (1995), The effect of Eurasian snow
cover on the Indian monsoon, J. Clim., 8, 248–266.

Walker, J., and P. R. Rowntree (1977), The effect of soil moisture on
circulation and rainfall in a tropical model, Q. J. R. Meteorol. Soc.,
103, 29–46.

Wang, G. (1986), Some factors determining the jump of the sub-tropical
highs (in Chinese), Sci. Meteorol. Sin., 1, 50–60.

Wang, G., and E. A. B. Eltahir (1999), Biosphere-atmosphere interactions
over West Africa. I: Development and validation of a coupled dynamic
model, Q. J. R. Meteorol. Soc., 126, 1239–1260.

Webster, P. J. (1987), The elementary monsoons, in Monsoons, edited by
J. F. Fein and P. L. Stephens, pp. 3–32, John Wiley, New York.

Webster, P. J., V. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai,
and T. Yasunari (1998), Monsoons: Processes, predictability, and the
prospects for prediction, J. Geophys. Res., 103(C7), 14,451–14,510.

Weng, H. Y., K. M. Lau, and Y. K. Xue (1999), Long term variations of
summer rainfall over China and its possible link to global sea-surface
temperature variability, J. Meteorol. Soc. Jpn., 4, 845–857.

Willmott, C. J., and K. Klink (1986), A representation of the terrestrial
biosphere for use in global climate studies, in ISLSCP: Proceedings of
an International Conference Held in Rome, Italy, 2–6 December 1985,
pp. 109–112, Eur. Space Agency, Paris.

Wu, G., and Y. M. Liu (2003), Summertime quadruplet heating pattern in
the subtropics and the associated atmospheric circulation, Geophys. Res.
Lett., 30, 1201–1204.

Wu, G., L. Sun, Y. Liu, H. Liu, S. Sun, and W. Li (2002), Impacts of
land surface processes on summer climate, in Selected Papaers of the
Fourth Conference on East Asia and Western Pacific Meteorology and
Climate, edited by C. P. Chang et al., pp. 64–76, World Sci., River
Edge, N. J.

Xie, P., and P. A. Arkin (1997), Global precipitation: A 17-year monthly
analysis based on gauge observations, satellite estimates and numerical
model outputs, Bull. Am. Meteorol. Soc., 78, 2539–2558.

Xue, Y. (1996), The impact of desertification in the Mongolian and the
Inner Mongolian Grassland on the regional climate, J. Clim., 9, 2173–
2189.

Xue, Y. (1997), Biosphere feedback on regional climate in tropical North
Africa, Q. J. R. Meteorol. Soc., 123, 1483–1515.

Xue, Y., and J. Shukla (1993), The influence of land surface properties on
Sahel climate. Part I: Desertification, J. Clim., 6, 2232–2245.

D03105 XUE ET AL.: LAND SURFACE PROCESSES IN MONSOON DEVELOPMENT

23 of 24

D03105



Xue, Y., P. J. Sellers, J. L. Kinter III, and J. Shukla (1991), A simplified
biosphere model for global climate studies, J. Clim., 4, 345–364.

Xue, Y., H. G. Bastable, P. A. Dirmeyer, and P. J. Sellers (1996a), Sensi-
tivity of simulated surface fluxes to changes in land surface parameter-
ization: A study using ABRACOS data, J. Appl. Meteorol., 35, 386–400.

Xue, Y., M. J. Fennessy, and P. J. Sellers (1996b), Impact of vegetation
properties on U.S. summer weather prediction, J. Geophys. Res.,
101(D3), 7419–7430.

Xue, Y., J. Elbers, F. J. Zeng, and A. J. Dolman (1997), GCM parameter-
ization for Sahelian land surface processes, in HAPEX-Sahel West
Central Supersite: Methods, Measurements and Selected Results,
Rep. 130.HM/07.97, edited by P. Kabat, S. Prince, and L. Prihodko,
pp. 289–297, Winand Staring Cent. for Integrated Land, Soil and Water
Res., Wageningen, Netherlands.

Xue, Y., F. J. Zeng, K. Mitchell, Z. Janjic, and E. Rogers (2001), The
impact of land surface processes on the simulation of the U.S. hydro-
logical cycle: A case study of 1993 US flood using the Eta/SSiB regional
model, Mon. Weather Rev., 129, 2833–2860.

Xue, Y., R. W. A. Hutjes, R. J. Harding, M. Claussen, S. Prince, E. F.
Lambin, S. J. Alan, and P. Dirmeyer (2003), The Sahelian climate, in
Vegetation, Water, Humans, and the Climate, edited by P. Kabat et al.,
chap. 5, pp. 57–76, Springer-Verlag, New York.

Yanai, M., and T. Tomita (1998), Seasonal and interannual variability of
atmospheric heat sources and moisture sinks as determined from NCEP/
NCAR reanalysis, J. Clim., 11, 463–482.

Yang, S., and K.-M. Lau (1998), Influences of sea surface temperature and
ground wetness on Asian summer monsoon, J. Clim., 11, 3230–3246.

Yasunari, T., A. Kitoh, and T. Tokioka (1991), Local and remote responses
to excessive snow mass over Eurasia appearing in the northern spring
and summer climate: A study with the MRI GCM, J. Meteorol. Soc. Jpn.,
62, 473–487.

Yatagai, A., and T. Yasunari (1994), Trends and decadal-scale fluctuations
of surface air temperature and precipitation over China and Mongolia
during the recent 40 year period (1951–1990), J. Meteorol. Soc. Jpn.,
72, 937–957.

Yatagai, A., and T. Yasunari (1995), Interannual variations of summer pre-
cipitation in the arid/semi-arid regions in China and Mongolia: Their
regionality and relation to the Asian summer monsoon, J. Meteorol.
Soc. Jpn., 73, 909–923.

�����������������������
R. DeFries and S. Prince, Department of Geography, University of

Maryland, College Park, Le Frak Hall, College Park, MD 20742, USA.
(rd63@umail.umd.edu; sp43@umail.umd.edu)
Y. Jiao, Department of Earth and Atmospheric Sciences, University of

Quebec at Montreal, 550 Sherbrooke West Road, Montreal, Canada H3A
1B9. ( jiao@atlas.sca.uqam.ca)
H.-M. H. Juang, NCEP/NWS/NOAA, WWBG Room 204, 5200 Auth

Road, Camp Springs, MD 20746, USA. (wd20hh@ncep.noaa.gov)
W.-P. Li, R. Vasic, and Y. Xue, Department of Geography, University of

California, Los Angeles, 1255 Bunche Hall, UCLA Box 951524, Los
Angeles, CA 90095-1524, USA. (wli@weber.sscnet.ucla.edu; rvasic@
weber.sscnet.ucla.edu; yxue@geog.ucla.edu)

D03105 XUE ET AL.: LAND SURFACE PROCESSES IN MONSOON DEVELOPMENT

24 of 24

D03105

Xiexh
文本框
Other Key Reference Papers for Prof. Xue's Lecture: [1] Xue, Y., F. J. Zeng, K. Mitchell, and Z. Janjic, E. Rogers, 2001: The Impact of Land Surface Processes on Simulations of the U.S. Hydrological Cycle: A Case Study of the 1993 Flood Using the SSiB Land Surface Model in the NCEP Eta Regional Model.  Mon. Wea. Rev. , 129, 2833-2860.[2] Xue, Y., 2005: Land surface processes and monsoon.  GEWEX Newsletter. February, 5, 6, 20.[3] Xue, Y., S. Sun, J.-M. Lau, J. Ji, I. Poccard, H.-S. Kang, R. Zhang, G. Wu, J. Zhang, J. Schaake, and Y. Jiao, 2005, Multiscale variability of the river runoff system in China and its link to precipitation and sea surface temperature.  J. Hydrometeorology, 6, 550-570.[4] Xue, Y., F. De Sales, R. Vasic, C. R. Mechooso, S. D. Prince, A. Arakawa, 2010:  Global and Seasonal Assessment of Interactions between Climate and Vegetation Biophysical Processes: A GCM Study with Different Land-Vegetation Representations. J. Climate, 23, 1411 -1433.



Improving the Noah Land Surface Model in Arid Regions with an Appropriate
Parameterization of the Thermal Roughness Length

YINGYING CHEN, KUN YANG, DEGANG ZHOU, JUN QIN, AND XIAOFENG GUO

Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research,

Chinese Academy of Sciences, Beijing, China

(Manuscript received 18 June 2009, in final form 28 March 2010)

ABSTRACT

Daytime land surface temperatures in arid and semiarid regions are typically not well simulated in current

land surface models (LSMs). This study first evaluates the importance of parameterizing the thermal

roughness length (z0h) to model the surface temperature (Tsfc) and turbulent sensible heat flux (H) in arid

regions. Six schemes for z0h are implemented into the Noah LSM, revealing the high sensitivity of the sim-

ulations to its parameterization. Comparisons are then performed between the original Noah LSM and

a revised version with a novel z0h scheme against observations at four arid or semiarid sites, including one in

Arizona and three in western China. The land they cover is sparse grass or bare soil. The results indicate that

the original Noah LSM significantly underestimates Tsfc and overestimates H in the daytime, whereas the

revised model can simulate well both Tsfc and H simultaneously. The improved version benefits from the

successful modeling of the diurnal variation of z0h, which the original model cannot produce.

1. Introduction

Arid and semiarid regions are an important portion of

the global land surface. Many studies have indicated that

desertification is increasing as a result of climatic change

and human activities (Puigdefabregas 1995;Warren 1996).

The arid and semiarid region of northwestern China has

experienced significant environmental changes within

the last half century (Ma and Fu 2006). Thus, it is crucial

to understand the land–atmosphere interactions and to

predict the variations of the hydrometeorological re-

gimes in these regions. From a lack of precipitation, the

surface heat transport becomes the dominant land sur-

face process (see section 3b) in arid regions. Therefore,

parameterizing the surface heat transport process in land

surface models (LSMs) is vital for accurately modeling

the surface energy budget.

However, the ability of current LSMs to simulate land

processes in arid and semiarid regions still needs im-

provement. Hogue et al. (2005) found that the Noah LSM

tended to overestimate the sensible heat flux (H) and

underestimate the surface temperature (Tsfc) during the

dry season. Yang et al. (2007) evaluated seven general

circulation models against coordinated enhanced ob-

serving period (CEOP) observations and found that all

of the models significantly underestimated the daytime

ground–air temperature differences, particularly severely

in arid and semiarid regions. LeMone et al. (2008) showed

that the default Noah model tended to overestimate H

and underestimate Tsfc in relatively dry conditions. Yang

et al. (2009) further evaluated three offline LSMs against

observations in the area of the Tibetan Plateau (TP);

their study indicated that all models significantly un-

derestimated the daytime Tsfc. Chen and Zhang (2009)

also found that the Noah model often overestimated the

surface exchange coefficient for heat (Ch) over short

vegetation.

The aforementioned modeling biases in Tsfc and H

imply that the heat transfer resistance in the models is

not appropriately parameterized. This resistance is re-

lated to both the aerodynamic roughness length (z0m)

and the thermal roughness length (z0h). Much of the

literature has focused on the parameterization of z0h
(Sheppard 1958; Brutsaert 1982; Zilitinkevich 1995;

Zeng andDickinson 1998; Kanda et al. 2007; Smeets and

van den Broeke et al. 200 AU18; Yang et al. 2008). Ma et al.

(2002) and Yang et al. (2003) found that z0h exhibits an
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evident diurnal variation on the TP. Yang et al. (2008)

evaluated several schemes and indicated that z0h de-

pends on the flow state and exhibits diurnal variations.

Some of these z0h schemes were developed and evalu-

ated against observations in the micrometeorology com-

munity, while they need more critical evaluations and

practical tests in LSMs to verify their effectiveness. That

is the motivation for this study.

The objective of this work is twofold: 1) to assess the

sensitivity of the land surface energy budget to different

parameterizations of z0h in the Noah LSM and 2) to

evaluate the performance of a revised Noah LSM against

field observations in arid regions. The Noah LSM is

selected because it is widely used and has been adopted

for operations and research in National Centers for

Environmental Prediction (NCEP) weather and cli-

mate predictions models and relevant data assimilation

systems.

In this paper, section 2 briefly introduces the climatic

characteristics of the sites and their relevant measure-

ments. Section 3 describes the LSM used in this work

and the settings of the model parameters. Section 4 tests

the sensitivity to key LSM parameters in arid regions,

and section 5 evaluates the performance of the revised

LSM. Concluding remarks are given in section 6.

2. Sites and observation data

In this study, simulations are conducted at one semi-

arid site inArizona and three arid sites in western China:

two on the TP and one in the northwest. Some general

information about these sites is given in TT1 able 1.

The semiarid site is Audubon Research Ranch (re-

ferred to as Audubon hereafter), which is located in

Arizona. The mean annual precipitation at Audubon is

;300–400 mm. The land surface is characterized by

sparse brown grass during the simulation period. The

data were collected through the AmeriFlux network

(information online at http://public.ornl.gov/ameriflux/).

The required forcing data were measured by automatic

weather stations. The observed ground truth data in-

cluded the surface temperature, the soil temperature

profile (2, 4, 8, 16, 32, 64, and 128 cm), the soil moisture

profile (10, 20, 30, 40, 60, and 100 cm), and turbulent

fluxes. The surface temperature was given by an infrared

thermometer [Apogee Infrared Thermocouple Sensor

(IRTS-P), Campbell Scientific]; the soil moisture sensor

(PR1/6, Delta-T Devices) and soil temperature probe

with thermistors (YSI Inc.) were set up to measure the

soil moisture and soil temperature, respectively; and the

turbulent fluxes was measured by an eddy-covariance

system (LI-COR LI-7500 for carbon dioxide and water

vapor concentrations, R.M. Young 81000V for wind

speed and sonic temperature). The 30-min averages were

recorded for all of the measurements. At this site, the

simulation period is from 15 April to 1 June 2003, when

no precipitation events occurred.

The two TP sites are Shiquanhe and Gaize, both lo-

cated in the western TP with elevations;4000 m above

sea level. Both sites, located in themidlatitude westerlies,

belong to the alpine desert climate. The mean annual

precipitation is around 200 mm and the land surface

is almost bare soil. Owing to the high elevation and

strong solar radiation, the surface heat fluxes and near-

surface meteorological variables undergo especially evi-

dent diurnal variations. Themeasurementswere collected

through the Global Energy and Water Cycle Experi-

ment (GEWEX) Asian Monsoon Experiment-Tibet

(GAME-Tibet; Koike et al. 1999) during an intensive

observing period (IOP, May;September 1998). The forc-

ing datawere recorded by automatic weather stations. The

observed ground truth data included surface temperature,

soil temperature profile (5, 10, 20, 40, and 80 cm), and soil

moisture at 0–15 cm; turbulent fluxes, however, were not

available. The surface temperature was directly mea-

sured using a thermometer, with half of the sensor buried

in the soil and half exposed to the air. This technique is

used routinely by the Chinese Meteorological Adminis-

tration to measure the bare soil surface temperature. The

surface temperaturemeasuredusing this technique agrees

with that converted from the measured longwave radia-

tion (given a surface emissivity of 0.9, which is derived

by assuming the thermometer measurements near sun-

set are reliable) at Shiquanhe, with an uncertainty of

2–3 K. The soil moisture was measured with a time do-

main reflectometry (TDR) soil water content hygrome-

ter. Data averaged over 30 or 60 min were recorded. At

the Shiquanhe site, the simulation period is from1May to

14 September 1998, when the amount of rainfall is only

25 mm.At theGerze site, the simulation period is shorter

TABLE 1. General information about the four sites used in this study.

Site Data source Lat, lon Elevation (m) Land cover

Audubon AmeriFlux 318359N, 1108319W 1469 Desert grassland

Shiquanhe GAME-Tibet 328309N, 808059E 4279 Alpine desert

Gaize GAME-Tibet 328189N, 848039E 4420 Alpine desert

Dunhuang NWC-ALIEX 408099N, 908419E 1150 Desert
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(from 1 May to 15 June 1998), though no precipitation

events occurred.

The last arid desert site is Dunhuang. The observed

data were collected through the Field Experiment on

Interaction between Land and Atmosphere in Arid Re-

gion of North-west China (NWC-ALIEX; Huang et al.

2002). Wind speed, air temperature, and humidity were

measured on a tower at four heights: 1, 2, 8, and 18 m.

Surface temperature was measured using the same tech-

nique as was used at Shiquanhe and Gaize. Soil temper-

atures were measured at six depths: 5, 10, 20, 40, 80, and

180 cm. Soil water contents were measured at depths

of 5, 10, 20, and 80 cm with TDR. Downward and up-

ward radiation flux components were measured at 1.5 m.

During the IOP (10;25 June 2004), turbulent fluxes were

measured by the eddy-covariance technique with 30-min

bulk averaging. The simulation targets the period 18May–

25 June, when no precipitation was detected.

3. Land surface model and parameter settings

a. Model description

The Noah LSM is developed based on the Oregon

State University (OSU) LSM, which includes a two-

layer soil model with thermal conduction equations for

soil temperature and the diffusive form of Richardson’s

equationAU3 for soil moisture (Mahrt and Pan 1984a), as

well as a Penman approach for the calculation of the

latent heat flux (Mahrt andEk 1984b). After beingwidely

adopted by NCEP, the Noah model has benefitted from

a series of improvements. Among the major improve-

ments are an increase from two to four soil layers, mod-

ifications to the canopy conductance formulation (Chen

et al. 1996), bare soil evaporation and vegetation phe-

nology (Betts et al. 1997), a new runoff formulation and

infiltration (Schaake et al. 1996), thermal roughness length

treatment in the surface layer exchange coefficients (Chen

et al. 1997), and the inclusion of cold season processes

(Koren et al. 1999). A more detailed overview of the

physics lineage of the Noah LSM is presented in Ek et al.

(2003).

We presently employ version 2.7 of the Noah LSM.

In general, the model has four soil layers (with depths

of 10, 30, 60, and 100 cm from top to bottom), a single

canopy layer, and a single snow layer. The vegetation

types are defined according to the categories assigned

fromU.S. Geological Survey (USGS) database. The soil

types are defined by the Food and Agriculture Organi-

zation (FAO) database. Soil moisture for each soil layer

is calculated from the diffusive form of Richard’s equa-

tion. Soil temperature is calculated from the heat diffu-

sion equation. The surface temperature is determined

following Mahrt and Ek (1984b) to reflect a linearly

combined ground–vegetation surface. A more detailed

description of the model governing equations and the

parameterizations can be found in Chen and Dudhia

(2001).

b. Land surface processes in arid regions

The surface energy balance (SEB) equation in Noah

LSM can be written as

R
net

5 (1� a)SY 1 «(LY � sT4
sfc) and (1a)

R
net

5H1 lE1G
0
, (1b)

where Rnet is the net radiation. Equation (1a) is the ra-

diation budget equation, where SY and LY are the down-

ward solar and longwave radiation, respectively, providing

TABLE 2. Model parameters derived from observations at four sites. Note that a D in parentheses means a default value.

Audubon Dunhuang Shiquanhe Gaize

Albedo 0.24 0.27 0.24 0.28

Surface emissivity 0.93 0.92 0.90 0.91

Thermal diffusivity (m2 s21) 2.7 3 1027 2.3 3 1027 3.7 3 1027 3.4 3 1027

Aerodynamic roughness length (m) 0.011 (D) 0.00067 0.011 (D) 0.011 (D)

TABLE 3. The z0h parameterization schemes selected for our sensitivity study: Re
*
5 z0mu*

/n, Pr5 0.71, k5 0.4, n is the fluid kinematical

viscosity, a 5 0.52, and C 5 0.075 in Z95.

Formula Reference Abbreviation

z0h 5 z0m /(Pr 3 Re
*
) Sheppard (1958) S58

z0h 5 z0m 3 exp(2.0 2 2.46Re
*
0.25) Brutsaert (1982) B82

z0h 5 z0m 3 exp(21.0kCRe
*
0.5) Zilitinkevich (1995) Z95

z0h 5 z0m 3 exp(21.0kaRe
*
0.45) Zeng and Dickinson (1998) Z98

z0h 5 z0m 3 exp(2.0 2 1.29Re
*
0.25) Kanda et al. (2007) K07

z0h 5 (70v/u
*
) 3 exp(27.2u

*
0.5jT

*
j0.25) Yang et al. (2008) Y08

MONTH 2010 CHEN ET AL . 3

JOBNAME: JHM 00#0 2010 PAGE: 3 SESS: 8 OUTPUT: Thu Jun 17 10:05:49 2010 Total No. of Pages: 12
/ams/jhm/0/jhm1185



inputs of the essential forcing; Tsfc is the land surface

temperature; s is the Stefan–Bolzmann constant; and

a and « are the surface albedo and the ground surface

emissivity, respectively. Equation (1b) is the energy bud-

get balance equation, where H is the turbulent sensible

heat flux, lE is the turbulent latent heat flux, and G0 is

the surface soil heat flux. In this study, the negligible

rainfall and the nonvegetated ground conditions at all

sites lead to extremely high Bowen ratios; we thus omit

lE in Eq. (1b). The other two terms, H and G0, should

dominate the surface energy budget.

In the Noah LSM, the sensible heat flux is calculated

through the bulk heat transfer equation:

H5�rc
p
C

h
u(u

air
� u

sfc
), (2)

where r is the air density; cp is the specific heat ca-

pacity of air at constant pressure; Ch is the surface ex-

change coefficient for heat; u is the wind speed; uair
is the air temperature adjusted adiabatically for the

height above the surface (z) and is approximately equal

to [Tair 1 (g/cp) 3 z], where g is gravitational constant;

and usfc is the corresponding variable at the surface. From

Eq. (2), Ch is a crucial parameter in determining H.

Usually,Ch can be obtained through theMonin–Obukhov

similarity theory, and is mainly dependent on z0h and z0m,

as well as the atmospheric stability.

FIG. 1. Comparison of the diurnal variation of the (a) surface exchange coefficient, (b)

sensible heat flux, (c) soil heat flux, and (d) surface temperature among simulations using

different z0h schemes: 1) Y08, 2) S58, 3) B82, 4) Z95, 5) Z98, and 6)K07 at Shiquanhe. Note that

the observed Tsfc are available in (d).
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The surface soil heat flux can be written as

G
0
5 k

T
(Q

1
)
T

sfc
� T

1

h
1

, (3)

where kT is the soil thermal conductivity that depends

on both soil water content (Q) and soil type,T1 is the soil

temperature in the uppermost layer, and h1 is equal to

half of its depth. At present,Q is very low with negligible

temporal variations; therefore, the value of kT is assumed

to be a constant value at individual sites. As a result,G0

mainly depends on the modeled Tsfc.

The turbulent sensible heat and ground heat fluxes are

the dominant components in Eq. (1b). In addition to the

input forcing data, the parameters in the radiation and

energy budgets (1a) and (1b) would determine the sur-

face energy flux partitioning and the surface tempera-

ture. Therefore, they should be set accurately.

c. Model settings

The vegetation types at four sites are prescribed as the

bare soil according to the aforementioned characteris-

tics of the ground. The soil type is derived from the FAO

data. The soil hydraulic parameters are much less im-

portant for the modeling of the surface temperature and

energy budget at dry sites than are the energy-related

soil parameters and surface parameters (a, «, z0h, z0m,

and kT). Among them, a, «, and kT at all sites and z0m at

Dunhuang can be derived from the observations, and

their mean values are given in TT2 able 2. The parameter

kT was derived from the thermal diffusivity, which was

estimated from the diurnal range of observed soil tem-

peratures profile instead of a parameterization; a was

directly obtained from observed downward and upward

shortwave radiation fluxes; and « was derived from sur-

face temperature and longwave radiation fluxes.

In addition, z0m is physically related to the geometric

roughness of surface elements and can be derived from

the wind speed and temperature profiles. An optimal

method suggested by Yang et al. (2008) was employed

to estimate z0m at Dunhuang, where the profile data are

available. The default value of z0m prescribed by veg-

etation type was used at the other three sites. In the

Noah LSM, z0h is calculated by the Reynolds number–

dependent scheme of Zilitinkevich (1995), as shown in

T T3able 3. Yang et al. (2008) argued that this scheme

overestimated z0h and thus underestimated the peak

values of Tsfc. However, considering the significance of

z0h and z0m, the sensitivity of thee surface energy budget

to them will be investigated in section 4. In all simula-

tions, the soil moisture and soil temperature are initial-

ized with the observations.

4. Sensitivity test to the roughness lengths

Given the similarity among four arid sites, we regard

Shiquanhe as being representative of the arid sites for

a sensitivity analysis.

a. Thermal roughness length

To test the sensitivity of surface energy budget to

different z0h values, six z0h schemes available in the lit-

erature were implemented into the Noah LSM. Listed in

Table 3 are S58 (Sheppard 1958), B82 (Brutsaert 1982),

Z95 (Zilitinkevich 1995), Z98 (Zeng and Dickinson

1998), K07 (Kanda et al. 2007), and Y08 (Yang et al.

2008). S58 and B82 were examined in detail in Verhoef

et al. (1997). Z95 has been widely used in NCEP oper-

ational prediction systems since Chen et al. (1997). Z98

has been used in an LSM to unify undercanopy heat

transfer processes between dense and sparse canopies.

K07 was derived from urban canopy experiments. Y08

will be introduced in section 5a. In Yang et al. (2008),

these schemes have been evaluated within the frame-

work of Monin–Obukhov similarity theory by using

observed Tsfc to parameterize H. In this study, their ef-

fectiveness is tested against independent datasets within

the framework of land surface modeling.

TABLE 4. Determination coefficient (R2), bias (BIAS), mean

deviation (MD), and root-mean-square deviation (RMSD) be-

tween the observed Tsfc and the simulations using the schemes in

Table 3 for Shiquanhe.

Tsfc R2 BIAS* (K) MD* (K) RMSD* (K)

S58 0.9454 21.61 3.17 4.11

B82 0.9493 4.34 4.99 7.12

Z95 0.925 26.65 6.78 8.02

Z98 0.9453 23.8 4.44 5.37

K07 0.9493 4.34 4.99 7.11

Y08 0.9525 21.63 2.99 3.89

* BIAS, MD, and RMSD are defined as BIAS 5
[�N

i51(Xi �Obsi)]/N, MD5 [�N

i51 Xi �Obsi
�� ��]/N, and RMSD5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[�N
i51(Xi �Obsi)

2]/N
q

, where N is the sample number.

TABLE 5. Sensitivity test of the simulated surface temperature

(Tsfc) and sensible heat flux (H) to the aerodynamic roughness

length (z0m). Comparative statistics are calculated between z0m5
0.011 m and z0m 5 0.001 m for Shiquanhe.

Tsfc H

BIAS

(K)

MD

(K)

RMSD

(K)

BIAS

(W m22)

MD

(W m22)

RMSD

(W m22)

S58 0.24 0.25 0.32 21.31 2.04 3.17

B82 0.32 0.32 0.39 21.75 2.19 3.5

Z95 0.53 0.54 0.73 22.94 4.82 7.47

Z98 0.39 0.4 0.53 22.17 3.57 5.34

K07 0.3 0.31 0.4 21.66 2.37 3.65

Y08 0.22 0.23 0.31 21.22 2.28 3.44
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FF1 igure 1a compares the diurnal variation of Ch ob-

tained using six schemes at Shiquanhe. During the sim-

ulation period, the highest Ch values of Z95 are about

four times the lowest values of B82, theCh values of Y08

are comparable to those of S58, and the results of K07

are very close to those of B82. Apparently, as in the

previous studies, Ch is very sensitive to the parameteri-

zation schemes of z0h in arid regions.

In Figs. 1b and 1c, we compare dominant heat flux

components simulated by different z0h schemes. As ex-

pected, differences in the simulated sensible heat flux

arise from those in Ch values; high (low) Ch values cor-

respond to high (low) H, and low (high) G0 are found

accordingly. It is easy to interpret this phenomenon. As

discussed in section 3, G0 is mainly determined by the

modeled Tsfc. Therefore, if H is overestimated, Tsfc,

which is calculated diagnostically from surface energy

balance considerations, will be underestimated and thus

G0 will be underestimated.

Figure 1d compares the diurnal variation of Tsfc be-

tween the observations and simulations with different

z0h schemes. The simulations with the Y08 and S58

schemes produce good agreement with the observed

daytime surface temperature, while the simulations with

other schemes produce clear biases. T T4able 4 gives the

comparative statistics between the observed Tsfc and the

FIG. 2. Comparison of the diurnal variation of the (a) surface temperature, (b) net radiation,

(c) sensible heat flux, and (d) soil heat flux between two simulations by the revised Noah LSM

and the original version against the observations for the Audubon site. Circles represent the

observations, the dark gray line represents the simulations by revised the Noah model, and

dashed black line represents the simulations by the original model.
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simulations using various schemes; we thus confirm that

Y08 reproduces Tsfc more consistently with observed

data than do the other schemes in this case.

b. Aerodynamic roughness length

The aerodynamic roughness length is ideally deter-

mined from the wind speed profile, although there have

been some successes in relating this height to the ar-

rangement, spacing, and physical height of individual

roughness elements. The lack of profile data makes it

hard to precisely estimate z0m. The common approach is

to empirically prescribe a value of z0m for a given veg-

etation type.

The sensitivity ofH andTsfc to z0m is also investigated.

In the simulations, we tried out two z0m values: a default

value of z0m (0.011 m) and a lower value (0.001 m) at

Shiquanhe, in combination with different z0h schemes in

Table 3. TT5 able 5 shows error metrics between the sim-

ulations produced by the six schemes. Clearly, different

z0m values produce minor differences both in Tsfc andH;

H and Tsfc, therefore, are not reasonably sensitive to

z0m. Moreover, the Y08 scheme produces lower differ-

ences, indicating its particularly low sensitivity to the

choice of z0m.

In summary, the surface flux and temperature simu-

lations are highly sensitive to the z0h schemes and much

less sensitive to the z0m value; the Y08 scheme seems to

be a promising scheme since it can appropriately re-

produce Tsfc. So, we applied the Y08 scheme to update

the Noah LSM, and made further evaluations against

the observations.

5. Updating Noah with the Y08 scheme
and evaluations

a. Brief introduction to the Y08 scheme

The parameterization of the thermal surface rough-

ness length is crucial for directly using Tsfc to calculate

H. Many works (see Table 3) have related z0h directly to

z0m through the parameter kB21 [defined as ln(z0m/z0h)].

Momentum transport is generally more efficient than

heat transport, due to the influence of pressure fluctua-

tion, because individual roughness elements may en-

hance the momentum flux through form drag with little

contribution to the area-averaged heat flux (Mahrt 1996).

Therefore, z0h is typically less than z0m, especially over a

surface with bluff roughness elements, and a higher z0m
usually corresponds to a lower z0h.

TABLE 6. The error metrics of the difference between the half-hourly observations and the simulated results at four sites from the

revised Noah model and the original version, respectively: BIAS, MD, and RMSD. The observed sensible heat flux was not available at

Shiquanhe and Gaize.

Tsfc H Rnet

BIAS

(K)

MD

(K)

RMSD

(K)

BIAS

(W m22)

MD

(W m22)

RMSD

(W m22)

BIAS

(W m22)

MD

(W m22)

RMSD

(W m22)

Audubon Original 24.05 4.06 5.16 21.31 53.64 54.22 18.13 18.13 25.35

Revised 21.85 1.96 2.35 213.57 25.45 34.64 3.94 6.41 8.69

Dunhuang Original 22.78 3.15 4.06 8.77 25.58 36.69 9.84 13.04 18.83

Revised 21.82 2.33 2.98 1.72 18.37 26.02 3.15 10.69 14.45

Shiquanhe Original 26.44 6.74 8.18 — — — 43.4 45.06 66.01

Revised 21.63 2.99 3.89 — — — 13.09 19.92 29.13

Gaize Original 25.58 5.62 7.07 — — — 25.37 26.77 41.49

Revised 22.16 2.67 3.44 — — — 4.32 10.66 16.1

TABLE 7. As in Table 6, but for the daytime (0900–1600 local time).

Tsfc H Rnet

BIAS

(K)

MD

(K)

RMSD

(K)

BIAS

(W m22)

MD

(W m22)

RMSD

(W m22)

BIAS

(W m22)

MD

(W m22)

RMSD

(W m22)

Audubon Original 28.08 8.09 8.39 63.42 69.26 80.22 38.39 38.62 41.47

Revised 22.19 2.28 2.68 21.91 34.23 41.62 20.23 5.96 7.69

Dunhuang Original 24.99 5.15 5.93 38.36 47.84 57.29 19.48 22.11 27.89

Revised 22.44 2.96 3.86 14.48 30.52 38.4 1.22 16.08 19.97

Shiquanhe Original 211.15 11.29 12.21 — — — 99.54 100.92 107.63

Revised 21.66 3.82 5.18 — — — 35.59 41.07 46.24

Gaize Original 210.18 10.19 10.91 — — — 64.01 64.01 68.44

Revised 22.62 3.73 4.76 — — — 15.48 20.78 25.53
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Following this reasoning, Yang et al. (2002) correlated

z0h to a physical height (hT), which is related to a height

to separate the fully turbulent layer and the transitional

layer. The height hT is determined by the critical Reynolds

number (Recrit):

h
T
5

nRe
crit

u*
, (4)

where Recrit 5 70 in this study, n is the fluid kinematic

viscosity, and u
*
is the friction velocity.

For a surface with bluff roughness elements, u
*
is

quite large due to form drag and, therefore, gives a small

hT. So the variation of hT is similar to that of z0h, making

it reasonable to use hT as a length to scale z0h. Therefore,

Yang et al. (2002) defined the parameter

kA�1 5 ln
h
T

z
0h

. (5)

Based on data analysis for three TP sites, they found

the typical diurnal variation of z0h, and then assumed the

following form for kA21:

kA�15bum* u*
�� ��n, (6)

where b, m, and n are coefficients. Data analysis indi-

cates that m 5 ½, n 5 1/4 are reasonable values. Yang

et al. (2008) suggested the use of b5 7.2 m21/2 s1/2 K21/4.

Combining Eqs. (4)–(6), they obtained a general expres-

sion of z0h for bare-soil or short-vegetation surfaces:

z
0h
5

70n

u*
exp(�bu1/2* u*

�� ��1/4). (7)

FIG. 3. As in Fig. 2, but for Dunhuang.
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More detailed information on Y08 and its evolution can

be found in Yang et al. (2002) and Yang et al. (2008).

b. Evaluations

Evaluations of both the revised Noah LSM and the

original version were performed first at Audubon and

Dunhuang, where surface temperature and sensible heat

flux data are available. Then, they were evaluated at

Shiquanhe and Gaize, where only surface temperature

data are available.

1) AUDUBON AND DUNHUANG

FF2 igures 2a–d compare the simulated diurnal variations

of Tsfc, Rnet,H, andG0, respectively, between the revised

Noah LSM and the original version at Audubon Re-

search Ranch. Obviously,Tsfc andH, as well asRnet, were

properly simulated by the revised model, while the orig-

inal model produced higher H and lower Tsfc, and, thus,

higher Rnet. T T6able 6 gives error indices, which indicate

that the revised model significantly reduced the simula-

tion errors. The error metrics for Tsfc, Rnet, and H are

calculated using data during the whole simulation period.

The major difference between the two simulations

occurs in the daytime. T T7able 7 shows the error metrics

using data during 0900–1600 local time (LT) when the

original model yields higher H, higher Rnet, and lower

Tsfc. The lowerTsfc would directly result in lowerG0 (see

Fig. 2d), corresponding to higher H.

FIG. 4. Comparison of the diurnal variation of the (a) surface temperature, (b) net radiation,

(c) sensible heat flux, and (d) soil heat flux from two simulations by the revised Noah and the

original version for Shiquanhe.
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FF3 igures 3a–d compare the diurnal variations of the

components in the energy balance equation at Dunhuang.

As shown in Figs. 3a–c, the revised Noah LSM can better

simulate Tsfc, Rnet, and H than could the original version.

This is confirmed by the comparative statistics in Tables 6

and 7.

2) SHIQUANHE AND GAIZE

FF4 igures 4 and 5F5 give the comparisons at Shiquanhe

and Gaize, respectively. Evidently, the original model

significantly underestimated Tsfc and overestimated Rnet,

while the revised model simulated well both Tsfc and Rnet.

These results are confirmedby the errormetrics in Table 6.

The improvements by the revised model are especially

evident in the daytime. In Table 7 we find that the

original model underestimates Tsfc by more than 10 K

during 0900–1600 LT, while the revised model performs

much better. Moreover, we found that the original model

performed worse at two TP sites than at Audubon and

Dunhuang; this finding will be discussed in more depth in

section 5c.

c. Discussion

To understand the different levels of performance

between the revised Noah LSM and the original model,

F F6ig. 6 shows the simulated mean diurnal variation of

ln(z0h) throughout the simulation period at four sites. It

is clear that the values of z0h simulated by the revised

model exhibit evident diurnal variations. In fact, several

studies have reported the diurnal variations of z0h over

the bare-soil surface and grasslands (Verhoef et al. 1997;

Sun 1999; Ma et al. 2002; Yang et al. 2003). But this

FIG. 5. As in Fig. 4, but for Gaize.
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diurnal variation was hardly simulated by the original

Noah LSM. Figure 6 shows that the original model pro-

duces rather high z0h, and thus fairly high Ch, compared

to those produced by the revised model in the daytime.

Moreover, the originally simulated Tsfc is lower because

the too high Ch carries too much heat away from the

surface. Two direct effects arise from the underestimate

ofTsfc: one is the overestimate ofRnet due to the reduced

upward longwave radiation flux; the other is the under-

estimate of G0 due to an underestimated soil tempera-

ture gradient.

Figure 6 also shows that the values of z0h produced by

the revised model have larger diurnal ranges at two TP

sites than elsewhere. This is consistent with Yang et al.

(2008), who found that the diurnal variations of z0h at TP

sites are more evident than at other sites. This phe-

nomenonmay be attributed to strong diurnal changes of

near-surface meteorological variables and higher land–

atmosphere temperature differences caused by the high

elevation and thus strong solar radiation. Because the

differences between the two simulated z0h values at the

TP sites are also larger than at Dunhuang and Audubon

during the daytime, the improvements in the revised

Noah are believed to be particularly meaningful at two

high-elevation sites, as shown in Tables 6 and 7.

6. Conclusions

In this paper we investigated the importance of sur-

face flux parameterization in simulating land surface

processes in arid regions. Six thermal surface roughness

length schemes were intercompared in the Noah LSM

and then the revised version, with one promising z0h
scheme evaluated at four arid or semiarid sites. Our

major findings are as follows.

The parameterization of z0h is crucial for modeling

Tsfc and the surface energy budget in arid regions.

Sensitivity tests for the six selected schemes confirm

foregoing studies that found the daytime Tsfc is sensi-

tive to the parameterization. If z0h is overestimated

(underestimated), Tsfc would be underestimated (over-

estimated). In addition, H would be overestimated

(underestimated), while G0 would be underestimated

(overestimated).

The Noah LSM, originally using Z95 as z0h its pa-

rameterization scheme, produces unseasonably high z0h
during the day in arid regions, which leads to over-

estimatedH and underestimated Tsfc in the daytime. By

implementing the Y08 z0h scheme, the revised Noah

model can well simulate Tsfc and the surface energy

budget simultaneously. Given the wide usage of the

Noah LSM in NCEP numerical models, further efforts

are warranted to examine potential improvements in

synoptic or climatic simulations adopting the presently

updated land surface parameterization.
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framework: Confronting input, parameter, and model structural

uncertainty in hydrologic prediction
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[1] The conventional treatment of uncertainty in rainfall-runoff modeling primarily
attributes uncertainty in the input-output representation of the model to uncertainty in
the model parameters without explicitly addressing the input, output, and model
structural uncertainties. This paper presents a new framework, the Integrated Bayesian
Uncertainty Estimator (IBUNE), to account for the major uncertainties of hydrologic
rainfall-runoff predictions explicitly. IBUNE distinguishes between the various sources
of uncertainty including parameter, input, and model structural uncertainty. An input
error model in the form of a Gaussian multiplier has been introduced within IBUNE.
These multipliers are assumed to be drawn from an identical distribution with an
unknown mean and variance which were estimated along with other hydrological model
parameters by a Monte Carlo Markov Chain (MCMC) scheme. IBUNE also includes the
Bayesian model averaging (BMA) scheme which is employed to further improve the
prediction skill and address model structural uncertainty using multiple model outputs.
A series of case studies using three rainfall-runoff models to predict the streamflow in
the Leaf River basin, Mississippi, are used to examine the necessity and usefulness of
this technique. The results suggest that ignoring either input forcings error or model
structural uncertainty will lead to unrealistic model simulations and incorrect uncertainty
bounds.

Citation: Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework:

Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403,

doi:10.1029/2005WR004745.

1. Introduction

[2] Various hydrologic rainfall-runoff models have been
used to represent the watershed physical processes which
control the conversion of precipitation into streamflow
and water storage changes. These models include many
parameters describing the properties of the watershed that
need to be estimated through calibration against historical
observation data. For many years, research effort has been
devoted to develop techniques to find the proper estimates
of the parameter values that enable the model predictions to
match the watershed observations. One major weakness of
this parameter-calibration approach is that the objective
function used to calibrate the model parameters implicitly
assumes that all sources of uncertainties in the modeling
process can be attributed to parameter errors. In fact, in
addition to parameter uncertainty, model predictions are
affected by many other uncertainties from various sources,
among them the errors in model input (forcing) data such as

the precipitation observation data, the description of bound-
ary and initial conditions, and the model structural deficien-
cies. Because of the highly nonlinear nature of the
hydrologic system, it is not feasible to account for all these
uncertainties from different sources through model param-
eter adjustments.
[3] Recently, hydrologic research [Beven and Binley,

1992; Kuczera and Parent, 1998; Vrugt et al., 2003;
Marshall et al., 2003; Montanari and Brath, 2004] began
to analyze various uncertainty sources in hydrological
modeling. New techniques have made significant progress
in estimating the propagation of confidence bounds from
different uncertainty sources to the model output. Among
them include the use of data assimilation techniques
to tackle uncertainty in boundary and initial conditions
[Kitanidis and Bras, 1980a, 1980b; Beck, 1987; Evenson,
1992; Miller et al., 1994]; simultaneous data assimilation
and parameter estimation [Moradkhani et al., 2005]; and
simultaneous uncertainty estimation of input (forcing) data
and parameter estimation [Kavetski et al., 2003]. Most of
these studies focus on addressing one or two uncertainty
sources based on a selected hydrologic model. However, by
using a single model, those techniques (which do not
change the model structures) are unable to account for the
errors in model output resulting from the structural defi-
ciencies of the specific model.
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[4] Lately a new scheme has emerged which seeks to
obtain a consensus from a combination of multiple model
predictions so that one model’s output errors can be compen-
sated by others’. The combination techniques can be catego-
rized into two groups. The first group [e.g., Shamseldin
et al., 1997; Abrahart and See, 2002; Georgakakos et al.,
2004; Ajami et al., 2005, 2006] uses a set of deterministic
weights to combine multiple model outputs. Methods of
simple model average (equal weights), linear regression, or
artificial neural network (ANN) belong to this category. The
consensus prediction from these methods is an alternative
deterministic prediction without uncertainty estimates. In
addition, the weights in such combination can take any
arbitrary real (positive or negative) values that lack physical
interpretations.
[5] The second group such as Bayesian model averaging

(BMA) [Madigan et al., 1996; Hoeting et al., 1999] uses
probabilistic techniques which derive the consensus predic-
tion from competing predictions using likelihood measures
as model weights. The likelihood measure (weight) for each
member model is based on the success frequency of the
predictions that an individual model has made within the
observations. For this reason, BMAweights are tied directly
to individual model performance. BMA has been applied in
a variety of fields including statistics, management science,
medicine, and meteorology [e.g., Viallefont et al., 2001;
Fernandez et al., 2001; Raftery et al., 2003, 2005; Wintle
et al., 2003]. In many case studies, the BMA has shown to
produce more accurate and reliable predictions than other
multimodel techniques [George and McCulloch, 1993;
Raftery et al., 1997; Clyde, 1999; Viallefont et al., 2001;
Raftery and Zheng, 2003; Ellison, 2004]. Very recently, the
BMA method was applied to hydrologic groundwater
modeling [Neuman and Wierenga, 2003; Neuman, 2003].
[6] The intend of this study is to build a hybrid frame-

work, Integrated Bayesian Uncertainty Estimator (IBUNE),
to confront the uncertainties in rainfall-runoff predictions
associated with input errors, model parameters estimates,
and model structural deficiencies. To accomplish this
objective, the paper is divided into three major parts. First,
the Shuffled Complex Evolution Metropolis (SCEM) algo-
rithm [Vrugt et al., 2003], which was developed for prob-
abilistic parameter estimation, will be studied. We will
demonstrate that not accounting for existing error in the
input and model structure could lead to corrupted parameter
estimations, as well as unreliable uncertainty bounds on the
model predictions. The second part of the paper presents a
simple approach to extend SCEM to simultaneously account
for the uncertainties originating from both input precipita-
tion data and the model parameters. This is the first step
toward building IBUNE. We will demonstrate that the error
incorporated within the input (forcing) data is one of the
major uncertainty sources in the rainfall-runoff modeling
system, and by accounting for it within our uncertainty
assessment procedure, we will improve the uncertainty
bounds in model prediction. We will also show that not
assessing model structural uncertainty is still an important
limitation of this part of the study.
[7] Finally, the intent of the third part of this paper is to

consider model structural uncertainty in addition to input
and parameter uncertainty. We present a hybrid approach
where we merge the strengths of the Bayesian model

averaging scheme with the extended SCEM. This is the
final step in building the new framework, called IBUNE.
IBUNE further reduces the uncertainties caused by the
deficiencies in individual models by using Bayesian model
averaging, while also accounting for input and parameter
uncertainty within individual models by applying extended
SCEM. Finally, the IBUNE scheme will be applied to a real
case study in the Leaf River basin.

2. Study Basin and Hydrological Models

[8] We have selected the Leaf River basin to demonstrate
the performance of presented frameworks in this study. This
1949-km2 basin is located north of Collins, Mississippi.
Five years of daily historical data (1953–1957), including
precipitation (millimeters per 6 hours), potential evapotrans-
piration (mm/d), and streamflow (m3/s) were used for
calibration and uncertainty assessment. Since many other
studies were conducted over the period of 1953–1957
[Yapo et al., 1998; Gupta et al., 1998; Hogue et al., 2003;
Vrugt et al., 2003], for comparison purposes we selected the
same period for this study. To reduce the sensitivity to initial
state variables, a 365-day (through water year 1952) warm-
up period was used, during which no calibration and
uncertainty estimation was performed for any of the under
study hydrologic models. Three hydrologic models were
selected for this study including the Sacramento soil mois-
ture accounting (SAC-SMA) model [Burnash et al., 1973],
the hydrologic model (HYMOD) [Boyle, 2001], and the
simple water balance (SWB) [Schaake et al., 1996] model.
[9] SAC-SMA is a nonlinear, time-continuous, and con-

ceptual rainfall-runoff model [Burnash et al., 1973] and is
being used operationally by many of the U.S. National
Weather Service River Forecast Centers (NWS-RFC) for
flood forecasting. The model includes two soil moisture
layers, an upper and lower zone (Figure 1). This model
includes 16 parameters, three of which were fixed at
specified values; the remaining 13 parameters need to be
determined through some kind of search process.
[10] Because the Leaf River basin has been studied

extensively for optimization purposes [e.g., Yapo et al.,
1998; Gupta et al., 1998; Thiemann et al., 2001; Hogue
et al., 2003], we have gained a very good knowledge of
what SAC-SMA parameter values should be for this basin.
In order to minimize the interaction between various param-
eters in the SAC-SMA model and hence reduce the com-
plications due to the nonidentifiably problem, which could
cast shadow over the main objectives of this work, the SAC-
SMA model was simplified. First we fixed five percolation
parameters to prespecified values (Table 1). Further, we
maintained the relative values of the parameters associated
with the lower zone and the upper zone. Consequently the
number of parameters in the SAC-SMA model that need to
be identified was decreased to five: upper zone tension
water maximum storage (UZTWM); upper zone free-water
maximum storage (UZFWM); upper zone free-water lateral
depletion rate (UZK); lower zone total maximum storage
(LZTM); and lower zone supplementary free-water deple-
tion rate (LZSK). LZTM represents the summation of all
lower zone storages. The lower zone primary free-water
depletion rate (LZPK) is estimated to be 3% of the lower
zone supplemental free-water depletion rate (LZSK).
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[11] Two simple conceptual rainfall-runoff models were
also used in this study: HYMOD and SWB models. The
HYMOD [Boyle, 2001] consists of a simple rainfall excess
model, which is connected to two series of linear reservoirs
to route surface and subsurface flow (three quick-flow
reservoirs and a single slow-flow reservoir). This model
includes five parameters: Cmax (L) is the maximum storage
capacity in the catchment; bexp (�) is the shape factor of the
main soil-water storage tank that represents the degree of
spatial variability of the soil-moisture capacity within the
catchment; Alpha (�) is the factor distributing flow between

two series of reservoirs; and Rq (T) and Rs (T) are the
residence times of linear quick- and slow-flow reservoirs,
respectively. The schematic of this model is illustrated in
Figure 2. The parameters and their initial uncertainty
bounds are presented in Table 2.
[12] The simple water balance (SWB) model [Schaake et

al., 1996] is a conceptual, parametric water balance model
which is being used as an operational model in the Nile
River forecast center. This model includes two soil layers. A
thin upper layer represents the vegetation canopy and the
soil surface, while a lower layer represents the vegetation

Figure 1. Schematic of the Sacramento soil moisture accounting (SAC-SMA) model [Brazil, 1988].

Table 1. Parameters of the Modified SAC-SMA Model

Parameter Description Prior Range

UZTWM upper zone tension-water capacity, mm 1.00–150.0
UZFWM upper zone free-water capacity, mm 1.00–150.0
UZK upper zone recession coefficient, day�1 0.10–0.5
LZTM total lower zone water capacity, mm 1.00–1000.0
LZSK lower zone supplementary recession coefficient, day�1 0.01–0.25
Percolation and other parameters (not optimized)
ADIMP additional impervious area 0.15
PCTIM impervious fraction of the watershed area 0.025
ZPERC minimum percolation rate coefficient 200.0
PFREE percentage percolating from upper to lower zone free water storage 0.1
REXP exponent of the percolation equation 3.3
RIVA riparian vegetation area 0.01
SIDE ratio of deep recharge to channel base flow 0.0
RSERV fraction of lower-zone free water not transferable to tension water 0.3
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root zone and groundwater system. Five parameters con-
trolling the SWB model processes are Db,max, the maximum
soil-moisture deficit of the bottom layer of the soil; Qmax,
the potential subsurface runoff; b = Qmax/Smax, the ratio of
the lower level posture that produces subsurface flow (Smax

is the minimum threshold that guarantees subsurface flow);
a = Du,max/Db,max, the upper layer deficit proportion (Du,max

is the maximum soil-moisture deficit of the upper layer);
and Kdt, the timescale factor that controls infiltration into the
bottom layer and the surface runoff amount. The schematic
of this model is illustrated in Figure 3. The SWB model
parameters and their initial uncertainty bounds are listed in
Table 3.

3. Traditional Uncertainty Assessment in
Hydrological Modeling

3.1. Derivation of Likelihood Function for Assessment
of Parameter Uncertainty

[13] A typical hydrologic model, M, can be represented
as follows:

y ¼ M ~X ; q
� �

; ð1Þ

where y represents the response matrix of the catchment
(e.g., streamflow), M(�) denotes the nonlinear hydrologic
model, q is a set of model parameters, and ~X stands for the
observed forcing input matrix (e.g., precipitation). In the
traditional approach, the uncertainty in the catchment
response is attributed to parameter estimation uncertainty,
while input and model structural uncertainty is not
addressed explicitly. Assuming that the residuals are
additive,

~y ¼ M ~X ; q
� �þ e qð Þ: ð2Þ

[14] The Bayesian statistics treats hydrologic model pa-
rameter, q, as probabilistic variables, with the joint posterior
probability distribution P(q j~X ;~y), which presents the prob-
abilistic characteristic of the q conditioned on the observed
data, ~X and ~y. Under Bayes statistics, P(qj~X ;~y) is propor-
tional to the product of likelihood function and the prior
distribution function, P(q). The prior probability density
function explains the information about the q, before any
data are collected. Here we use a noninformative (uniform)
prior over the feasible parameter space (which consists of
realistic upper and lower bound for each of the parameters),
q 2 Q 	 <n.
[15] Assuming that the residuals are additive, indepen-

dent (uncorrelated), and normally distributed noise with
mean equal to zero and constant unknown variance, sy,
Box and Tiao [1973] described the likelihood of parameter
set describing the observed data over the number of time
steps (T) can be estimated as follows:

L q;syj~X ;~y
� � ¼ 1

sT
y

exp � 1

2s2
y

XT
t¼1

e qð Þt
� �2 ! !

: ð3Þ

[16] Further assuming noninformative prior, then P(sy )/
sy
�1, sy can be integrated out of the posterior density yielding

the following expression [Box and Tiao, 1973]:

p qj~X ;~y� � / XT
t¼1

e qð Þt
� �2" #� T

2ð Þ
: ð4Þ

[17] In practice, it is easier to maximize the logarithm of
the likelihood function. It will identify a set of plausible
parameter values given the available observed data. There
are several Bayesian approaches tailored for hydrologic
modeling, including the Generalized Likelihood Uncertainty

Table 2. Parameters of the HYMOD Model and Their Initial Uncertainty Ranges

Parameter Description Prior Range

Cmax maximum storage capacity in catchment, mm 1.0–500.0
bexp factor distributing flow between two series of reservoirs (�) 0.1–2.0
ALPHA shape factor for the main soil water storage tank (�) 0.1–0.990
Rs residence time of linear slow flow reservoirs, days 0.0–0.1
Rq residence time of linear quick flow reservoirs, days 0.1–0.99

Figure 2. Schematic of the hydrologic model (HYMOD) [Wagener et al., 2001].
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Estimation (GLUE) framework [Beven and Binley, 1992]
and the Shuffled Complex Evolution Metropolis (SCEM-
UA) algorithm [Vrugt et al., 2003] that consider model
parameters in equation (1) as probabilistic variables and
estimate their uncertainty bound based on the posterior
pdf. In this study, we will further explore the SCEM-UA
algorithm for estimating model parameters and their associ-
ated uncertainty bounds.

3.2. The Shuffled Complex Evolution Metropolis

[18] The Shuffled Complex Evolution Metropolis
(SCEM) was built upon the principles of the effective and
efficient global optimization technique, the Shuffled Com-
plex Evolution (SCE-UA) developed by Duan et al. [1992].
Vrugt et al. [2003] combined the strengths of the Monte
Carlo Markov Chain (MCMC) sampler with the concept of
complex shuffling from SCE-UA to form an algorithm that
not only provides the most probable parameter set, but also
estimates the uncertainty associated with estimated param-
eters. The main difference between SCEM and SCE is that
the downhill simplex method in SCE was replaced by the
Metropolis-Hastings search algorithm [Metropolis et al.,
1953; Hastings, 1970]. Thus SCEM in every model run is
able to simultaneously identify both the most likely param-
eter set and its associated posterior probability distribution.
SCEM-UA is explained in detail by Vrugt et al. [2003]. The
convergence of the algorithm was monitored using the
Gelman-Rubin criterion [Gelman and Rubin, 1992], which

is a scale reduction score that quantitatively diagnoses if
each parameter converges to a stationary distribution.

3.3. Case Study: Use of SCEM for Calibration and
Uncertainty Assessment of Hydrologic Model
Parameters

[19] In this section we demonstrate the performance and
applicability of SCEM-UA to identify and estimate model
parameters and their associated uncertainty bounds, by
application to three above mentioned hydrologic models:
SAC-SMA [Burnash et al., 1973], HYMOD [Boyle, 2001],
and SWB [Schaake et al., 1996].
[20] Input-forcing data and model structures were as-

sumed perfect in this section, and all of the uncertainty in
the streamflow simulation was attributed to parameter
estimation uncertainty. Uniform prior distributions were
assumed on the parameter ranges of all three models. The
marginal posterior probability distribution for the estimated
SAC-SMA model parameters is given in Figure 4. As we
mentioned earlier, the number of unknown parameters in
this model was reduced to five major parameters. The
distributions are generated using 20,000 samples after the
algorithm converged to the final posterior distribution.
Figure 4 illustrates two points. The first point is that the
posterior distributions for three of the five parameters
(UZTWM, LZTM, and LZSK) are approximately normal;
however, the posterior distribution of UZFWM depicts the
existence of two modes (multimodality). The posterior

Figure 3. Schematic of the simple water balance (SWB) model.

Table 3. Parameters of the SWB Model and Their Initial Uncertainty Ranges

Parameters Description Prior Ranges

Db,max maximum soil moisture deficit of bottom layer of the soil, mm 10.0–800.0
Qmax potential subsurface runoff, mm/d 5.0–100.0
b ratio of the lower level posture that produces subsurface flow (�) 0.1–0.90
a upper layer deficit proportion (�) 0.01–0.5
Kdt timescale factor, days 1.0–20.0
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Figure 4. Marginal posterior probability distribution of the SAC-SMA parameters, using 20,000
samples generated after convergence of the SCEM-UA algorithm.

Figure 5. Streamflow hydrograph prediction uncertainty associated with estimated parameters (shown
in darker gray) for the SAC-SMA model and 95% confidence interval for prediction of observed
streamflow (shown in lighter gray) for water year 1957.
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distribution of UZK is very close to the upper boundary of
the National Weather Service predefined probable parameter
range. This can be an indication of an inherent model
structural uncertainty and/or other sources of uncertainty
within the system which are not being considered here. The
second observation is that the final converged samples for
all the parameters capture only a small space of the
predefined range for the parameters (Table 1). However,
the hydrograph uncertainty bounds (Figure 5) associated
with these parameter ranges do not cover the expected
number of observed streamflow values (dark gray region
in Figure 5). This can be argued as a problem of over-
conditioning the selected relationships between observed
and simulated (modeled) output. The light gray region in
Figure 5 shows the 95% hydrograph prediction uncertainty
associated with the total error in the hydrologic system in
terms of model residuals (calculated based on predictive
variance of SCEM). Even though the 95% total prediction
uncertainty range captures all the observations, it is very
wide compared with uncertainty bounds associated with
parameter uncertainty, revealing a considerable amount of
uncertainty in both the structure of the model under study
and the data used to condition the model.
[21] To further demonstrate the applicability of SCEM,

we used this algorithm to estimate optimal parameter sets
and assess their associated uncertainty boundaries for two
other hydrologic models, HYMOD [Boyle, 2001] and SWB
[Schaake et al., 1996].

[22] The final estimated marginal posterior distributions
of the HYMOD model parameters, after 20,000 samples, are
given in Figure 6. The results reveal that the distributions
for all HYMOD parameters are approximately normal.
These parameter distributions cover a very small range of
predefined parameter ranges. However, in Figure 7 we can
see that even though the algorithm shows high probability
for these parameter sets, the estimated hydrograph predic-
tion uncertainty bounds (dark gray) does not include many
of the observed streamflow values. Similar results are
presented in Figures 8 and 9 for the SWB model.
[23] The examples presented above reveal that attributing

all uncertainties in hydrologic models to model parameters
and ignoring input and model structural uncertainties leads
to an inaccurate, biased, and inconsistent simulation of the
system processes and their associated uncertainty bounds.

4. Extended SCEM-UA to Include the Input
Error Model: Simultaneous Parameter and Input
Uncertainty Estimation

[24] Results from the previous section indicate that deal-
ing only with model parameter uncertainty is not enough to
accurately estimate the true uncertainty in hydrologic sim-
ulation. Uncertainties from other sources must be dealt with
more directly. There have been a few studies in hydrological
modeling that explicitly account for input uncertainty within
the system through input error models. One such approach
is the Bayesian total error analysis (BATEA) by Kavetski et

Figure 6. Marginal posterior probability distribution of the HYMOD parameters, using 20,000 samples
generated after convergence of the SCEM-UA algorithm.
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Figure 7. Streamflow hydrograph prediction uncertainty associated with estimated parameters (shown
in darker gray) for the HYMOD model and 95% confidence interval for prediction of observed
streamflow (shown in lighter gray) for water year 1957 (calibration period).

Figure 8. Marginal posterior probability distribution of the SWB parameters, using 20,000 samples
generated after convergence of the SCEM-UA algorithm.
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al. [2003]. BATEA is one of the few techniques which
explicitly considers input error in the development of the
likelihood function in hydrological modeling. The rainfall
events are predefined and each is given a unique multiply-
ing constant. Theses multipliers allow the pattern of rainfall
as well as the event magnitude to change. Kavetski et al.
[2003] introduced rainfall depth multipliers as some ‘‘latent
variables’’ to the system and introduced an explicit term to
the likelihood function to estimate these variables. If ~rt
represents the true rainfall depth X̂ = [~r1, ~r2,. . .~rt, t = 1:T],
and rt is the observed rainfall depth, their input error model
has the following form:

rj ¼ mj~rj; m � N 1;s2
m

� �
; ð5Þ

where j indicates the storms within the rainfall series and mj

is the random noise from a normal distribution with mean
equal to one and known (prespecified) variance sm

2 in the
form of a multiplier that corrupts the true rainfall depth and
yields the observed rainfall depth. Kavetski et al. [2003]
assumed the rainfall multipliers, mt, as latent variables and
estimated both them and the model parameters through their
probabilistic calibration procedure called BATEA. By
considering the multipliers just for the predefined rainfall
events, they decreased dimensions of the system. Consider-
ing Bayes’ law, and assuming that (1) ~X (observed input)
and ~y (observed catchment response) are statistically
independent because catchment response ~y depends only
on the true input forcing X̂ , not necessarily on observed
forcing, and (2) ~X is statistically independent of q (model
parameter set), because observed input is uncorrelated to the
hydrologic model parameters, Kavetski et al. [2003] derived
the final form of their likelihood function as follows:

p q; X̂ j~X ;~y� � / L ~yjq; X̂� � L X jX̂� � p q; X̂
� �

; ð6Þ

where L(~yjq, X̂ ) is the likelihood of observing ~y given a

parameter set q, and the true input forcing X̂ . L(~X jX̂ ) is the
likelihood based on input error model, and p(q,X̂ )
represents the prior distribution of parameters and true
input forcing.
[25] Kavetski et al. [2003] applied their BATEA frame-

work to a series of synthetic case studies and demonstrated
that considering an input error model explicitly and adding a
new term to the likelihood function can improve the
response surface and assessment of uncertainty bounds.
Nonetheless, even though equation (6) allows the use of
explicit input error models, it has two drawbacks. First, it is
impossible to know what the true input forcing is in a real-
world problem, and therefore it is impossible to assess the
input error model likelihood, L(~X jX̂ ). Second, in some
cases the number of these ‘‘latent variables’’ can increase
considerably and cause some dimensionality issues. To
circumvent these two problems, in this study the input error
model was changed as follows:
[26] 1. Instead of introducing latent variables to the

system, we considered a multiplier in the following form:

~rt ¼ ftrt ; f � N m;s2
m

� �
; ð7Þ

where ft represents a random multiplier at time step t with
mean equal to m, m 2 [0.9,1.1] and variance equal to sm

2 , sm
2

2 [1e � 5,1e � 3]. In this implementation we assume true
rainfall depth ~rt is corrupted at all times by random
multipliers from the identical distribution with unknown
mean, m, and variance, sm

2 . Thus, instead of searching for
every single multiplier as a latent variable, we introduce two
new parameters to the system including mean and variance
of error model multiplier (instead of additive) distribution,
h = {m, sm

2 }. Considering the error term in the form of the
multiplier helps to maintain the heteroscedastic (nonhomo-

Figure 9. Streamflow hydrograph prediction uncertainty associated with estimated parameters (shown
in darker gray) for the SWB model and 95% confidence interval for prediction of observed streamflow
(shown in lighter gray) for water year 1957 (calibration period).
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geneous) nature of the error (higher deviation in higher
rainfall depths) [Sorooshian and Dracup, 1980].
[27] 2. To deal with the issue of not having true obser-

vations of input forcing data, it was decided to integrate the
input error model into the model error term:

e qð Þ ¼ y q; hð Þ � ~y ð8Þ

Therefore the likelihood function will have the following
form:

p q; hj~X ;~y� � / L ~yjq; h; ~X
� � p q; hð Þ: ð9Þ

[28] In brief the implemented changes into the hydrologic
input-output system included introduction of a random
multiplier to each time step, drawn from the same normal
distribution with unknown mean and variance (m and sm

2 ).
These two variables of the input error model (mean and
variance of the distribution) were added as two unknown
parameters to the system. The SCEM-UA was used to
estimate the model parameters and input error model
parameters simultaneously. Later the uncertainty associated
with input error model parameters and hydrologic model

parameters were propagated through the system to estimate
associated uncertainty with streamflow simulations and
predictions.

4.1. Case Study: Use of Extended SCEM for
Calibration and Uncertainty Assessment of Hydrologic
Model Parameters and Input Error Model Parameters

[29] By means of a case study, we illustrate the perfor-
mance of the SCEM-UA while considering an input error
model to specify the hydrologic system. Again, we applied
SCEM-UA to calibrate and assess uncertainty bounds for
SAC-SMA, HYMOD, and SWB model parameters along
with input error model parameters on the Leaf River basin.
The idea is to compare the results from this part of the study
to those from section 2.3.
[30] Figure 10 shows the new marginal posterior distri-

bution estimated for each parameter of the SAC-SMA
model while considering an input error model’s first two
moments as two additional parameters in the system, using
SCEM-UA. Looking at Figure 10 and comparing the results
with Figure 4, two observations can be made. One is that
considering input error model, the final estimated marginal
distribution for the model parameters moved over the
possible parameter ranges and assigned the mode of the

Figure 10. Marginal posterior probability distribution of the input error model parameters and the SAC-
SMA model parameters using 20,000 samples generated after convergence of the SCEM-UA algorithm.
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probability distribution to different parameter values. The
second observation is that the mean of the input error model
has a mode different than one. If the input forcing was
correct, the mean of the input error model would concen-
trate around one, and the final marginal distribution of the
parameters would be the same as if we did not account for
input uncertainty. This can also be the indication that the
input error model is somehow compensating for the existing
model structural deficiencies. The estimated uncertainty
bounds for the hydrograph associated with input and model
parameter uncertainty are shown in Figure 11. The 95%
prediction intervals are narrower here compared with the
original case (only considering uncertainty in model param-
eters). This reveals that the final uncertainty bounds asso-
ciated with both input and model parameters are more
accurate and that variance of the residuals at each point is
smaller compared with the original scenario.
[31] These above mentioned results for the SAC-SMA

model are confirmed in Table 4. The observation coverage
for the estimated 95% uncertainty bounds for the simulation
has increased by almost 70% when we account for input
uncertainty. The same results are presented in the table for
the HYMOD and SWB models, which reveals that account-
ing for input uncertainty improved the final streamflow
simulation of these models as well. These results illustrate
that not accounting for input uncertainty can lead to biased
parameter estimates, which are compensating for other
sources of uncertainty. Accounting for input uncertainty
improves the daily root-mean-square (DRMS) error for
all three models across all of their ensembles, as seen in
Figure 12. We can also see that this improvement is more
significant for the SWB and HYMOD models and less
significant for the SAC-SMA model.
[32] One of the important observations from the set of

experiments presented in this section was that the estimated
mean and variance of input error model and their associated

uncertainty bound are different from one hydrological
model to the other one. This is an inevitable result since
we are still ignoring model structural uncertainty. Therefore
all the model parameters as well as input error model
parameter are still compensating for model structural un-
certainty. The next section focuses on this important source
of uncertainty in hydrologic system simulation.

5. Uncertainty Assessment in Hydrological
Modeling: Simultaneous Parameter and Input
and Model Structural Uncertainty Estimation

5.1. Classical Model Structural Error

[33] The dominant approach in hydrological modeling
and streamflow forecasting has been the use of a single
model. However, dependence on a single hydrological
model, which presumably does not adequately represent
all of the physical processes of the watershed well, results in
unreliable, uncertain, and overconfident forecasts. This is
the case even if we account for all other sources of
uncertainty such as parameter estimation and input forcing
uncertainty [Georgakakos et al., 2004]. To date, all of the
approaches set forth to identify model structural inadequacy
focused on a single-model structure and how it can be
improved to more adequately represent the system [e.g.,
Vrugt et al., 2005].
[34] A new kind of approach that has recently emerged to

identify model structural uncertainty is to use multimodel
combination techniques, which provide a better understand-

Figure 11. Streamflow hydrograph prediction uncertainty associated with estimated parameters and input
error model parameters (shown in darker gray) for the SAC-SMA model and 95% confidence interval for
prediction of observed streamflow (shown in lighter gray) for water year 1957 (calibration period).

Table 4. Percentage of Observations Being in 95% Uncertainty

Bounds.

SAC-SMA HYMOD SWB

SCEM (hydrologic model parameters) 15% 10% 5.6%
SCEM (hydrologic + input model parameters) 25% 17% 10%
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ing of the watershed processes by investigating multiple
model structures.

5.2. Bayesian Model Averaging

[35] Bayesian model averaging is a probabilistic scheme
for model combination. It is a coherent technique for
accounting for model structural uncertainty [Madigan et
al., 1996]. Below is a brief description of the essence of the
BMA scheme. Consider a quantity ~y as the observed output
variable to be forecasted and M = [M1, M2, . . .,MK] the set
of all considered models. The pk (yk jMk ,~X , ~y) is the
posterior distribution of yk which represents the quantity
to be forecasted under model Mk, given a discrete data set,
~X (input forcing data) and ~y (observed system processes,
here streamflow). The posterior distribution of the BMA
prediction, ybma, is thus given as

p ybmajM1; . . . ;Mk ; ~X ;~y
� � ¼XK

k¼1
p Mk j~X ;~y
� � � pk yk jMk ; ~X ;~y

� �
;

ð10Þ

where p(Mk j~X , ~y) is the posterior probability of model Mk.
This term is also known as the likelihood of modelMk being
the correct model. If we denote wk = p(Mk j~X , ~y), we should
obtain

PK
k¼1 wk = 1. The pk (yk jMk, ~X , ~y) is represented by

the normal distribution with mean equal to the output of
model Mk and standard deviation sk. Suppose that yk is a
prediction made by model Mk. Weights can be estimated
through the expectation-maximization algorithm [Dempster
et al., 1977] which will be discussed in the next section. The
posterior mean and variance of the BMA prediction for
variable ybma are

E ybmajy1 . . . ; yK ; ~X ;~y
	 
 ¼XK

k¼1
wkyk ð11Þ

Var ybmajy1 . . . ; yK ; ~X ;~y
	 
 ¼XK

k¼1
wk yk �

XK
i¼1

wiyi

 !2

þ s2; ð12Þ

where s2 is the variance of the time series shaped based on
one of the model predictions (ensembles) being the best at
each time step. Suppose if we build a time series that at each

time step includes the best prediction (closest to the
observation) from one of the K models; s2 represents the
variance of such time series considering observations.
[36] In essence, the BMA prediction is the average of

predictions weighted by the likelihood that an individual
model is correct. There are several attractive properties to
the BMA predictions. First, the BMA prediction receives
higher weights from better performing models, as the
likelihood of a model is essentially a measure of the
agreement between the model predictions and the observa-
tions. Second, the BMA variance is a measure of the
uncertainty of the BMA prediction. This measure is a better
description of predictive uncertainty than that in a non-
BMA scheme, which estimates uncertainty based only on
the model ensemble spread (i.e., only the between-model
variance is considered), and consequently results in under-
dispersive predictions [Raftery et al., 2003, 2005].

5.3. Combination of Global Optimization and Bayesian
Multimodel Combination: An Integrated Bayesian
Uncertainty Estimator

[37] Because the Bayesian multimodel combination
framework offers an excellent statistical approach to ac-
count for model structural uncertainty, the BMA framework
was combined with the SCEM-UA to form a hybrid
framework to exploit the strengths of these two techniques
for integrated schemes for quantification of input, parameter
estimation, and model structural uncertainty. This frame-
work should provide a more precise measure of uncertainty
in system simulations. Throughout the remainder of this
paper we will refer to this integrated Bayesian uncertainty
estimator framework as IBUNE.
[38] IBUNE first estimates the two terms in the right-

hand side of equation (10), pk (yk jMk ,~X , ~y) and p(Mk j~X , ~y),
for each model. The pk (yk jMk ,~X , ~y), which represents the
posterior distribution of estimated hydrologic response (e.g.,
streamflow), yk, under model Mk, is directly related to the
input and parameter uncertainty under model Mk, expressed
as follows:

p yk jMk ; ~X ;~y
� � / p qk ; hk jMk ; ~X ;~y

� �
: ð13Þ

Figure 12. Distribution of daily root-mean square (DRMS) of SAC-SMA, HYMOD, and SWB
considering only parameter uncertainty compared to parameter and input uncertainty.
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[39] We can substitute the left-hand side of equation (13),
which is the outcome of SCEM-UA, into equation (10)
directly. The first term of equation (10), p(Mkj~X , ~y), which
represents the posterior probability of the model Mk being a
correct model, reflects how well model Mk matches the
observed quantity of interest. To estimate p(Mkj~X , ~y) or as

we mentioned earlier in the previous section wk and s2 (the
variance of the best time series shaped based on one of the
model predictions (ensembles) being the best at each time
step), we used the maximum likelihood approach. The idea
is to estimate wk and s2 by maximizing the likelihood of
occurrence of the observed data, ~y. As we mentioned earlier,

Figure 13. Expectation-maximization (EM) flowchart.
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it is easier to maximize the logarithm of likelihood function,
and therefore we define the logarithm of likelihood function
as follows:

L w1; . . . ;wk ;s2
� � ¼XT

t¼1
log

XK
k¼1

wk :p ~ytjyktð Þ
 !

: ð14Þ

[40] Because of the high dimensionality of this problem,
it is hard and inefficient to maximize equation (14) through
direct nonlinear maximization methods such as Newston-
Raphson or its variants [Raftery et al., 2003]. In this study,
to approximate equation (14) and estimate the model
weights as Raftery et al. [2003] suggested, we maximized
the equation (14) by performing the expectation-maximiza-
tion technique. All of the conditional densities were de-
scribed as Gaussian distribution for computational
simplicity; however, the BMA scheme can be applied by
assuming other probability distributions. The EM algorithm
is applied to estimate wk and s2 for each model. In brief, the
expectation-maximization [Dempster et al., 1977] algorithm
casts the maximum likelihood problem as a ‘‘missing data’’
problem. The missing data here are introduced as a latent
variable Zk,t that needs to be estimated. If the kth model
ensemble is the best prediction at time t, Zk,t = 1; otherwise
Zk t = 0. At any time t, there is only one Zk,t equal to 1 and
the rest are equal to 0. The EM algorithm starts with an
initial guess for wk and s2 (the variance of the time series
shaped based on one of the models being best at each time
step) and then alternates between the E (or expectation)
step, which estimates Zk,t based on the current value of wk

and s2, and the M (or maximization) step, where new values
for wk and s2 are estimated based on the current value of
Zk,t. The EM algorithm is described in Figure 13. For more
detail description of the EM algorithm, readers are referred
to McLachlan and Krishnan [1997].

[41] After convergence of this algorithm, we will have
specified weights for each model. Therefore equation (10)
can be derived and the posterior mean and variance of the
forecast can be estimated through equations (11) and (12),
respectively.
[42] In brief, the IBUNE framework can be implemented

as follows:
[43] 1. Select the number of hydrologic models.
[44] 2. Assign prior probability to each model (we assume

noninformative prior which gives uniform weights to all of
the models).
[45] 3. Define an input error model.
[46] 4. Obtain posterior distribution of model parameters

and input error model parameters for each model using
SCEM [Vrugt et al., 2003].
[47] 5. Generate a prespecified number of streamflow

ensembles for each model, using probabilistic parameter
estimates obtained from steps 2–4.
[48] 6. Estimate the model weight and variance of each

ensemble member using the EM algorithm [Dempster et al.,
1977].
[49] 7. Compute the model weights by summing the

weights for all ensemble members of each model.
[50] 8. Assess predictive mean and variance using equa-

tions (11) and (12).
[51] A case study on the applicability and robustness of

IBUNE for reliable assessment of predictive uncertainty
propagated through the system from all the important
sources of uncertainty is provided in the next section.

5.4. Use of IBUNE: Uncertainty Assessment of
Hydrologic Model Parameters and Input Error Model
Parameters and Model Structure

[52] The IBUNE scheme promises better assessment of
total uncertainty because it accounts for model parameters,
input, and model structural uncertainty. In this section we
will present the results for IBUNE and compare it with all

Figure 14. Streamflow hydrograph prediction uncertainty associated with estimated parameters and
input error model parameters for all three models for water year 1957 and estimated combination weights
for each model using Integrated Bayesian Uncertainty Estimator (IBUNE) (training/calibration period).
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other scenarios. Figure 14 illustrates the estimated uncer-
tainty bound using SCEM, associated with input and model
parameters for the three above mentioned models for the
water year 1957. The solid dots in Figure 15 represent
observed streamflow. Notice that different models include
different observation values from various parts of the
observed hydrograph, which can be interpreted as skill of
the model to capture various processes within the water-
shed. On the basis of step 5 of IBUNE (presented in the
previous section), the posterior probability distribution of
each model in capturing observations (i.e., the weight) for
each model was estimated. The weights are presented in
Figure 14. As expected, the model with the higher skill
(SAC-SMA) was assigned the highest weight, while the
model with the lowest skill (SWB) was assigned the lowest
weight. Both HYMOD and SWB gain very small weights.
However, their contribution to the final results is consider-
able because they represent variety of the watershed pro-
cesses which were not well represented in the SAC-SMA.
[53] The final IBUNE predictive probability which was

estimated based on the probability of contributing model in
the combination is given in Figure 15. The width of this
final probability can be calculated through equation (12);
however, the shape and intensity of the distribution can be
captured through summation of the posterior probability
distribution of contributing models in the combination
(Figure 15a). The connected dots depict the IBUNE predic-
tive mean which was estimated through equation (11) using
the estimated weights and model simulations at each point.
Another interesting observation from Figure 15 is that in
some parts of the hydrograph, the final posterior probability
of the three contributing model does not meet and therefore
causes discontinuity in the final posterior probability distri-
bution at these parts of the hydrograph (Figure 15). These

Figure 15. Streamflow hydrograph prediction uncertainty associated with estimated parameters and
input error model parameters as well as model structural uncertainty (in shaded gray) for water year 1957
(calibration period). The lighter patches in the uncertainty bounds represent the discontinuity of the final
model distributions. (inset) Profile of the selected cross section which includes the final distribution of
each member model and the final IBUNE predictive probability density function.

Figure 16. Distribution of DRMS and DABS for
individual models and IBUNE.
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discontinuity areas are presented by the light gray color in
Figure 15. Also shown in Figure 15a is the profile of a cross
section in the hydrograph for clarification. Notice that the
posterior probability distribution at this time step is discon-
tinuous with three distinct modes. This is a clear indication
that these three models do not represent the model space
well and that more models are needed to avoid this problem.
This also suggests that just looking at the uncertainty
bounds as set of percentiles can be misleading in some
cases. Figure 16 shows the distribution of daily root-mean-
square error as well as the daily absolute error for all three
contributing models and simulations generated through
IBUNE. These distributions were estimated based on the
ensemble of simulations generated by each model through
their input and model parameter distributions. Figure 16
illustrates that IBUNE improved DRMS more than DABS,
and these results indicate that IBUNE improved simulation
of the high-flow values more than the low-flow values.
[54] The Brier score (BS) was also used to compare the

skill of the individual model ensembles (considering both
parameter and input uncertainty) with IBUNE. The Brier
score is a scalar measure of the quality of probabilistic
forecast and has been commonly used in literature. BS is
defined as follows [Georgakakos et al., 2004]:

BS ¼ 1� 1

N

XN
t¼1

f tð Þ � o tð Þð Þ2; ð15Þ

where f(t) is frequency of target event at time step t
estimated by the fraction of model ensemble simulations
which are larger than prespecified threshold; o(t) is equal to
1 if the observation at that time step is larger than threshold
and equal to zero otherwise; and N is the number of time
steps in the record. Here BS is a positively oriented score,
and therefore in Figure 16 the higher the BS the better.
Figure 17 shows the BS for all the models and IBUNE. The
findings in Figure 16 that IBUNE produces superior
predictions than individual member models are confirmed
in Figure 17. One can see that IBUNE gained a higher score
in most of the thresholds. Another observation from this

figure is that IBUNE outperformed other models over the
low-flow periods as well as the high- flow periods. This
suggests that IBUNE is a promising flood forecasting
framework because it has higher skills in capturing higher
flows.
[55] The percentage of observations which are bracketed

by the estimated 95% uncertainty bounds is given in
Figure 18. Ninety-five percent uncertainty bounds estimated
through IBUNE cover 74% of the observation over the
whole study period, which is significantly higher than any
single model. This 74% excludes the points which are in the
discontinuity sections with zero probability. However, only
considering whatever point falls within the upper and lower
uncertainty bounds at each time step will give us a percent
convergence equal to 83% (Figure 18).
[56] To demonstrate usefulness of IBUNE as a stream-

flow prediction framework, we evaluated its performance
using data from an independent 3-year validation period
(1958–1960). Table 5 presents summary statistics of the
validation results comparing all three scenarios, including
SCEM, Extended SCEM, and IBUNE. The results in Table 5
indicate that IBUNE consistently provides better values of

Figure 17. Brier score for IBUNE and three member
models.

Figure 18. Percentage of observation in 95% uncertainty
bounds of different models and IBUNE.

Table 5. Summary of Statistics of the Streamflow Prediction

During the Validation Period (Water Year 1958–1960) for All

Three Scenarios Presented

Statistic

SCEM (par)
Extended SCEM
(par + input)

IBUNESAC HYM SWB SAC HYM SWB

DRMS 16.68 15.48 24.05 16.09 13.23 22.27 12.59
Percent bias �12.38 �7.83 18.89 �0.45 �3.67 10.64 �2.6
Correlation 0.89 0.89 0.86 0.90 0.92 0.87 0.94
Percent of

Observationsa
11.5 17.5 7.6 22 20.5 14.5 76.3

aPercentage of observations being in 95% uncertainty bounds.
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the DRMS error, bias (percent bias), correlation, and percent
of observations fall within 95% uncertainty bounds (percent
of observations) statistics than both SCEM and Extended
SCEM for all three models. It is also interesting to point out
that as we account for input uncertainty along with param-
eter uncertainty (extended SCEM) in the hydrological
models, the statistics tend to improve compared with the
conventional SCEM approach, which just accounts for
parameter uncertainty. Therefore explicitly accounting for
input, parameter, and model structural uncertainty during
calibration period can lead to improved assessment of
predictive uncertainty as well as model forecasts.

6. Summary and Conclusions

[57] The prevailing approach in hydrological modeling
and the assessment of related uncertainty has been the use of
sophisticated calibration techniques to estimate an optimal
set of parameters for a single model. Through these pro-
cesses, all other sources of uncertainty, including input and
model structural uncertainty, are generally ignored, and the
uncertainty in the model estimation of the system is pri-
marily assigned to the uncertainty in model parameters.
Nevertheless, we know that a single-model structure is
incapable of representing all of the hydrological processes
within a watershed and all of the system observations
including input forcing contain measurement error. Conse-
quently, these assumptions lead to an incorrect estimation of
total uncertainty in the model predictions.
[58] The objectives of this paper were threefold: (1) to

demonstrate that the classic uncertainty assessment ap-
proach in hydrology which relays all of the uncertainty
within the system on the parameter estimation is not reliable
and accurate, (2) to introduce a new approach to simulta-
neously address model parameter estimation and input
forcing uncertainty, and (3) to propose a new framework
that tackles three major sources of uncertainty, including
uncertainty inherited in input forcings, parameter estima-
tion, and model structure. The conclusion of this work can
be summarized as follows:
[59] 1. The underlying approach for uncertainty assess-

ment in hydrological modeling has been to treat the model
and observation data unbiased and precise and treat the
uncertainty in the modeling processes as being explicitly
attributed to the uncertainty in the parameter estimates. In
this study we verified that such an assumption will lead to
biased and corrupted parameter estimates. Hence the result
is unrealistic model simulations and their associated uncer-
tainty bounds which does not consistently capture and
represent the real-world behavior of the watershed. This
was demonstrated through two separate case studies using
Shuffled Complex Evolution Metropolis (SCEM) [Vrugt et
al., 2003], the newly developed probabilistic parameter
estimation algorithm, to calibrate three selected hydrologic
models for the Leaf River basin in Mississippi. The under-
study models included the Sacramento soil moisture ac-
counting (SAC-SMA) model, the soil water balance (SWB)
model, and the hydrologic model (HYMOD).
[60] 2. In the second attempt to estimate more accurate

and less corrupt uncertainty bounds for the hydrologic
model simulation, we proposed a new approach to account
for associated uncertainty in the input forcings. We simply
introduced an input error model which assumed a random

Gaussian error as a multiplier for every input observation.
The common ground for these multipliers is that they are all
from an identical distribution with unknown first two
moments (mean and variance). Therefore we extended
SCEM to estimate these two new unknown parameters with
the hydrologic model parameters and their associated un-
certainty. We demonstrated that undertaking such a simple
approach to address input uncertainty improved the accu-
racy and reliability of the hydrologic simulations and their
associated uncertainty bounds significantly.
[61] 3. Although accounting for the input uncertainty

generated more reliable results, these results were still
suffering from a very common limitation in hydrologic
modeling attitudes that the model understudy is the best
model in hand. However, the most sophisticated models are
still simple representations of the real world and cannot
capture all of the processes with the catchments. In order to
take into account this source of uncertainty, we exploit the
newly developed technique, called Bayesian model averag-
ing (BMA) [Hoeting et al., 1999]. BMA disregards the
traditional belief in hydrological modeling and explores
multiple model structures to represent the processes within
the system. We merged this method (BMA) with the
extended SCEM presented in this paper which accounts
for both input and parameter uncertainty and proposed a
new hybrid framework entitled, Integrated Bayesian Uncer-
tainty Estimator (IBUNE). IBUNE combines and exploits
the strengths of the SCEM as an efficient and effective
probabilistic model parameter estimator algorithm and the
introduced input error model, as well as Bayesian model
combination techniques, to provide an integrated assess-
ment of uncertainty propagating through the system from
parameter estimation, input forcing, and model structure.
[62] 4. The usefulness and applicability of IBUNE has

also been demonstrated via a validation study over a 3-year-
period from 1958 to 1960. The results confirmed that both
extended SCME and IBUNE framework are convincing
tools to improve the accuracy and reliability of the predic-
tions and their associated uncertainty bounds even during
validation period. The results presented here were obtained
through simulation experiment; however, it would be very
interesting to test the performance of this framework
through a set of forecast experiments which uses forecasted
inputs such as precipitation to force the hydrologic models.
[63] To demonstrate the usefulness and applicability of

IBUNE, we used the same hydrologic models considered
earlier. The strength of these three models was combined
through IBUNE. We showed that IBUNE is a very useful
and applicable technique which accounts for all of the
different sources of uncertainty within the hydrologic
system and results in improved model prediction
uncertainty bounds that bracket higher percentage of system
observations.
[64] IBUNE is a flexible framework which can be ex-

panded by including many more hydrologic models. All
three major components of the framework, SCEM, input
error model, and BMA, investigate different limitations in
hydrologic modeling processes and provide more precise
estimation of uncertainty bounds by confronting all of these
different sources of uncertainty.
[65] Although accounting for all sources of uncertainty is

very important in forecasting future devastating events, all
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of the at-hand techniques including the work presented here
are still too expensive to be used for real-time operational
application. However, the ever increasing pace of compu-
tational power will soon provide the opportunity for oper-
ational communities to take advantage of these state-of-the-
art methods to address uncertainty associated with their
forecasts in a more reliable and accurate manner.
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Abstract

Systematic, operational, long-term observations of the terrestrial carbon cycle (including

its interactions with water, energy and nutrient cycles and ecosystem dynamics) are

important for the prediction and management of climate, water resources, food

resources, biodiversity and desertification. To contribute to these goals, a terrestrial

carbon observing system requires the synthesis of several kinds of observation into

terrestrial biosphere models encompassing the coupled cycles of carbon, water, energy

and nutrients. Relevant observations include atmospheric composition (concentrations

of CO2 and other gases); remote sensing; flux and process measurements from intensive

study sites; in situ vegetation and soil monitoring; weather, climate and hydrological

data; and contemporary and historical data on land use, land use change and disturbance

(grazing, harvest, clearing, fire).

A review of model–data synthesis tools for terrestrial carbon observation identifies

‘nonsequential’ and ‘sequential’ approaches as major categories, differing according to

whether data are treated all at once or sequentially. The structure underlying both

approaches is reviewed, highlighting several basic commonalities in formalism and data

requirements.

An essential commonality is that for all model–data synthesis problems, both

nonsequential and sequential, data uncertainties are as important as data values

themselves and have a comparable role in determining the outcome.

Given the importance of data uncertainties, there is an urgent need for soundly based

uncertainty characterizations for the main kinds of data used in terrestrial carbon

observation. The first requirement is a specification of the main properties of the error

covariance matrix.

As a step towards this goal, semi-quantitative estimates are made of the main

properties of the error covariance matrix for four kinds of data essential for terrestrial

carbon observation: remote sensing of land surface properties, atmospheric composition

measurements, direct flux measurements, and measurements of carbon stores.
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Introduction

Systematic earth observation implies the collection and

interpretation of multiple kinds of data about the

evolving state of the earth system across wide spatial

domains and over extended time periods. Three factors

have caused a massive acceleration in earth observation

activities over recent years. The first is need: global

change is raising issues – such as greenhouse-induced

climate change, water shortages and imbalances, land

degradation, soil erosion, loss of biodiversity – which

require informed human responses at both global and

regional levels. Second, technological advances in

sensors, satellite systems and data storage and proces-

sing capabilities are making possible observations and

interpretations which were out of reach only a few

years ago and unimaginable a few decades ago. Third,

the synthesis of formerly discrete disciplines into a

unified Earth System Science is driving new hypotheses

about the dynamics of the earth system and the

interconnectedness of its components, including hu-

mans. Systematic earth observation motivates and tests

these hypotheses.

The focus of this paper is observation of the carbon

cycle, and in particular its land-atmosphere compo-

nents, as one part of an integrated earth observation

system. It is a significant part because of the coupling

between the carbon cycle and the terrestrial cycles of

water, energy and nutrients, and the connections of all

these biospheric processes with global climate and

human activities (Field & Raupach, 2004; Raupach et al.,

2004). The carbon cycle is integral to the growth and

decay of vegetation, maintains the water cycle through

transpiration and provides habitat for maintaining

biodiversity. Thus, terrestrial carbon observation is

important for climate observation and prediction, for

the management of water resources, nutrients and

biodiversity, and for monitoring and managing the

enhanced greenhouse effect.

It is increasingly recognized that strategies for earth

observation (including terrestrial carbon observation)

require methods for combining data and process

models in systematic ways. This is leading to research

towards the application in terrestrial carbon observa-

tion (and in earth observation more generally) of

‘model–data synthesis’, the combination of the infor-

mation contained in both observations and models

through both parameter-estimation and data-assimila-

tion techniques. Motivations for model–data synthesis

approaches include (1) model testing and data quality

control (through systematic checks for agreement

within specified uncertainty bands for both data and

model); (2) interpolation of spatially and temporally

sparse observations; (3) inference from available ob-

servations of quantities which are not directly obser-

vable (such as carbon stores and fluxes over large areas)

and (4) forecasting (prediction forward in time on the

basis of past and current observations).

The present paper arose from a workshop held in

Sheffield, UK, 3–6 June 2003, to further the develop-

ment of a Terrestrial Carbon Observation System

(TCOS) with a particular emphasis on model–data

synthesis. Antecedents for this effort were (1) pre-

liminary steps toward a TCOS (Cihlar et al., 2002a, b, c);

(2) a wider concept for an Integrated Global Carbon

Observing Strategy including atmosphere, oceans, land

and human activities (Ciais et al., 2004) and (3) the

research program of the Global Carbon Project (Global

Carbon Project, 2003).

The paper is founded on three themes arising from

the Sheffield workshop. First, model–data synthesis,

based on terrestrial biosphere models constrained with

multiple kinds of observation, is an essential compo-

nent of a TCOS. Second, from the standpoint of model–

data synthesis, data uncertainties are as important as

data values themselves and have a comparable role in

determining the outcome. Third, and consequently,

there is an urgent need for soundly based uncertainty

specifications for the main kinds of data used in

terrestrial carbon observation. These themes are devel-

oped as follows: the next section summarizes major

purposes and attributes of a TCOS. ‘Model–data

synthesis: methods’ provides an overview of model–

data synthesis in the context of terrestrial carbon

observation, by briefly describing some of the main

methods, indicating their common characteristics, and

highlighting the key role of data uncertainty. ‘Model–

data synthesis: examples’ provides some examples.

‘Data characteristics: uncertainty in measurement and

representation’ undertakes a survey of the uncertainty

characteristics of the main kinds of relevant data.

Purposes and attributes of a TCOS

A succinct statement of the overall purpose of a TCOS

might be: to operationally monitor the cycles of carbon

and related entities (water, energy, nutrients) in the

terrestrial biosphere, in support of comprehensive,

sustained earth observation and prediction, and hence

sustainable environmental management and socio-

economic development. These words are congruent

with the Framework Document emerging from the

Second Earth Observation Summit, Tokyo, April 2004

(http://earthobservations.org/docs/Framework%20-

Doc%20Final.pdf), which calls for a ‘Global Earth

Observation System of Systems’ to serve nine areas of

socio-economic benefit. A TCOS is a contributor to such

a system with relevance to at least six of these areas:
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� Understanding climate, and assessing and mitigat-

ing climate change impacts;

� Improving global water resource management and

understanding of the water cycle;

� Improving weather information and prediction;

� Monitoring and managing inland ecosystems, in-

cluding forests, and land use change;

� Supporting sustainable agriculture and combating

desertification;

� Understanding, monitoring and preventing loss of

biodiversity.

To make these contributions effectively, a TCOS must

have a number of attributes (see also Running et al.,

1999; Cihlar et al., 2002a; Ciais et al., 2004). First, scientific

credibility is needed to maintain methodological and

observational rigour, and to include procedures for

estimating uncertainties or confidence limits. Second,

consistency with global budgets is necessary to respect

constraints from global-scale carbon and related bud-

gets incorporating terrestrial, atmospheric and oceanic

pools and anthropogenic sources such as fossil fuel

burning. Third, sufficient spatial resolution is necessary

to resolve spatial variations in patterns of land use

(typically tens of metres, consistent with high-resolu-

tion remote sensing). Fourth, enough temporal resolution

is needed to resolve the influence of weather, inter-

annual climate fluctuations and long-term climate

change on carbon and related cycles. Fifth, the system

needs to encompass a broad range of entities, eventually

including CO2, CH4, CO, volatile organic carbons

(VOCs) and aerosol black carbon. Of these, the highest

priority is CO2. Water is also a high priority because of

its importance in modulating other terrestrial GHG

fluxes. Sixth, a sufficient range of processes must be

encompassed. A high priority is resolution of net land-

air fluxes of greenhouse gases in which all terrestrial

sources and sinks are lumped together. However, there

is an equally high demand for identification of the

terms contributing to the net fluxes, for example to

partition a net flux between vegetation and soil storage

changes. Finally, quantification of uncertainty is required.

The ‘demand side’ of the uncertainty issue is: what

level of uncertainty is acceptable for a TCOS to offer

useful information? The answer is not simple and

depends on the application, for example, from the areas

mentioned above. This paper does not attempt to

answer the demand-side question, but rather concen-

trates on the ‘supply side’ of uncertainty: that is, how

uncertainty can be determined in a TCOS based on

model–data synthesis and multiple observation

sources, each with its own specified uncertainty.

Model–data synthesis: methods

In this section, we survey a range of model–data

synthesis methods potentially applicable in a TCOS.

More detail and further references can be found in a

growing number of excellent sources, for instance

Tarantola (1987) and Evans & Stark (2002) for high-

level treatments of the general statistical problem of

inverse estimation, Grewal & Andrews (1993) and

Drécourt (2003) for introductions to the Kalman Filter,

Reichle et al. (2002) for hydrological applications with

an emphasis on the Kalman Filter and Enting (2002)

and Kasibhatla et al. (2000) for applications of a range of

methods to biogeochemical cycles.

Overview

The central problem is: using appropriate observations

and models, we must determine the spatial distribu-

tions and temporal evolutions of the terrestrial stores

and fluxes of carbon and related entities (water,

nutrients, energy) across the earth. Important fluxes

include land–air exchanges (atmospheric sources and

sinks), exchanges with rivers and groundwater, and

exchanges between terrestrial pools such as biomass

and soil. We also need to determine the main processes

influencing the fluxes, including those under human

management. No single model or set of observations

can supply this amount of information – hence the need

for a synthesis approach. The task of combining

observations and models can be carried out in many

ways, encompassed by the umbrella terms ‘model–data

synthesis’ or ‘model–data fusion’. The general principle

is to find an ‘optimal match’ between observations and

model by varying one or more ‘properties’ of the

model. (Words in quotes have specific meanings

defined below). The optimal match is a choice of model

properties, which minimizes the ‘distance’ between the

model representations of a system and what we know

about the real biophysical system from observational

and prior ‘data’. At this high level of generality, model–

data synthesis encompasses both ‘parameter estima-

tion’ and ‘data assimilation’. All applications rest on

three foundations: a model of the system, data about

the system, and a synthesis approach.

Model. For a TCOS, the model is a terrestrial biosphere

model describing the evolving stores and fluxes of

carbon, water, energy and related entities. This dynamic

model has the form

dx

dt
¼fðx;u;pÞ þ noise or

xnþ1 ¼uðxn;un;pÞ þ noise ¼ xn þ Dt fðxn;un;pÞ þ noise;

ð1Þ
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where x is a vector of state variables (such as stores of

carbon, water and related entities, or store attributes

such as age class distributions); f is a vector of rates of

change (net fluxes where components of x are stores); u
is the discrete analogue for f; u is a set of externally

specified time-dependent forcing variables (such as

meteorological variables and soil properties) and p is a

set of time-independent model parameters (such as rate

constants and partition ratios). In the discrete

formulation, time steps are denoted by superscripts.

The noise terms account for both imperfections in

model formulation and stochastic variability in forcings

(u) or parameters (p). Once the model function f(x, u, p)

or u(xn, un, p) is specified, then the system evolution x(t)

can be determined by integrating Eqn (1) in time (with

zero noise), from initial conditions x(0), with specified

external forcing u(t) and parameters p.

Data. These are generally of two broad kinds: (1)

observations or measurements of a set of quantities z

and (2) prior estimates for model quantities (x, u and p).

Both include uncertainty, through errors and noise. In

this paper, the term ‘data’ includes both observations

and prior estimates, and incorporates the uncertainty

inherent in each.

The measured quantities (z) are related to the system

state and external forcing variables by an observation

model of the form

z ¼ hðx;uÞ þ noise; ð2Þ
where the operator h specifies the deterministic

relationship between the measured quantities and the

system state. The noise term accounts for both

‘measurement error’ (instrumental and processing

errors in the measurements z), and ‘representation

error’ (errors in the model representation of z,

introduced by shortcomings in the observation model

h). In the rare case where we can observe all state

variables directly, h reduces to the identity operator, so

z5 x1 (measurement) noise. In time-discrete form, Eqn

(2) becomes zn5h(xn
, un)1noise. Note the inter-

pretation of the time-step superscripts: xn and un are

simply the model state and forcings at time step n,

whereas zn is the set of new observations introduced at

time step n, whatever the actual time of its measu-

rement. However, no observations may be used more

than once.

Examples of potential observations in a TCOS

include (1) atmospheric composition (concentrations

of CO2 and other gases); (2) remote sensing of terrestrial

and atmospheric properties; (3) fluxes of carbon and

related entities, with supporting process observations,

at intensive study sites; (4) vegetation and soil stores of

carbon from forest and ecological inventories; (5)

hydrological data on river flows, groundwater, and

concentrations of C, N and other entities; (6) soil

properties and topography; (6) disturbance records

(both contemporary and historical) including land

management, land use, land use change and fire and

(8) climate and weather data (precipitation, solar

radiation, temperature and humidity). Of these, some

(especially the first five) typically provide observational

constraints (z), while others provide model drivers (u).

Examples of observation models (Eqn (2)) include

radiative transfer models to map modelled surface

states into the radiances observed by satellites;

atmospheric transport models to transform modelled

surface fluxes to measured atmospheric concentrations;

and allometric relations to transform modelled biomass

to observed tree diameters.

Synthesis. The final requirement is a synthesis process,

or a systematic method for finding the optimal match

between the data (including observations and prior

estimates) and the model. This process needs to provide

three kinds of output: optimal estimates for the model

properties to be adjusted, uncertainty statements about

these estimates, and an assessment of how well the

model fits the data, given the data uncertainties. In any

synthesis process, there are three basic choices: (1) the

model properties to be adjusted or ‘target variables’, (2)

the measure of distance between data and model or

‘cost function’ and (3) the search strategy for finding the

optimum values. Search strategies can be classified

broadly into (3a) ‘nonsequential’ or ‘batch’ strategies in

which the data are treated all at once, and (3b)

‘sequential’ strategies in which the data arrive in a

time sequence and are incorporated into the model–

data synthesis step by step. The rest of this section

explores the choices (1), (2), (3a) and (3b).

Target variables

The target variables are the properties of the model to

be adjusted in the optimization process. They include

any model property considered to be sufficiently

uncertain as to benefit from constraint by the data.

Model properties which can be target variables include:

(1) model parameters (p); (2) forcing variables (un), if

there is substantial uncertainty about them; (3) initial

conditions on the state variables (x0) and (4) time-

dependent components of the state vector xn. The

inclusion of the state vector xn as a possible target

variable is for the following reason: in a purely

deterministic model the trajectory xn is determined by

the dynamical model (f or u), the values of p and un,

and the initial value x0. It might seem sufficient,

therefore, to estimate these and allow integration of
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the model to take care of xn. However, the model itself

may not be perfect, as indicated by the noise term in

Eqn (1), so there may be advantage in adjusting values

of xn through the model integration.

To maintain generality, we denote the vector of target

variables by y. This vector may or may not be a function

of time, and will usually be a subset of all model

variables (xn, un, p). Broadly speaking, parameter esti-

mation problems are those where the target variables

are restricted to model parameters (p), while data

assimilation problems may include any model property

as a target variable, usually with an emphasis on state

variables (xn).

Cost function

The cost or objective function J (a function of the target

variables y) defines the mismatch or distance between

the model and the data. It can take a wide range of

forms, but must have certain properties (for example, it

must be monotonic in the absolute difference between

data and model-predicted values). A common choice is

the quadratic cost function:

JðyÞ ¼ðz� hðyÞÞT½Cov z��1ðz� hðyÞÞ
þ ðy� y

_ÞT½Cov y
_��1ðy�y

_Þ;
ð3Þ

where y
_

is the vector of ‘priors’ (a priori estimates) for

the target variables, and [Cov z] and ½Cov y
_� are

covariance matrices for z and y
_

, respectively

(½Cov z�mn ¼ z0mz0n
� �

, with z0m ¼ zm � zmh i, angle brackets

denoting the expectation operator). The first term in

Eqn (3) is a sum of the squared distances between

measured components of the observation vector (z) and

their model predictions (h(y)), while the second is a

corresponding sum of distances between target vari-

ables and their prior estimates. The matrices [Cov z]�1

and ½Cov y
_��1represent the weights accorded to the

observations and the priors, and thus scale the

confidences accorded to each. Their role can be clarified

by considering the simple case in which components zm

of the observation vector z are independent, with

variances s2
m; then [Cov z]�1 is the diagonal matrix

diag ½1=s2
m� and the squared departures of the measure-

ments (zm) from the predictions (hm(y)) are seen to be

weighted by the confidence measure 1=s2
m for each

component.

The model–data synthesis problem now becomes:

vary y to minimize J(y), subject to the constraint that

x(t) must satisfy the dynamic model, Eqn (1). The value

of y at the minimum is the a posteriori estimate of y,

including information from the observations as well as

the priors. We denote it by y
^

(so frowns and smiles

respectively designate prior and posterior estimates).

Equation (3) defines the generalized least squares cost

function minimized by the minimum-variance estimate

(y
^

) for y. For any distribution of the errors in the data

(observations z and priors y
_

), this estimate is unbiased,

and has the minimum error covariance among all linear

(in z), unbiased estimates (Tarantola 1987). Use of Eqn

(3) has another, additional foundation: provided that

the probability distributions for data errors are Gaus-

sian, it yields a maximum-likelihood estimate for y,

conditional on the data and the model dynamics (Press

et al., 1992, p. 652; Todling 2000). Outside the restriction

of Gaussian distributions, y
^

as defined by minimizing a

quadratic J is not exactly the maximum-likelihood

estimate, but it is often not far from it. A quadratic J

is widely used even when the data errors are not

Gaussian; see Press et al. (1992, p. 690) for discussion.

There are alternative cost functions J in which model-

measurement differences (z�h(y)) are raised to powers

other than 2, the choice in Eqn (3) (Tarantola, 1987;

Gershenfeld, 1999). For example, in flood event model-

ling, the absolute maximum error is needed to capture

peak flow rates, while for modelling base flow rates, the

mean absolute deviation (|z–h(y)| to the power 1) has

the desirable property of being less sensitive to outliers

than a power 2. Different powers for |z–h(y)| produce

maximum-likelihood estimates for y
^

with different

distributions for data errors; for example, a power 1 J

yields a maximum-likelihood estimate when the data

errors are distributed exponentially, and a high-power J

preferentially weights outliers such as peak flows.

Here, we use a power 2 J exclusively.

Search strategies for nonsequential problems

In nonsequential or batch problems, all data are treated

simultaneously and the minimization problem is solved

only once. A familiar case is least-squares parameter

estimation.

Example. Some of the attributes of these problems are

demonstrated by considering a simple linear example,

which extends the parameter-estimation problem.

Although mathematically straightforward, this case

finds important application in the atmospheric

inversion methods used to estimate trace gas sources

from atmospheric composition observations (see

‘Model–data synthesis: Examples’). Here the target

variables (y) are a set of surface-air fluxes, averaged

over suitable areas; there is no dynamic model relating

fluxes at different times and places to each other; and

the observation operator (h) is a model of atmospheric

transport. From the linearity of the conservation

equation for an inert trace gas, it follows that h is

linear and can hence be represented by a matrix H
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(Raupach, 2001), thus, z5Hy1noise. For now, the

noise is assumed to be Gaussian with zero mean and no

temporal correlation, and thus completely characterised

by an observation error covariance matrix [Cov z]. By

minimizing J analytically, one obtains the expression

(Tarantola, 1987, p. 196; Enting, 2002):

y
^ ¼ y

_þ Cov y
^

h i
HT Cov z½ ��1 z�Hy

_
� �

; ð4Þ

where ½Cov y
^�, the estimated error covariance of the a

posteriori estimate y
^

, is given by

½Cov y
^��1 ¼ ½Cov y

_��1 þHT½Cov z��1H: ð5Þ
These expressions already tell us some important

things. The posterior estimates are given by the prior

estimates plus a term depending on the mismatch

between the experimental observations and the

observations as predicted by the prior estimates. This

mismatch is weighted by our confidence in the

observations, [Cov z]�1. Thus, observations with little

weight hardly shift the posterior estimate from the

prior, and vice versa. Furthermore, the transpose of the

observation operator (HT) multiplies the weighted

mismatch. If this operator is very weak, that is if the

available observations are only weakly related to the

target variables, then the update to the initial estimate is

also small. Finally the posterior covariance ½Cov y
^� (Eqn

(5)) is bounded above, in some sense, by the prior

covariance ½Cov y
_�. If the prior covariance is small

(suggesting substantial confidence in the initial

estimate) then the increment y
^� y

_
(the difference

between the posterior and prior estimates, a measure

of the information added by the observations z, and

equal to the second term in Eqn (4) in the present case)

is also small.

All the above is reasonable. More surprising is the

relationship between the data, its uncertainty and the

cost function. We can decompose the (positive definite)

matrix [Cov z]�1 into a matrix product ATA, using the

Cholesky decomposition for a positive definite matrix.

For a diagonal covariance matrix, diag ½s2
m�, the

decomposition is trivial: A5diag ½1=s2
m�. Likewise, we

can write ½Cov y
_��1

5BTB. The cost function, Eqn (3),

can then be rewritten as

JðyÞ ¼ ða�AhðyÞÞTða�AhðyÞÞ

þðb� b
_

ÞTðb� b
_

Þ; ð6Þ

where a5Az, b5By and b
_

¼ By
_

. Thus the cost

function, and thence the entire minimization, takes a

form in which neither the observations nor the prior

estimates appear; they are replaced by quantities a and

b scaled by the square roots of the inverse covariance

matrices, which are measures of confidence. This is no

mathematical nicety; rather it demonstrates that the

data and the uncertainties are completely inseparable in

the formalism. To put the point provocatively,

providing data and allowing another researcher to

provide the uncertainty is indistinguishable from

allowing the second researcher to make up the data in

the first place. This realization informs the emphasis on

uncertainty throughout this paper.

Algorithms for nonsequential problems

The task in general is to find the target variables y

which minimize J(y). Clearly, the shape of J(y) is all

important: it may have a single minimum or multiple

separated local minima, only one of which is the true

global minimum. Near the minimum, J may be shaped

like a long, narrow ellipsoidal valley. If this valley has a

flat floor tracing out some line in y space, then all points

along that line are equally acceptable and these y

coordinates cannot be distinguished in terms of

optimality, so such combinations of target variables

cannot be resolved by model–data synthesis with the

available data and model. Diagnostic indicators about

these issues are provided by the Hessian or curvature

matrix D5 @2J/@yj@yk, a measure of the local curvature

of J(y). The degree of orthogonality among columns of

D indicates the extent to which it is possible to find a

unique local minimum to J(y) in the vicinity of the point

at which D is evaluated. A high ‘condition number’

(ratio of largest to smallest eigenvalue) for D indicates

that some linear combination(s) of the columns of D are

nearly zero, that is, that the curvature is nearly zero in

some direction(s), so that the minimization problem is

ill-conditioned, as in the case of a valley with a flat floor.

Given these considerations, classes of method for

finding the minimum in J(y) include the following.

1. Analytic solution is possible when the observation

operator h(y) is linear (z5Hy1noise). In this case J(y)

is a quadratic form shaped like a parabolic bowl, and

the minimization can be carried out analytically as in

the example of Eqns (4) and (5). This ‘direct’ or ‘one-

step’ solution is highly efficient when applicable;

however, most problems are nonlinear and require a

nonlinear method.

2. Gradient descent algorithms are the most familiar

search algorithms for nonlinear optimization. They

include (for example) steepest-descent, conjugate-gra-

dient, quasi-Newton and Levenberg–Marquardt algo-

rithms (Press et al., 1992). Gradient-descent methods are

easily implemented, provided that the gradient vector

HyJ5 @J/@yk can be calculated. The main advantages of

gradient-descent algorithms are relative simplicity and

low cost; the main disadvantage is that if the surface

J(y) has multiple minima, they tend to find local
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minima near the starting value of y rather than the

global minimum.

3. Global search methods find the global minimum in a

function J(y) by searching (effectively) the whole of y

space. They overcome the local-minimum pitfall (so to

speak) of gradient-descent methods, but have the

disadvantage of higher computational costs. Simulated

annealing and genetic algorithms are two examples.

These methods are efficient at finding the vicinity of a

global minimum where there may be multiple local

minima, but do not locate an exact local minimum.

They may be combined with gradient-descent methods

for finding an exact global minimum once in the right

vicinity.

Search strategies for sequential problems

In sequential problems, the task is to solve for a set of

target variables yn associated with a particular time

step, usually including the state variables of the

dynamic model (xn). The process is then repeated

sequentially to give a time history for yn. Information

about yn can come from two sources: evolution of the

dynamic model from the previous time step, and

comparison between the observations at the current

time step (zn) and the model predictions (h(yn)).

Kalman filter. Introduced by Kalman (1960), the Kalman

filter is by now a group of algorithms for the sequential

combination of dynamic and observational

information, using a ‘prediction’ step and an

‘analysis’ step. In the prediction step, the dynamic

model is used to calculate prior estimates y
_n

for the

target variables at time step n, from the best (posterior)

estimates y
^n�1

at the previous step. In the analysis step,

posterior estimates y
^n

at step n are obtained by

‘improving’ the prior estimates with data. The model

state is then ready for evolution to the next (n1 1) time

step. A key point is that the confidence in the current

state, embodied in the error covariance for the target

variables y, is also evolved with the dynamic model and

improved with observations. A schematic diagram of

the information flow in the Kalman filter is given in Fig.

1.

In the prediction step, the task of evolving y is

common across all implementations of the Kalman

filter since it involves only a normal forward step of the

dynamic model: y
_n ¼ u y

^n�1
� �

. The prior estimate for

the covariance at time step n evolves according to

½Cov y
_n� ¼ U½Cov y

^n�1�UT þQ; ð7Þ
where U5 @u/@y, the Jacobian matrix of the dynamic

model u(y). The first term on the right represents the

propagation of the error covariance in the target

variables y from one time step to the next, by a

linearized version of the model. The second term (Q) is

the covariance of the noise term in the dynamic model,

Eqn (1), which includes both model imperfections and

stochastic variability in forcings and parameters. This

term plays a crucial role in the Kalman filter: it

quantifies our lack of confidence in the ability of the

dynamic model to propagate the model state, and is

usually referred to as model error. In most imple-

mentations of the Kalman filter the model error is

assumed to be Gaussian with zero mean and no tem-

poral correlation, and thus completely characterized by

the covariance matrix Q.

In the analysis step, the prior estimates are refined

by the inclusion of data. This is done using the prior

estimate for the predicted observation vector,

z
_n ¼ hðy_nÞ, and its covariance

½Cov z
_n� ¼ H½Cov y

_n�HT þ R; ð8Þ
where H5 @h/@y is the Jacobian matrix of the

observation model h(y), and R is the data covariance

matrix [Cov z], indicating lack of confidence in the data

and often called the data error. Again it is usually

assumed that the data error is Gaussian with zero mean

and no temporal correlation, and thus completely

characterized by R5 [Cov z].

The expressions for the final (posterior) estimates for

y and its covariance are now exactly as for the

nonsequential mode, except that the operation is

carried out for one time step only:

y
^n ¼y

_n þ ½Cov y
_n�HT½Cov z

_n��1ðzn � hðy_nÞÞ
¼y
_n þKðzn � hðy_nÞÞ;

ð9Þ

½Cov y
^n��1 ¼½Cov y

_n��1 þHTRH or

½Cov y
^n� ¼ðI�KHÞ½Cov y

_n�;
ð10Þ
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zn yn
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State

variable
State

uncertainty

 Φ, QΦ 

H, R

difference

Prediction
step

Time step n−1
(posterior)

Time step n
(prior)

Time step n
(posterior)

Cov yn−1
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Fig. 1 Information flow in the linear Kalman filter. Linear

operators are indicated next to arrows. Operations in prediction

and analysis steps are shown as dashed and solid lines,

respectively.
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where K ¼ ½Cov y
_n�HT½Cov z

_n��1is the Kalman gain

matrix. The two equalities in Eqn (10) are equivalent.

Time step n is now complete, and we are ready for the

next time step. We note that the ratio of the magnitudes

of Q and R (model and data error covariances) is

critical, since it largely determines how closely the

evolution of y follows that suggested by the dynamic

model (Q � R) or the data. The tuning of Q and R is a

crucial part of Kalman filter implementation; see

Grewal & Andrews (1993) for an excellent extended

discussion.

The concepts underlying the Kalman filter are now

implemented in several different ways (see for example

Grewal & Andrews, 1993; Evensen, 1994, 2003;

Kasibhatla et al., 2000; Reichle et al., 2002; Drécourt,

2003), including the following:

1. The linear Kalman filter (LKF), in which both u(y)

and h(y) are linear in y, can be shown to be an optimal

solution for appropriate linear problems.

2. The extended Kalman filter (EKF) applies for

nonlinear u(y) and h(y), by linearizing the covariance

propagation part of the analysis step (Eqn (7)), but not

the prediction step, at each point. This is the algorithm

sketched above.

3. The ensemble Kalman filter (EnKF) (Evensen,

1994, 2003) is appropriate for high-dimensional

problems such as data assimilation into atmospheric

and ocean models, where the error covariance matrix

for y is too large to store, let alone integrate forward.

The EnKF uses stochastic methods based on multiple

model runs to propagate the covariance matrix without

storing it. Also, the EnKF does not explicitly require the

Jacobian matrices u(y) and h(y), which can be difficult

to derive analytically and expensive to calculate

numerically. Reichle et al., (2002) sum marize the

differences between the EKF and the EnKF.

4. The Kalman smoother assimilates multitemporal

information to constrain yn at each time point, by

running both forward and backward in time (Todling,

2000). It produces an estimate of target variables at time

step n based on the entire record, rather than only the

record up to time step n. This gives the Kalman

smoother the attributes of a nonsequential method, as

data at all times are used together.

Adjoint methods. These form an additional group of

methods applicable to sequential problems. The

principle (le Dimet & Talagrand, 1986; Giering 2000)

is to update the target variables (including the model

state) by using measurements at nearby times such as

the interval between steps n and n1 1, and an estimate

of the gradient HyJ obtained by backward integration of

an ‘adjoint model’ over that interval. The target

variables are effectively the initial state variables for

integration of the model from step n to n1 1. This

approach underpins four-dimensional data

assimilation (4DVAR) methods for assimilating data

into atmospheric and oceanic circulation models on

weather and climate time scales (Chen & Lamb, 2000;

Park & Zupanski, 2003).

Discussion of model–data synthesis methods

Differences between nonsequential and sequential strategies.

Parameter estimation and data assimilation problems

tend to be amenable to solution by nonsequential and

sequential search strategies, respectively. However, this

is not an absolute correspondence: many problems can

be solved using either nonsequential or sequential

strategies.

The most important advantage for sequential

methods is the ability of the optimal state to differ

from that embodied in the model equations. This

requires that the evolving model state xn be included

among the target variables y. In principle, y can also

include xn in nonsequential methods but, since all time

steps are considered simultaneously, the size of the

problem is usually intractable. Sequential methods also

have the computational advantages that their size does

not grow with the length of the model integration, and

that they can easily handle incremental extensions to

time series observations.

The advantages of nonsequential methods come,

naturally, from their ability to treat all data at once. This

is a direct advantage in itself. It is, for example, difficult

for a sequential method to treat the impact of a datum

on a state variable some time in the past, as can occur

when, for example, signals are transported through the

atmosphere so that the model state at some time is only

observed later. This problem is often handled with the

Kalman smoother.

Model and data error structures. The noise terms in the

dynamic and observation models, Eqns (1) and (2), can

in principle be quite general in form, including biases,

drifts, temporal correlations, extreme outliers and so

on. Many extant methods take these noise terms to be

Gaussian with zero mean and no temporal correlation,

as assumed in Eqns (4)–(10). However, more general

error structures are very common, and the

development of methods for dealing with such errors

is an active area of current research. In the case of

biases, drifts and temporal correlations, a promising

approach is to introduce extra target variables to

represent these features of the model or data error.

Evensen (2003) showed how this approach can be used

to treat both temporal correlation and bias in the model
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error. Wang & Bentley (2002) introduced a target

variable representing the temporally correlated part of

the data error.

Nonsequential and sequential parameter estimation.

Although parameter estimation is typically carried out

with nonsequential strategies such as least-squares

fitting, there can be advantages in using sequential

methods such as Kalman filtering for parameter

estimation. The approach is to treat parameters p as

components of the target vector y (in addition to the

state variables x), with p governed by the dynamic

equation dp/dt5 0 (1noise) (Grewal & Andrews

1993). This means that the problem is almost always

nonlinear and must be solved with the EKF or EnKF.

Annan & Hargreaves (2004) show how this technique

can be used to estimate parameters in the Lorenz

system with chaotic dynamics. A potential advantage of

this approach is that parameters can drift through time

toward new values, in response to observations. This

offers a means for model–data synthesis to respond to

exogenous catastrophic events (such as fire, windthrow

or clearing) which suddenly change the parameters in a

terrestrial biosphere model, since exogenous changes in

parameters are the usual way that catastrophic events

are incorporated in the absence of a full dynamic model

for the processes governing the catastrophe.

Model–data synthesis: examples

The methods outlined above are being applied in

several fields relevant to terrestrial carbon observation.

The first major example is parameter estimation. Most

biogeochemical models contain parameters (p) deter-

mining photosynthetic capacities, light use efficiencies,

temperature and nutrient controls on photosynthesis

and respiration, pool turnover times and so on. It is

almost always necessary to choose p to optimize the fit

of the model to test data, usually obtained from

multiple study sites. Techniques for doing this range

from simple graphical fits (‘chi-by-eye’) to least-squares

fitting procedures based on Eqn (3) or other cost

functions.

A second example is provided by atmospheric

inversion methods for inferring the surface-atmosphere

fluxes of CO2 and other trace gases from atmospheric

composition observations. The data come from global

flask networks and continuous in situ analysers, upper-

air measurements from aircraft and tall towers, and

potentially in the future from remote sensing of

atmospheric composition. The observation model is a

model of global atmospheric transport. The basic

approach has been sketched in Eqns (4) and (5). There

is now a significant literature on this technique (Enting

et al., 1995; Ciais & Meijer, 1998; Enting, 1999a,b;

Rayner et al., 1999; Rayner, 2001; Schimel et al., 2001;

Enting, 2002; Gurney et al., 2002). In summary, atmo-

spheric inversions at global scale provide good con-

straints on total global sources and sinks, but

(presently) with very coarse spatial resolution (con-

tinental to hemispheric). In addition to global applica-

tions, atmospheric inversion methods have been

applied regionally (Gloor et al., 2001), in the atmo-

spheric boundary layer (Lloyd et al., 1996), and in

vegetation canopies (Raupach, 2001).

A third example, combining the previous two, is the

use of multiple constraints. This involves model–data

synthesis with the simultaneous use of multiple kinds

of observations (for example, atmospheric composition

measurements, remote sensing, eddy-covariance fluxes,

vegetation and soil stores, and hydrological data). This

approach has two advantages: first, different kinds of

observation constrain different processes. For example,

atmospheric composition measurements and eddy

fluxes directly determine net CO2 exchanges (net

ecosystem exchange, NEE) at large and small spatial

scales, respectively, while remote sensing provides

indirect constraints on gross exchanges (gross primary

production, GPP) through indices such as the normal-

ized difference vegetation index (NDVI). Second,

different observations have different resolutions in

space and time. Through assimilation into a terrestrial

biosphere model, the high space-time resolution of

environmental remote sensing can add space-time

texture to estimates of NEE from methods such as

atmospheric inversions or eddy-covariance fluxes.

Some difficulties must also be noted: for example,

handling data sources with quite different spatial and

temporal scales of measurement (discussed further in

‘Scale mismatches between measurements and mod-

els’), and also with very different sample numbers

(remotely sensed data can swamp in situ data with

realistic error specifications, because the former has a

factor of 103–106 more data points).

Applications of the multiple-constraint concept

include the combined use of atmospheric CO2 concen-

trations and surface data at continental scales (Wang &

Barrett, 2003; Wang & McGregor, 2003) and global

scales (Kaminski et al., 2001, 2002); use of genetic

algorithms to constrain terrestrial ecosystem models

of the global carbon cycle with multiple ecological

data (Barrett, 2002); and discriminating vegetation and

soil sources and sinks in forest canopies with concen-

tration, isotopic and physiological data (Styles et al.,

2002).

A fourth example deserves more space than is

available here: the use of data assimilation in atmo-

spheric and ocean circulation models. This is now
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well-developed and applied routinely in weather

forecasting. A variety of techniques are employed,

including ‘nudging’, three-dimensional and four-

dimensional variational data assimilation (3DVAR

and 4DVAR) based on adjoint methods, and use of

the ensemble Kalman filter. Recent reviews are pro-

vided by Chen & Lamb (2000) and Park & Zupanski

(2003).

Data characteristics: uncertainty in measurement

and representation

We have emphasized that data uncertainties affect not

only the predicted uncertainty of the eventual result of

a model–data synthesis process, but also the predicted

best estimate. This realization raises the challenge of

evaluating the uncertainty properties of the main kinds

of observation relevant to a TCOS, in forms directly

usable for model–data synthesis. This is a very large

goal, which embraces all categories of observation

identified at the beginning of ‘Model–data synthesis:

Methods’, and also a range of issues:

� The error magnitude sm for an observation zm,

inclusive of all error sources (in other words, the

diagonal elements ½Cov z�mm ¼ sm
2 of the covariance

matrix);

� The correlations [Cov z]mn/(smsn) among errors in

different observations, quantified by the off-diag-

onal elements of the covariance matrix;

� The temporal structure of the errors: whether they

are random in time or temporally correlated, and

the possible presence of unknown long-term drifts

or biases;

� The spatial structure of errors (random, slowly

varying or bias as for temporal structure);

� The error distribution: normal (Gaussian), log-

normal, skewed or the sum of multiple error sources

with different distributions, such as a small Gaus-

sian noise together with occasional large outliers

because of measurement corruption events;

� Possible mismatches between the spatial and tem-

poral averaging implicit in the model and the

measurements (the ‘scaling problem’);

� The separate contributions to all the above error

properties of measurement error (the distribution of

the measurements z around their true values) and

representation error (the distribution of the error in

the model representation of the measurement,

z5h(y)).

This challenge is too large to meet fully here. To make a

start, we consider (in the next four subsections) a

selection of observations from four categories of data:

remote sensing of land surface properties, atmospheric

composition measurements, direct flux measurements,

and direct measurements of carbon stores. The aim is to

make estimates of error properties for these categories

of measurement. The discussion does not address all of

the above issues, largely omitting questions of spatial

and temporal error structure. We present tables

indicating ranges for the diagonal elements ½Cov z�mm ¼
sm

2 of the error covariance matrix for measurement

error, and the qualitative behaviour of the correlations

which determine the off-diagonal elements. The entries

in these tables are mostly ‘expert judgements’ by the

authors and their colleagues, backed up by quantitative

evidence where possible. There is, of course, no claim

that our estimates are definitive; the intention is rather

to indicate the kinds of uncertainty information

required of observations for model–data synthesis

purposes. The tables characterize measurement errors

only; representation errors, which often exceed mea-

surement errors, are discussed separately in qualitative

terms only. The issue of scale mismatches between

measurements and models, which arises in all cases as

a significant contribution to representation error, is

treated generically in a fifth subsection ‘Scale mis-

matches between measurements and models’.

Remote sensing of land surface properties

The main satellite-borne remotely sensed data on land

surface properties come from two kinds of sensor, both

polar-orbiting to provide frequent global coverage:

moderate-spatial-resolution ( � 250–1000 m) and high-

temporal-resolution ( � 1 day repeat interval) sensors

such as AVHRR and MODIS; and high-spatial resolu-

tion ( � 10–30 m) and moderate-temporal-resolution

( � 16 day repeat interval) sensors such as SPOT and

LANDSAT. All these sensors provide multi-year re-

cords. One major application (among many) for the

AVHRR-MODIS family is assessment of vegetation

dynamics with indices such as NDVI (defined as

(NIR�Red)/(NIR1Red), where NIR and Red are

radiances in the near-infrared and visible red spectral

bands) and measures such as surface temperature.

Applications for the SPOT-LANDSAT family include

detection of land cover change and vegetation clearing

and regrowth. In all cases, the measurements are at-

sensor reflected radiances from the earth in several

spectral bands (5 for AVHRR, 37 for MODIS).

In using these forms of remote sensing data for

model–data synthesis applications, three kinds of error

need to be considered: (1) errors associated with the

measurement and spatial attribution of radiances at the

sensor; (2) errors in relating radiances at sensor to
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radiances at surface and (3) errors in relating radiances

at the surface to biophysical quantities represented in a

terrestrial biosphere model. The first of these is

measurement error, the third is representation error,

and the second can contribute to either depending on

how the problem is formulated.

Measurement error. The primary measurements are

radiances at the sensor, attributed to elements (pixels)

on the earth’s surface. Measurement errors arise from

sensor noise, calibration drift, orbital decay, and

incorrect geolocation. These errors are much more

serious for AVHRR (designed in the 1970s) than for

MODIS (designed in the 1990s with on-board

calibration).

Representation error. This is the error associated with the

model z5h(y) relating the measurements z (radiances)

to the target variables y (biophysical variables in the

terrestrial biosphere model, such as leaf chlorophyll

content, leaf or soil water status or leaf area index). In

principle, the observation model involves two

components. First, biophysical target variables (y) are

related to radiances at the earth’s surface (say zsurface),

through a model zsurface5hsurface(y). Examples are

relationships between NDVI and leaf and soil

properties (Tucker, 1979; Sellers, 1985; Sellers et al.,

1992; Myneni et al., 1995a,b; Lu et al., 2003).

Representation errors associated with this component

depend on the skill of the model zsurface5hsurface(y).

Second, the surface radiative properties are related to

radiances at the satellite-borne sensor (say zsensor)

through an atmospheric radiative transfer model (g),

which accounts for the effects of clouds, atmospheric

absorption and scattering, and the bidirectional

reflectance distribution function (BRDF) properties of

the surface. Thus, we have zsensor5g(zsurface, ancillary

data), where the ancillary data includes profiles of

temperature and radiatively active constituents in the

atmosphere. Errors in this component depend on the

skill of the model g and errors in the required ancillary

data.

In model–data synthesis, there is a choice about

whether to use sensor radiances (zsensor) or surface

radiances (zsurface) as the primary measurements. If

zsurface is used, then the observation model is

zsurface5hsurface(y) and it is necessary to infer

zsurface5g�1(zsensor, ancillary data) from the at-sensor

radiances and the atmospheric transfer model g. In this

case, g is effectively part of the measurement system

itself and its errors appear as measurement errors. On

the other hand, if zsensor is the primary set of

measurements, then the observation model becomes

zsensor5hsensor(y)5g(hsurface(y), ancillary data). The

model g is then part of the observation model, and its

errors appear as representation errors. New unknown

target variables may also appear through the ancillary

data, and it is necessary that these be estimated with

available observations.

For a semi-quantitative illustration of properties of

the error covariance matrix for some remote sensing

observations, we consider radiances at the surface

(zsurface) to be the observations, so that errors in the

radiative transfer model g form part of the errors in

zsurface and are treated as measurement error. As

examples we consider NDVI and surface temperature.

Table 1 shows some properties of measurement errors in

these quantities. This table takes account of several

considerations: first, errors in zsurface arise from sensor

noise, sensor calibration and geolocation (contributing to

error in zsensor), and from inaccurate cloud removal,

atmospheric correction or BRDF correction (contributing

to error in the radiative transfer model g). Many of these

errors are strongly positively correlated among different

spectral bands, especially in the visible and NIR. NDVI

is less sensitive to such errors than the band radiances

themselves, because it is based on a normalized

difference (an example of error cancellation through

correlation, and a reason for the popularity of NDVI).

Second, correlations between errors in NDVI and surface

temperature tend to be positive. For example, unmasked

sub-pixel cloud appears as low-NDVI and cold, causing

correlated negative outliers and thus a positive error

correlation between the two measurements. Finally, in

some cases, experimental estimates of the errors are

available. For example, comparison of several calibration

procedures for the short-wave AVHRR channels on the

NOAA-11 satellite revealed calibration discrepancies of

around 5% (Mitchell et al., 1996).

Table 1 describes measurement error only, and does

not include representation error reflecting uncertainty in

the relationship zsurface5hsurface(y) (the third of the three

error categories mentioned above). Estimates of

representation error can be gained, for example, from

the scatter in experimental tests of relationships between

at-surface radiance properties and biophysical variables

(for example, Lu et al., 2003). Usually, these

representation errors are comparable with or larger

than measurement errors. For example, NDVI saturates

at high leaf area index (3-4).

Atmospheric composition measurements

We consider (1) direct CO2 concentration measurements

from the global flask network and WMO Global

Atmosphere Watch (http://www.wmo.ch/web/arep/

gaw/gaw_home.html) stations with continuous CO2

monitoring and (2) efforts to measure CO2 with
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spaceborne remote sensing. Our discussion of measure-

ment and representation errors for these data sources is

based on the atmospheric inversion approach for

utilizing atmospheric composition data; see ‘Model–

data synthesis: methods and examples’.

Direct measurements. The first global flask network

developed from work by Keeling (1961) with several

nations later commencing sampling in their respective

regions. As of 2004, 23 laboratories from 15 nations

contribute flask and continuous in situ sampling data

from around 200 sites to international databases

(http://www.cmdl.noaa.gov/ccgg/globalview/co2/).

Large networks are maintained by the National Oceanic

and Atmosphere Administration Climate Monitoring

and Diagnostics Laboratory (NOAA-CMDL), Boulder,

CO, USA, and CSIRO Atmospheric Research (CSIRO-

GasLab), Melbourne, Australia. In the main, flask

samples are collected 2–4 times per month from fixed

sites, aircraft and ships, and opportunistically during

intensive experimental campaigns. Flasks are returned

to the central laboratories for automated analyses, which

provide concentrations of a number of atmospheric

constituents. The analytical procedure includes mea-

surements against an international standard and

frequent comparisons with air standards, and actual

samples, exchanged between laboratories (Masarie et al.,

2001).

Continuous in situ analysers provide records at

higher precisions and temporal densities than are

available from the flask networks and are usually

located at baseline stations in remote locations. With

both flask and in situ monitoring, there has been ongoing

improvement in precision and in the accuracy and

propagation of the international standards (Francey et

al., 2001).

Spaceborne measurements. Remote sensing of

atmospheric composition is gradually becoming a

reality. Simulations show that satellite observations

improve atmospheric-inverse estimates of carbon fluxes

by a factor of up to ten relative to the surface (flask and

baseline) networks, because of vastly improved

coverage in time and space, albeit with increased

error for each measurement (Rayner & O’Brien, 2001;

Rayner et al., 2002). Efforts are underway on three

fronts: first, proof-of-concept studies have already been

undertaken with existing space-based radiometers such

as TOVS and AVHRR (Chedin et al., 2002, 2003a,b).

Despite limited spectral resolution and unwanted

absorption from other atmospheric constituents,

signatures of seasonal cycles and trends in CO2 and

other greenhouse gases (N2O and CO) have been

extracted at coarse space-time resolution (151� 151,

mid-troposphere, monthly). Second, current missions

undertaken for other purposes, such as the Advanced

Infra-red Sounder (AIRS) and Sciamachy instruments,

will likely provide near-term improvements in

measuring aspects of the atmospheric CO2 distribution.

Finally, future purpose-built instruments, such as the

NASA Orbiting Carbon Observatory (OCO, Crisp et al.,

2004), CARBOSAT (European Space Agency) and

GOSAT (Japan), should provide dramatic improve-

ments in coverage and precision.

Measurement error. Table 2 gives estimates of

measurement error for CO2 measurements from

flasks, continuous in situ analysers, and AVHRR

(Chedin, 2003b). Errors in international CO2 databases

from near-surface measurements include errors in the

assignment and propagation of CO2-in-air standards on

the WMO mole fraction scale, biases associated with

different CO2 measurement methods, flask storage

effects, and other factors limiting the repeatability of

measurements with the same system. These errors

have different temporal characteristics. For example,

both flask and continuous measurements from CSIRO

share a current calibration bias of �0.1 � 0.05 ppm

Table 1 Indicative properties of the error covariance matrix for remote sensing observations of NDVI and surface temperature,

describing measurement error only and omitting representation error

Observation (zm) Units Typical range Typical error (rm) Error distribution Error correlations

NDVI5 (NIR�Red)/

(NIR1Red)

– 0.1–1 0.1 (AVHRR) Errors in NDVI and

surface temperature

are probably highly

positively correlated

because of negative

outliers in each

associated with

undetected cloud

0.05 (MODIS)

Surface temperature degree K 250–350 Land: 2 (AVHRR) Normal with negative

outliers because of

undetected cloud

1 (MODIS)

Ocean: 0.2 (AVHRR)

0.1 (MODIS)

NDVI, normalized difference vegetation index.

9>>>>>>>>=
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relative to NOAA-CMDL. For some laboratories with

smaller networks, WMO round-robin intercomparisons

in 1993, 1997 and 2001 indicate a larger, but improving

range of calibration uncertainty. There are also diff-

erences between flask and in situ measurements from

within one laboratory that exhibit slowly varying

offsets. Such errors are likely to be highly correlated

over long time periods. If not included in the inver-

sion procedure they can invalidate aspects of the result,

as demonstrated by Rayner et al. (2002) in their

Observing System Simulation Experiment of remotely-

sensed CO2. Provided the structure of such errors can

be predicted, the inversion can cope with them (Law et

al., 2003a, b).

Representation error. Current atmospheric inversion

studies using atmospheric concentration data generally

ascribe much larger errors to the measurements than the

aggregate of the measurement errors shown in Table 2.

This is partly because of the simple assumption of

Gaussian uncorrelated noise used in most existing stu-

dies, but also because the contributions of the represen-

tation error are large. Representation errors arise in this

context from the inability of the atmospheric transport

model to simulate point observations in space, either

because of systematic errors in model formulation or the

implicit averaging in its grid representation. An analo-

gous temporal representation error arises when flask

measurements (actually grab samples in time) are inter-

preted as longer-term means; see ‘Scale mismatches

between measurements and models’ for discussion. A

further contribution to representation errors for most

atmospheric inversion studies to date has been the

projection of possible source distributions to a restricted

subspace, usually by dividing the earth into a number of

large regions. This is done both for computational

reasons and to reduce the error amplification arising

from under-determined problems. Errors in the prescri-

ption of flux distributions within these regions give rise

to a so-called aggregation error, described and quanti-

fied by Kaminski et al. (2001). This error can be avoided

by using adjoint representations of atmospheric trans-

port that do not require aggregation (Rodenbeck et al., 2003a,b).

There are few experiments where representation

errors can be evaluated, since this requires

simultaneous knowledge of sources and atmospheric

transport. However, one can use the range of model

simulations as a guide (e.g. Law et al., 1996; Gurney et

al., 2003). Since representation errors are completely

dependent on the inversion process (especially the

atmospheric transport model) rather than the

measurements themselves, we do not attempt to

quantify them in Table 2. T
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Direct flux measurements at intensive study sites

The global FluxNet network (Baldocchi et al., 2001,

Falge et al., 2002a, b) includes over 200 sites where

tower-based eddy covariance measurements are made

of the land-air fluxes of sensible heat, latent heat, CO2

and other entities, at sub-diurnal (typically half-hourly)

temporal resolution. Many other meteorological vari-

ables are measured, including solar and net radiation,

ground heat flux and precipitation. Many sites include

measurements of other biogeochemical processes, such

as soil respiration by chamber methods. Most measure-

ments at these sites are at the patch scale, applying to a

nominally homogeneous land unit. The extent of

horizontal averaging varies with the measurement

(for example, a narrow along-wind ellipse of order

1� 0.1 km2 for eddy-covariance fluxes, a circle with

radius of order 10 m for a net radiometer mounted 10 m

above a forest, and a chamber footprint of order 1 m2

for soil respiration). A great strength of intensive flux

study sites is that independent checks on the uncer-

tainty of the measurements are possible through checks

on the closure of the energy and water balances.

Measurement error. Table 3 shows some estimated error

properties for the above measurements. Several

systematic errors are known to influence eddy-flux

measurements, including high-frequency and low-

frequency flux losses, storage in the air column below

the measurement height, intermittency of nocturnal

turbulence, and ‘rectification’ because of nocturnal

cold-air drainage of air rich in respired CO2 towards

low-lying areas, causing systematic advection errors

(Wofsy et al., 1993). Most of these problems are much

more severe at night than by day. Experimental

techniques and analysis procedures (especially the use

of longer averaging periods of up to several hours to

include fluxes transported by large eddies of the scale

of the entire atmospheric boundary layer) are

progressively resolving these issues, with more

success to date for daytime than nocturnal fluxes

(Finnigan et al., 2003). Relative hourly accuracies of

order 10% represent the state of the art for daytime

fluxes, attainable with excellent technique; however,

errors of up to 30% are common. For nocturnal fluxes,

eddy covariance measurements become unreliable in

light wind conditions, that is, much of the time at night

(Goulden et al., 1996). Errors include biases associated

mainly with the above systematic nocturnal effects.

Carbon flux measurements from intensive study

sites are often aggregated to time-averaged (typically

monthly to multi-annual) measures of primary

production for the patch under study: GPP5 [net

assimilation]; net primary productivity (NPP)5

[GPP�autotrophic respiration]; net ecosystem produ-

ctivity (NEP)5 [NPP�heterotrophic respiration]; net

biome productivity (NBP)5 [NEP�disturbance flux].

All these have units gC m�2 yr�1 and are positive for

carbon uptake into the biosphere. The total exchange

between the terrestrial biosphere and the atmosphere is

NBP. The disturbance fluxes in NBP include grazing,

harvest, and catastrophic events (fire, windthrow,

clearing). If these processes do not occur on an

intensive study site, an eddy-covariance CO2 flux

(when aggregated in time) yields an estimate of NEP.

Table 3 also shows estimated properties of error

covariances for these time-aggregated productivity

estimates. The uncertainty in NEP estimates is much

higher than for hourly CO2 flux estimates, because of

the difficulties mentioned above. Comparisons between

eddy-covariance and other means of measuring NEP

suggest typical uncertainties of order 20 to 50%, with

the lower end of this range being attainable over

actively growing ecosystems where NPP is much larger

than heterotrophic respiration and NEP is relatively

large. This range is also likely to be representative of

GPP and NPP estimates. Uncertainties in NBP at patch

scale are very much higher (in fact it is arguable that

NBP cannot be defined at patch scale).

Representation error. Fluxes are almost always directly

represented in terrestrial biosphere models, so

representation errors are not an issue for direct flux

measurements at the patch scale. However, the spatial

aggregation issue (upscaling flux measurements from

intensive study sites to yield estimates of fluxes or pro-

ductivities over grid cells, large regions or continents) is

a significant source of representation error. It is not

usually possible to upscale by area weighting of patch-

scale estimates without conditioning from other

measurements and models, because of heterogeneity

in landscapes and disturbance patterns; see ‘Scale

mismatches between measurements and models’ for

further discussion. A particular example of this issue is

that patch-scale measurements (including fluxes) are

often made at unmanaged or undisturbed sites, creating

a bias with respect to the landscape as a whole.

Measurements of carbon stores in vegetation and soils

Terrestrial biospheric carbon pools include leaves,

wood above and below ground, fine roots, coarse litter,

fine litter and soil carbon; the soil carbon is often

partitioned into fractions with different biochemical

properties or turnover times, such as microbial, humic

and inert. In situ measurements or estimates of these

pools are available from vegetation and soil surveys,
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long-term observations at ecological study sites, and

national forest inventories.

Measurement errors. Table 4 shows some estimated error

properties for these measurements. Large errors are

associated with the below-ground pools. As for our

error estimates for flux measurements at intensive study

sites (Table 3), these estimates apply to measurement

errors at the spatial scale of individual patches.

Representation errors. At first sight, representation errors

for measurements of carbon stores are not a major issue

at patch scales because carbon stores are directly

represented in terrestrial biosphere models (as for flux

measurements). However, representation errors arise in

assigning measurements of carbon pools to their model

counterparts (Barrett, 2002). For instance, litter is often

measured in physically defined compartments such as

fine litter and coarse woody debris, but represented in

models in biogeochemical compartments such as

metabolic and structural litter. Spatial aggregation of

measurements for upscaling and incorporation into

spatially coarse models is also a representation issue, as

for direct flux measurements–for example, the bias

introduced by the tendency for patch-scale

measurements to be made at undisturbed sites.

Scale mismatches between measurements and models

The examples in the above four subsections all high-

light the problem that measurements are almost always

made at a different scale (that is, with a different spatial

and temporal averaging operator) to that used in the

dynamic model. In its spatial form, this problem arises

when the measurements apply to particular points or

homogeneous land elements (for example, eddy flux

measurements or in situ measurements of carbon

stores) while the model represents an aggregated set

of land elements by a single set of state variables (for

example, for a grid cell in a coarse spatial model). A

temporal version of the same problem arises when the

measurements are intermittent (for example, satellite

measurements at time of overpass, flask sampling of

atmospheric composition, or occasional in situ measure-

ments of carbon stores).

This ‘scaling problem’ is so prevalent that it is worth

a brief discussion in the context of model–data

synthesis. Suppose that the model is defined at ‘coarse’

space-time scales by physical parameterizations that

demand some (usually implicit) space-time averaging

of all variables, and by choices of space-time grids,

which are compatible with these averaging require-

ments. Since it is necessary that all variables in both the

dynamic and observation models be averaged in a

consistent way throughout, the observation model can

be written as zcoarse5h(ycoarse)1noise, where the

measurements (z) and target variables (y) are identified

as applying at coarse (model) scale. However, the actual

measurements are often available at some much finer

scale zfine, and may also be sparsely sampled. The

variability in an ensemble of measurements zfine (which

cover the coarse scale) is defined by a covariance Rfine,

the integral of the cospectrum of z between the fine and

coarse scales. The problem is to find a relationship

between zfine and zcoarse so that zfine can be used as an

observable in the model–data synthesis process. There

are several generic ways to do this.

A first, very simple option is to take the fine scale

measurements (zfine) as a noisy sample of zcoarse, with

the variability in zfine treated as a contribution to the

representation error. In this case, the observation

model becomes zfine5h(ycoarse)1 [measurement error

in zfine]1 [representation error in h]1 [noise with

covariance Rfine], where the last noise term accounts

for unresolved space-time variability in zfine. This is

often the best option if there is no other information

Table 4 Indicative properties of the error covariance matrix for some measurements of carbon stores in vegetation and soils,

describing measurement error only and omitting representation error

Observation (zm) Units

Typical

range

Typical relative

error (rm/zm)

(%) Error distribution Error correlations

Leaf carbon kgC m�2 0–1 10–30

Log-normal

(normal if many

measurements are

aggregated)

At an individual site, errors

are uncorrelated because

measurements are made

with different techniques

Wood carbon

(above and below ground)

kgC m�2 0–50 15–50

Fine root carbon kgC m�2 0–1 30–100

Coarse litter

(including standing dead)

kgC m�2 0–10 30–100

Fine litter kgC m�2 0–0.5 10–30

Soil carbon (to 1 m) kgC m�2 0 to 4100 30–100

9>>>>>>>>>>=
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available about the sources of variability in zfine, as for

example with flask measurements of atmospheric

composition or soil samples taken from imprecisely

known locations.

A second option is that the fine scale measurements

(zfine) can be aggregated directly to find zcoarse5

Sw(afine)zfine, where w is a set of weights determined

by ancillary fine-scale data afine. For example, reflected

radiances can be aggregated with area weighting, and

in situ soil or biomass carbon measurements can be

aggregated approximately using a weighting based on

soil and microclimate attributes that can be inferred

from fine-scale digital elevation maps. The inferred

zcoarse becomes a pseudo-observation to be utilized

through an observation model zcoarse5h(ycoarse)

1noise, where the noise term includes errors in zfine,

errors in the weighting model for zcoarse, and errors in

afine. This is a good option when plenty of fine-scale

measurements are available within each coarse-scale

element, for example from remote sensing.

A third option is to introduce a fine-scale process or

empirical model zfine5g(xcoarse, afine) which relates the

fine-scale observations to coarse-scale state variables

(which here act as boundary conditions) and additional

fine-scale ancillary data such as topography and land

surface attributes from remote sensing. The model g

then becomes the observation model for model–data

synthesis. This is often the best option if the fine-scale

data are sparse, expensive and of high information

content. For example, for eddy flux measurements, g

may be a fine-scale model of land-air exchanges and

microclimates in inhomogeneous or hilly terrain, or a

neural-network-based model of flux distributions con-

ditioned with available ancillary data afine. It is likely

that the development of g involves substantial effort, so

this is not an option to be taken lightly.

This brief discussion has focussed on the observa-

tional issue of scale mismatches between measurements

and models, and their implications for the observation

model z5h(y)1noise, Eqn (2). Another form of the

‘scaling problem’ arises for the dynamic model

dx/dt5 f(x, u, p)1noise, Eqn (1), in translating process

knowledge about the model function f between scales.

Typically f is a set of phenomenological equations for

fluxes contributing to changes in stores x, which are

valid only for certain (often implicit) spatial and

temporal resolutions. For example, the Darcy law

describes water movement in soil columns but not

catchments or heterogeneous regions described by

aggregated state variables. Translation of these phe-

nomenological equations from fine to coarse scales is

possible by treating the fine-scale variability statisti-

cally, but one result is that the fine-scale and coarse-

scale equations are different (for instance, biased with

respect to each other) because of interactions between

fine-scale variability and nonlinearity in the fine-scale

function f(x, u, p).

Summary and conclusions

In the context of terrestrial carbon observation, we have

focussed on model–data synthesis and its implications

for data, especially the specification of data uncertainty.

Our analysis has been framed by an initial statement of

the purposes and attributes of a TCOS. The purposes

for a TCOS are congruent with those of a ‘Global Earth

Observation System of Systems’, with specific contribu-

tions occurring in the areas of weather and climate

prediction, water resource management, ecosystem

management, agricultural sustainability, combating

desertification and monitoring biodiversity. Among

the major attributes of a TCOS are scientific credibility,

consistency with global budgets, adequate spatial

and temporal resolution, observation of sufficient

ranges of entities and processes, and the requirement

to quantify uncertainty. These attributes demand a

model–data synthesis approach because of the need

to combine a range of observations and models to

determine the terrestrial stores and fluxes of carbon

and related entities (water, nutrients, energy), and

the ways that they are influenced by human

management.

Data for model–data synthesis approaches come

in two forms, observations and prior knowledge (for

instance constraints on model parameters). For

both, uncertainty estimates have an influence on the

outcome of the synthesis process comparable with that

of the data values themselves. Data uncertainties affect

not only the predicted uncertainty of the eventual result,

but also the predicted best estimate. Therefore, there is

an urgent need for soundly based uncertainty specifica-

tion, based initially on an error covariance matrix.

In this paper, we have made semi-quantitative

estimates of some of the main properties of the

covariance matrix for measurement error, for four kinds

of data central to terrestrial carbon observation: remote

sensing of land surface properties, atmospheric compo-

sition measurements, direct flux measurements, and

measurements of carbon stores. Critical error properties

include (1) the diagonal elements ½Cov z�mm ¼ sm
2of the

measurement error covariance matrix (where sm is the

error magnitude for an observation zm); (2) the correla-

tions between different observations, quantified by

the off-diagonal elements of the covariance matrix; (3)

the temporal and (4) the spatial structure of errors,

(5) the error distribution, (6) possible scale mismatches

between measurements and models and (7) the repre-

sentation of the observations in the model.
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Finally, we note that there is a need not only to

quantify uncertainty, but also to reduce uncertainty in

our estimates. The approach outlined here contributes

to this goal, by providing a framework to formalize the

manner in which we constrain uncertainty. The critical

step is to better understand the error structures of both

the priors and the observations, leading to improved

focus on the major sources of uncertainty.
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PART III: DATA ASSIMILATION METHODS 

 

 

 

With theoretical and application perspectives, this part expatiates on data assimilation 

frameworks and presents the latest algorithms, including cost-function based methods 

and filtering-based methods. Their advantages and limitations are shown. An adaptive 

Kalman filter technique is proposed, and the uncertainty problems are further 

discussed. A powerful software tool on land data assimilation system will be 

demonstrated through a special lecture.  
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[1] Soil moisture is a very important variable in land surface processes. Both field
moisture measurements and estimates from modeling have their limitations when being
used to estimate soil moisture on a large spatial scale. Remote sensing is becoming a
practical method to estimate soil moisture globally; however, the quality of current soil
surface moisture products needs to be improved in order to meet practical requirements.
Data assimilation (DA) is a promising approach to merge model dynamics and remote
sensing observations, thus having the potential to estimate soil moisture more accurately.
In this study, a data assimilation algorithm, which couples the particle filter and the kernel
smoothing technique, is presented to estimate soil moisture and soil parameters from
microwave signals. A simple hydrological model with a daily time step is utilized to
reduce the computational burden in the process of data assimilation. An observation
operator based on the ratio of two microwave brightness temperatures at different
frequencies is designed to link surface soil moisture with remote sensing measurements,
and a sensitivity analysis of this operator is also conducted. Additionally, a variant of
particle filtering method is developed for the joint estimation of soil moisture and soil
parameters such as texture and porosity. This assimilation scheme is validated against field
moisture measurements at the CEOP/Mongolia experiment site and is found to estimate
near-surface soil moisture very well. The retrieved soil texture still contains large
uncertainties as the retrieved values cannot converge to fixed points or narrow ranges
when using different initial soil texture values, but the retrieved soil porosity has relatively
small uncertainties.

Citation: Qin, J., S. Liang, K. Yang, I. Kaihotsu, R. Liu, and T. Koike (2009), Simultaneous estimation of both soil moisture and

model parameters using particle filtering method through the assimilation of microwave signal, J. Geophys. Res., 114, D15103,

doi:10.1029/2008JD011358.

1. Introduction

[2] Soil moisture plays a significant role in the terrestrial
water cycle [Daly and Porporato, 2005; Hirabayashi et al.,
2005; Reichle et al., 2007; Sheffield and Wood, 2007]. It is
very important to obtain information about soil moisture
due to its profound impacts on practical water resource
applications such as flood forecasting, weather and climate
prediction, crop growth monitoring, and water resource

management [Claussen, 1998; Davies and Allen, 1973;
Drusch, 2007; Drusch and Viterbo, 2007; Foley, 1994;
Schmugge et al., 2002; Texier et al., 1997]. There are
two common methods to obtain the soil moisture status
[Moradkhani, 2008]. One is to measure it in the field with
instruments. These measurements are merely representative
over a small spatial scale since the soil moisture has large
spatial heterogeneity. It is not practical to densely install
many instruments on a large scale. The other is to simulate
soil moisture by running land surface models (LSMs) with
meteorological data and other parameters as inputs. The
simulated soil moisture performs well when both the model
parameters and meteorological forcing are known with a
high degree of precision and accuracy. This can be realized
at only a very limited number of sites, where a variety of
measurement instruments are installed. When running the
model on a large scale, it is very difficult to accurately
obtain model inputs and parameter values.
[3] Microwave remote sensing data has offered another

means to map land surface soil moisture on a large scale
[Kerr et al., 2001; Njoku et al., 2003; Wagner et al., 2003].
However, it also has many limitations and thus mapping
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results cannot satisfy the practical requirements. Data
assimilation (DA) methods can consistently couple both
modeling and observations and thus yield superior soil
moisture retrievals [Entekhabi et al., 1994; Galantowicz et
al., 1999; Houser et al., 1998; Margulis et al., 2002;
McLaughlin, 2002; Reichle et al., 2001;Walker and Houser,
2001]. Thus it has attracted much attention from researchers
in many fields.
[4] Data assimilation techniques can generally be divided

into two categories: sequential-based and cost-function-
based methods. Sequentially based methods [Bertino et al.,
2003], especially those based on a Monte Carlo approach
such as Ensemble Kalman Filtering (EnKF [Evensen, 2003]),
are currently popular in land data assimilation research and
applications since they can be applied to nonlinear and
discontinuous models and be realized easily [Huang et al.,
2008a, 2008b]. This is especially important in land surface
data assimilation because there are many land surface param-
eterizations which are not continuous or not differentiable
and this makes it difficult or inefficient to use cost-function-
based methods as assimilation algorithms. In addition, the
cost-function-based method cannot directly consider uncer-
tainties in atmospheric inputs which are used to drive a LSM.
It just treats uncertainties included in inputs as one part of
model noise. These uncertainties can, however, be handled
readily in the sequential methods [Liang and Qin, 2008].
[5] Reichle et al. [2002] used EnKF to assimilate L-band

(1.4 GHz) microwave brightness temperature observations
into a LSM. Their research indicated that the EnKF is a
flexible and robust DA option that gives satisfactory esti-
mates even for moderate ensemble sizes although the
updating process is suboptimal. Crow [2003] and Crow
and Wood [2003] applied EnKF to assimilate L-band
microwave data to correct for the impact of poorly sampled
rainfall on land surface modeling of root-zone soil moisture
and surface energy fluxes. The results suggested that the
EnKF-based assimilation system is capable of correcting a
substantial fraction of model errors in root-zone soil mois-
ture and latent heat flux predictions associated with the use
of temporally sparse rainfall measurements as the forcing
data. Ni-Meister et al. [2006] assimilated retrieved soil
surface moisture from Scanning Multichannel Microwave
Radiometer (SMMR) data using EnKF. Reichle et al. [2007]
applied EnKF to assimilate retrieved soil surface moisture
from the Advanced Microwave Sounding Radiometer-
Earth Observing System (EOS) (AMSR-E) as observations
into a LSM. Comparisons were also performed between
EnKF and other Monte Carlo-based filtering methods [Zhou
et al., 2006].
[6] Most of the studies mentioned above assimilated

microwave brightness into a LSM with an hourly or sub-
hourly time step rather than with a daily time step. It is
because the microwave radiative transfer equation (RTE) as
the observation operator requires instantaneous soil surface
and canopy temperatures as inputs, which have the apparent
diurnal variations, but the daily-based model lacks such a
temporal resolution. It is obvious that significant computa-
tional cost could be saved if a daily-basedmodel is used in the
process of assimilation. Furthermore, most of previous land
surface assimilation studies focus on either retrieving state
variables such as soil moisture or estimating some model

parameters independently. Moreover, some aforementioned
studies assimilated L-band brightness temperature, which has
not been available for large spatial regions. Other studies
assimilated retrieved soil surface moisture from AMSR-E
and/or SMMR data at a continental scale. In addition, all
these studies assumed that soil texture data or hydraulic
properties are available, although it is rather difficult to
obtain their accurate values at a large scale. Few inves-
tigations [Moradkhani et al., 2005a; Yang et al., 2007] put
forward the idea of jointly retrieving state variables and
model parameters, and perform assimilation experiments
using a conceptual rainfall-runoff model and a complex
LSM, respectively.
[7] In this study, a simple model is used to characterize

the water movement in soils with a daily-based time step, an
observation operator is designed to link the AMSR-E
microwave signal and soil surface moisture, and a variant
of particle filtering method is used to simultaneously
estimate soil surface moisture and soil parameters such as
texture, and porosity, and surface parameters. Then, the
whole DA scheme is validated against the field measure-
ments. In this paper, the DA scheme is first described.
Validation results are then presented and finally followed by
discussions and conclusions.

2. Data Assimilation Scheme

[8] A DA system consists of four parts: model dynamics,
observation operator, assimilation algorithm, and error
models [Lermusiaux and Robinson, 2001]. In the following
subsections, details of these four parts are presented.

2.1. Land Surface Water Balance Model

[9] A land surface scheme to model the water balance on
a daily basis is simplified from the Simple Biosphere Model
2 (SiB2 [Sellers et al., 1996]). We aim to develop the data
assimilation system mainly for arid or semiarid areas; thus
the interception storage of the canopy can be ignored, since
the leaf area index (LAI) normally peaks around 1.5. The
soil column is vertically divided into three layers: surface
layer, root zone layer, and recharge zone. The governing
equations characterizing the water movement in the soil are
as follows:

@q1
@t
¼ 1

D1

Pt � Q1;2 � 1

rw
Eg

� �
; ð1Þ

@q2
@t
¼ 1

D2

Q1;2 � Q2;3 � 1

rw
Etr

� �
; ð2Þ

@q3
@t
¼ 1

D3

Q2;3 � Q3

� �
; ð3Þ

where qi is volumetric soil moisture content of each layer,
Di the soil thickness of each layer, Pt is the precipitation,
Q1,2, Q2,3, and Q3 are soil water fluxes between layers and
out of the bottom layer, Eg and Etr are evaporation from the
soil surface and transpiration from the vegetation canopy,
respectively, and rw is the water density. Equations (1)–(3)
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are discretized on a daily basis using an implicit difference
scheme. The formulas for soil water flux are as follows:

Qi;iþ1 ¼ y i � y iþ1
0:5 Di þ Diþ1ð Þ þ 1

� �
Kiy i � Kiþ1y iþ1

y iþ1 � y i

� �
B

Bþ 3

� �
;

ð4Þ

y i ¼ ysat

qi
qsat

� ��B
; ð5Þ

Ki ¼ Ksat

qi
qsat

� �2Bþ3
; ð6Þ

Ksat ¼ 7:0556 � 10�6:884þ0:0153�%sand ð7Þ

B ¼ 2:91þ 0:159 �%clay ð8Þ

where Ki is the hydraulic conductivity of each layer, y i the
matrix potential of each layer, qsat the soil porosity, Ksat the
hydraulic conductivity at saturation, and B the empirical
parameter related to soil texture, %sand the sand content,
and %clay the clay content. The drainage out of the bottom
layer is assumed to be K3 and the surface runoff occurs
when surface soil water content q1 exceeds the porosity qsat.
[10] Both the evaporation Eg from the soil surface and

transpiration Etr from the vegetation canopy are the impor-
tant components in equations (1)–(3). There exist many
methods to compute the potential evapotranspiration on a
daily basis, including Penman-Monteith, Priestley-Taylor,
and so on. The actual evapotranspiration and its partition
into evaporation and transpiration are needed in the calcu-
lation of the water balance. In this study, a variant of the
Priestley-Taylor equation [Davies and Allen, 1973] is taken
to estimate the daily actual evapotranspiration and the
vegetation coverage is used to separate it. The daily evapo-
transpiration process is parameterized as follows [Sau et al.,
2004]:

ETa ¼ a
D

Dþ g
Rn � 1� exp b

q1
qsat

� �3
" #( )

; ð9Þ

Eg ¼ ETa � 1� fvð Þ; ð10Þ

Etr ¼ ETa � fv; ð11Þ

fv ¼ 1� exp �0:5LAIð Þ; ð12Þ

where ETa denotes the actual evapotranspiration, a = 1.26
the Priestly-Taylor constant, b the constraint coefficient,
D the slope of the saturated vapor pressure with respect
to the air temperature, g the psychometric constant, and fv
the vegetation coverage. The power 3 does not exist in its

original form of equation (9) and it is found that equation (9)
performs better after adding an exponent of 3 [Nakayama et
al., 1993].
[11] An implicit scheme is used for the computation with

daily time step and is stable, but big errors may occur
immediately after a rainfall event. Nevertheless, such errors
may be compensated to some degree by information from
satellite signals.

2.2. Observation Operator and Microwave Data

[12] In this study, a microwave RTE is implemented to
link the surface soil moisture to satellite measurements. It is
a Q-h model with minor revisions to include vegetation
effect. The concrete form of this RTE is as follows:

Tbp ¼ Tg 1� Gp

� �
exp �tcð Þ þ Tc 1� wð Þ

� 1� exp �tcð Þ½ � 1þ Gp exp �tcð Þ� �
; ð13Þ

where the subscript p represents the vertical or horizontal
polarization, Gp the soil reflectivity, tc the vegetation optical
depth, and w the vegetation single scattering albedo. A Q-h
model is used to calculate the soil reflectivity as follows:

Gp ¼ 1� Qð ÞRp þ QRq

� �
exp �hð Þ; ð14Þ

where the subscripts p denotes the vertical or horizontal
polarization, respectively, Q and h are empirical surface
roughness parameters, and R the Fresnel power reflectivity
with a smooth soil surface. The R is determined using the
following equations:

Rp ¼ cos g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 g

p
cos g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 g

p
�����

�����
2

; ð15Þ

Rq ¼ er cos g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 g

p
er cos g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 g

p
�����

�����
2

; ð16Þ

where p and q denote the horizontal and vertical polariza-
tion, g the incident angle, and er the soil dielectric constant.
The soil dielectric constant is computed as follows:

er ¼ 1þ 1� qsatð Þ eas � 1
� �þ qb1e

a
fw � q1

h i1=a
; ð17Þ

where es = 4.7 + 0.0j denotes the dielectric constant for
mineral soil, efw the dielectric constant of free water, a =
0.65, and b the coefficient dependent upon the soil texture.
The parameters in equations (13) and (14) are dependent on
wave frequency and can be parameterized as follows:

h ¼ k � sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
0:1 cos g
p

; ð18Þ

Q ¼ Q0 k � sð Þ0:795; ð19Þ
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tc ¼ b0 100lð Þcwc

cos q
; ð20Þ

wc ¼ exp LAI=3:3ð Þ � 1 ð21Þ

w ¼ 0:00083

l
; ð22Þ

where l[m] is the wavelength, k the wave number defined
as 2p/l, s the standard deviation of surface roughness,
wc [kg m�2] the vegetation water content, andQ0, b

0, and c
the empirical coefficients. Equations (19) and (22) are
empirical formulas fitted from limited microwave experi-
mental data [Fujii, 2005] and were firstly used by Yang et al.
[2007] to reduce the parameter number of the radiative
transfer equation.
[13] As shown in equation (13), both the soil surface

temperature and the canopy temperature are important
factors to determine the value of the simulated microwave
brightness temperature. Since the time step is one day in this
model, the brightness temperature cannot be simulated at
the satellite overpassing times. So it is challenging to
directly assimilate the satellite-observed brightness temper-
ature into the dynamics. However, this dilemma can be
removed by defining a ratio of two brightness temperatures
at different frequencies, which can reflect the soil wetness,
based on the assumption that the soil surface temperature
and the canopy temperature have equal values. When
AMSR-E data are used as the information source to be
assimilated, a new index called the soil water ratio (SWR) is
defined in this study in accordance with equation (13) by
canceling out temperatures as follows:

SWR ¼ T18:7
bq

T6:9
bq

¼ 1� Gq

� �
exp �tcð Þ þ 1� wð Þ 1� exp �tcð Þ½ � 1þ Gq exp �tcð Þ� �� �18:7

1� Gq

� �
exp �tcð Þ þ 1� wð Þ 1� exp �tcð Þ½ � 1þ Gq exp �tcð Þ� �� �6:9

where the superscript denotes the frequency and Tbq
18.7 and

Tbq
6.9 the vertical polarization brightness temperatures at

18.7 GHz and 6.9 GHz. The reason for choosing the
vertical polarization temperatures in (23) is that they are
less sensitive to vegetation heterogeneity than the
horizontal polarization temperatures. Up to now, there
are still two problems not to be resolved. One is that SWR
does not completely eliminate the influence of temperature
since Gq in equation (23) is a function of the dielectric
constant of free water which is in turn dependent on the
soil temperature. It is, however, found that SWR is not
sensitive to the soil surface temperature and thus this
temperature can be replaced with the daily averaged air
temperature. The other is the issue of whether the defined
SWR really has the capacity to reflect the soil wetness.
The solutions to these two problems will be shown in
section 4.

2.3. Assimilation Algorithm

[14] Mainstream sequential-based methods include
Kalman Filtering (KF) and Particle Filtering (PF), and their
variants. PF is also called sequential Monte Carlo filtering.

It has been applied in many engineering fields and attracted
some data assimilation practitioners since the posterior
distribution of the state vector can be represented with
Monte Carlo samples and the Gaussian assumption can be
avoided. KF and its variants, however, just evaluate the
mean and covariance of the posterior distribution. Thus PF
can better grasp the filtering density evolution of the
nonlinear system in time than KF and its variants do. PF
itself also has many variants such as the sampling impor-
tance resampling filter (SIR). Han and Li [2008] make a
detailed evaluation of PF, KF, and their variants and
conclude that PF is suited to applications in land surface
data assimilation according to both effectiveness and effi-
ciency. Before moving on, some notations are introduced to
facilitate the following discussions.

xtþ1 ¼ f ðxt; ut; xÞ þ vt ð24Þ

where x denotes the model state vector, u the external
forcing data, x the model parameter vector, v the model
noise, t the subscript for time step, and f(�) the model
operator mapping the previous state xt to the next state xt + 1.

yt ¼ �hðxt ; xÞ þ et ð25Þ

where y denotes the observation vector, e the observation
noise, and �h(�) the observation operator. In this study, the
state vector x = [q1, q2, q3]

T, external forcing u = [Pt, Rn, Ta,
LAI]T, x = [%sand, %clay, qsat, b, s, Q0, b

0, c]T, f (�) is the
discrete form from equations (1)–(3), and �h(�) is the
equation (23).
[15] In the framework of sequential filtering techniques,

the joint estimation of state variables and model parameters
can be performed through the state augmentation method

[Chen et al., 2005]. This approach regards model parame-
ters to be estimated as part of the state vector. The new
augmented state vector becomes [xT, xT]T. Conventionally,
the random walk model is assumed for the time evolution of
x [Moradkhani et al., 2005b]. However, this model results
in much larger variances of x than actual ones in the
estimation process. The kernel smoothing technique is
currently introduced to remove this feature.
[16] In this study, both the SIR method and kernel

smoothing technique are combined [Chen et al., 2005] to
merge the dynamics and the observations for simultaneous
estimation of the model states and parameters. Main steps
for the entire assimilation algorithm [Thomas, 2006] are as
follows:

Step 1: for t = 0, sample {~x0
(i)}i = 1

N : p(x0) and {~x0
(i)}i=1

N :
p(x0);

Step 2: draw {xt+1
(i) }i=1

N : N(xt+1|mt
(i), h2 � Vt), where mt

(i) =

(
ffiffiffiffiffiffiffiffiffiffiffiffi
1� l2
p

)~xt
(i) � (1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� l2
p

)~x ið Þ
t , Vt denotes the covari-

ance matrix of ~xt, and s an adjustable parameter;

ð23Þ
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Step 3: draw {xt+1
(i) }i=1

N : p(xt+1|~xt
(i), xt+1

(i) ), where xt+1
(i) = f (~xt

(i),

ut
(i), xt+1

(i) ) + vt
(i), vt

(i) : p(vt);

Step 4: compute weights wt+1
(i) =

p ytþ1jx ið Þ
tþ1;x

ið Þ
tþ1ð ÞPN

i¼1
p ytþ1jx ið Þ

tþ1;x
ið Þ
tþ1ð Þ

, where

p(yt+1 |xt+1
(i) , xt+1

(i) ) denotes the value of p(yt+1 j (xt+1(i) , xt+1
(i) ));

Step 5: resample {xt + 1
(i) , xt + 1

(i) }i = 1
N with replacement according

to weightswt+1
(i) }i=1

N in order to get {~xt+1
(i) , ~xt+1

(i) }i=1
N with weights

{1/N}i=1
N ;

Step 6: set t = t + 1 and go to step 2.

[17] The parameter l is an adjustable constant for consid-
ering that the model parameters to be estimated are to
change quickly or slowly. l is set to 0 < l < 0.2 for slowly
varying parameters and 0.8 < l < 1.0 for rapidly varying
parameters. In this work, only variances of each model
parameter are computed and nondiagonal elements are set to
zero for the covariance matrix Vt in Step 2 above. Thus
different values of l can be easily set independently for
determination of different parameters.

2.4. Error Models

[18] One significant advantage of sequential-based data
assimilation methods is that uncertainties, which are from
model structure, model parameters, and inputs, etc., can be
handled explicitly in their own framework. As shown in
above subsections, there are four error sources, including
errors in the model dynamics, observations, input forcing,
and model parameters, respectively. All of these errors can
be divided into biased and unbiased noises. Only the
unbiased part in these errors is taken into account in this
study. The error model must be specified for each error
source.
[19] As summarized by Hamill [2006], four methods can

be applied to parameterize uncertainties in model dynamics.
The so-called covariance inflation approach is used and
coupled with the assimilation algorithm. Before assimilating
observation information into dynamics, deviations of par-
ticles around their mean are inflated by a factor r, which is a
little bit greater than 1.0, as follows:

x
ið Þ
t  r x

ið Þ
t � x

ið Þ
t

� �
þ x

ið Þ
t ð26Þ

where the operation  denotes the replacement of the
previous value of xt

(i). It is found that a moderate inflation
improves the assimilation accuracy. More details can be
obtained in the work of Hamill [2006]. One advantage of
sequential data assimilation methods over variational ones is
that errors in input forcing can be explicitly considered by
adding perturbations to them according to some error
parameterizations. In this work, error models for inputs are
taken as the following uniform probability distribution
function (PDF):

u
ið Þ
t ¼ ut 1:0þ zð Þ z : U �d;þd½ � ð27Þ

where z obeys the uniform distribution and d reflects the
knowledge of inputs. Different values of d can be assigned
to each component in u = [Pt, Rn, Ta, LAI]T. Similarly,
uniform distributions are also assumed for the parameter
error models. The observation error model is assumed to be
Gaussian.

3. Sensitivity Study of Soil Water Ratio

[20] As mentioned in section 2.2, two issues with SWR
need to be addressed. As for the first problem, the
variance-based sensitivity analysis method is applied to
determine the global sensitivity of SWR to each input
parameter in equation (23). The variance-based sensitivity
method is briefly introduced below [Helton et al., 2006].
[21] The entire SWR formula can be denoted by Y = �h(X)

where Y means SWR, X the input parameters, and �h(�) the
equation (23), as given in the previous section. If each
component of vector X = [x1, x2, � , xnX]T is considered to be
an independent random variable, then the variance VY of Y
can be decomposed and expressed as:

VY ¼
X
i

Vi þ
X
i<j

Vijþ
X
i<j<k

Vijkþ � � � þ V12...nX ð28Þ

where Vi is the contribution of xi to VY, Vij the
contribution of the interaction of xi and xj to VY, and so
on up to V12 . . . nX, which is the contribution of the
interaction of x1, x2, � � �, xnX to VY. Two types of
sensitivity indices can be defined as:

Si ¼ Vi

VY

and ð29Þ
STi ¼ VY � Vi

VY

where V~i is the sum of all variance terms which do not
include the index i. Si is the first-order sensitivity index
for the ith parameter. This index characterizes the main
influence of parameter xi on the output variable Y and
measures the variance reduction that would be achieved
by fixing that parameter. STi is the total sensitivity index
for the ith parameter and measures the sum of all effects
related to this parameter, considering the interaction
between the ith parameter and other ones.
[22] The Monte Carlo based method can be used to

evaluate these indices. The computation steps are as follows:

Step 1: generate two sets of random samples according to
given distributions to inputs X

X
að Þ

i ¼ x að Þ
i1
; x að Þ

i2
; � � � ; x að Þ

i;nX

h i
; i ¼ 1; 2; . . . ; nS

and ð30Þ
X

bð Þ
i ¼ x bð Þ

i1
; x bð Þ

i2
; � � � ; x bð Þ

i;nX

h i
; i ¼ 1; 2; . . . ; nS

D15103 QIN ET AL.: SOIL MOISTURE BY DATA ASSIMILATION

5 of 13

D15103



in which nS is the number of samples.

Step 2: estimate the sample mean and variance of Y as

ÊY ¼
XnS
i¼1

�h X
að Þ

i

� �
nS

and ð31Þ

V̂ Y ¼
XnS
i¼1

�h2 X
að Þ

i

� �
nS

� Ê
2

Y

Step 3: calculate some intermediate parameters as

V̂ i ¼ 1

nS

XnS
p¼1

�h x
að Þ
p ið Þ; x

að Þ
pi

� �
�h x

bð Þ
p ið Þ; x

að Þ
pi

� �
� Ê

2

Y

and ð32Þ

V̂i ¼ 1

nS

XnS
p¼1

�h x
að Þ
p ið Þ; x

að Þ
pi

� �
�h x

að Þ
p ið Þ; x

bð Þ
pi

� �
� Ê

2

Y

Step 4: evaluate sensitivity indices as follows:

Si ¼ V̂ i=V̂ Y

and ð33Þ
STi ¼ 1� V̂i=V̂ Y

� �
V̂ Y

The sensitivity of all input parameters in equation (23) to
SWR can be evaluated according to the above global
sensitivity analysis algorithm. The distributions of these
input parameters are listed in Table 1. Since there is no
information on theses parameters, the uniform distribution
is assumed for them. The sensitivity analysis results are
shown in Table 1. This sensitivity analysis answers two
questions raised in section 2.2. It is found that three of the
most sensitive input parameters in the calculation of SWI are
leaf area index, soil surface moisture, and c in equation (20),
respectively. Other parameters merely have very small
effects on SWI, including the soil surface temperature. Thus
it is reasonable to construct SWI as the assimilated data.

4. Determination of Model Parameters

[23] There are a total of eight model parameters x =
[%sand, %clay, qsat, b, s, Q0, b

0, c]T in the model operator
and observation operator. Not all of the parameters can be
estimated in terms of the sensitivity analysis performed
above through the data assimilation algorithm presented in
section 2.3. A careful analysis is needed to determine which
parameters should be retrieved together with model states.

[24] Soil parameters %sand, %clay, and qsat have very
small influences on SWI, but they highly affect the soil
water movement as shown in equations (1)–(8) and then
influence the value of SWI at the subsequent instant through
surface soil moisture q1. Thus it is possible to retrieve
%sand, %clay, and qsat step-by-step in time. In fact, there
exist parameterization schemes to estimate qsat from the soil
texture. However, they are not used in this study since these
schemes lack sufficient accuracy and therefore qsat is
independently estimated.
[25] Parameters s, Q0, and b0 have no apparent impacts on

SWI in accordance with sensitivity analysis results. At the
same time, they are also not similar to %sand, %clay, and
qsat which can influence the subsequent soil surface mois-
ture and in turn the SWI. So their values can be fixed to
median ones between maximum and minimum values as
listed in Table 1. Since c can affect the SWI to some degree,
it needs to be estimated.
[26] Many investigations [Castellvi et al., 2001; Kustas et

al., 1996] indicate that the Priestly-Taylor constant varies in
different situations and does not always keep the value of
1.26. Some researchers present modifications to the original
Priestly-Taylor formula. Equation (9) is one of them, which
introduces the soil water content as a limiting factor. The
original value of the parameter b is estimated to be �10.563
by fitting equation (9) to some data sets. However, it is not
guaranteed that this value of b can be applicable to other
cases. Thus it may improve the application scope by taking
b as a parameter to be estimated.

5. Experiment Site and Data

[27] The CEOP/Mongolia experiment site located at
Mandalgobi of Mongolia covers a flat area of 120 km �
160 km, where 12 long-term Automatic Stations for Soil
Hydrology (ASSH) and 6 Automatic Weather Stations
(AWS) are deployed. Their geographic locations are shown
in Figure 1. The detailed description of this experiment can
be found in the work of Kaihotsu [2005]. In this study, the
experimental period (a total of 153 days), was chosen from
1 May 2003 to 30 September 2003 because the soil freezing
and thawing processes are not parameterized in the system.
[28] At ASSH, soil temperature and water content were

measured at 3 cm and 10 cm depth. Meteorological param-
eters were observed at AWS, including wind, temperature,
humidity, pressure, precipitation, net radiation, and soil
temperature and moisture profiles. However, two AWS
(TDS and CRS) data sets are not archived in the CEOP
project. In this article, near-surface water content data
comes from 12 ASSH and 4 AWS (BTS, DGS, DRS, and
MGS). The meteorological forcing data with a temporal
resolution of 3 hours, including precipitation, net radiation,

Table 1. Distributions of Input Parameters to RTE and Their Sensitivity Indices to SWI

Ta q1 %sand %clay qsat s Q0 b0 c LAI

Distribution uniform uniform uniform uniform uniform uniform uniform uniform uniform uniform
Units [K] [m3/m3] [– ] [– ] [m3/m3] [m] [– ] [– ] [– ] [m2/m2]
Min 280.0 0.05 30 10 0.2 2.80E�4 0.6 4.0 �1.6 0.0
Max 310.0 0.55 65 35 0.7 3.50E�4 0.9 6.0 �1.2 2.0
First-order sensitivity indices Si 0.005 0.32414 0.005 0.005 0.005 0.005 0.005 0.005 0.1098 0.41488
Total sensitivity indices STi 0.005 0.36938 0.005 0.005 0.005 0.005 0.005 0.058 0.15385 0.53896
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and near-surface air temperature, were extracted from the
Global Land Data Assimilation System (GLDAS [Rodell et
al., 2004]). The microwave data used in this study are the
brightness temperatures of AMSR-E 6.9 GHz and 18.7 GHz
vertical polarization. The MODIS LAI product was chosen
as input to the dynamic model in this paper.
[29] Since GLDAS meteorological data has a spatial

resolution of 1� � 1�, roughly matching the experiment
site area, the mean of 16 soil moisture measurements was
used to represent the integral soil water status and compared
to the retrieved values through the data assimilation system
built in section 3. In addition, the area-average values of
brightness temperatures and LAIs are also calculated for the
same region. As discussed above, the time step of the
dynamics is daily. Consequently, daily averaging is per-
formed on the in situ soil moisture observations and
GLDAS meteorological data.

6. Results and Discussions

[30] Numerical experiments are performed to validate
results from this assimilation system against moisture esti-
mates from a reference run and from other methods.
Furthermore, issues about the parameter estimation are also
addressed. Before moving on, concrete settings for uncer-
tainties used in the following numerical experiments are

presented, although their parameterization forms are intro-
duced in the previous sections. PDFs for initial moistures
[q1

0, q2
0, q3

0] in three soil layers are all subject to the same
uniform distribution U[0.05, 0.55]. Initial PDFs for param-
eters to be estimated are listed in Table 1. The parameter d is
set to 0.4 in this study. Controlling constants l for slowing
varying parameter and rapidly one are set to 0.12 and 0.9,
respectively. The parameter r controlling inflation of par-
ticles is set to 1.01. The observation noise e conforms to the
normal distribution N(0, 0.008). In the reference run, all
parameters are set as median values in their respective
ranges.

6.1. Comparison With Other Moisture Retrievals

[31] As many investigations have shown, the size of
ensembles or particles has a significant impact on the final
assimilation results when Monte Carlo-based assimilation
methods are applied. When relatively small particle size is
used in the assimilation computation, the results display
instability and contain large sampling errors although the
computation burden can be reduced. Conversely, the assim-
ilation results keep stable and their errors decline when large
particle size is used. The computational intensity is accept-
able for assimilation experiments at some sites when large
particle size is selected, but this can be unaffordable for
applications at a large scale. Thus the balance point needs to

Figure 1. Schematic of the experiment site and locations of 6 AWS and 12 ASSH at CEOP/Mongolia.
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be found for the particle size in the assimilation practice,
around which both the computational cost and assimilation
precision are all acceptable. For this purpose, a series of
trials are performed using different particle sizes in accor-
dance with assimilation settings in preceding sections. The
analysis indicates that a particle size of 500 is large enough
to achieve stable results. In the following, all experiments
and analyses are conducted based upon a 500-particle size.
[32] In order to verify the effectiveness of the data

assimilation algorithm presented above, the reference run
is performed and then resultant soil surface moistures are
compared with ones from the assimilation system in
Figure 2. GLDAS precipitation data is also depicted and
represented by black bars in Figure 2. As have been shown,
the assimilation algorithm obviously improves the simula-
tion results in comparison with ones from the reference run.
RMSE drops from 0.057 to 0.033 and correlation coefficient
R rises from 0.57 to 0.72, respectively. The assimilation
results do better agree with field measurements than the
reference ones do. This can be explained in accordance with

the following uncertainty sources. The first is the uncertain-
ty in the meteorological forcing, especially in precipitation
as shown in Figure 3. GLDAS data grasps main precipita-
tion events during the data assimilation period through the
analysis of observed soil surface water content denoted by
blank circles in Figure 2. However, the amount of precip-
itation in each precipitation event could contain large errors,
causing the reference run to poorly model the surface soil
moisture, but the response of the soil moisture to the
precipitation event looks reasonable. Other forcing data also
contain more or less uncertainties. The second source is the
model structure itself and the third is uncertainties included
in model parameters. Effects of these three sources can be
alleviated in the framework of the current assimilation
algorithm due to the constraint of microwave remote sens-
ing information. Thus assimilation results are superior to
those in the reference run.
[33] Figure 4 shows the assimilation results compared

with NASA AMSR-E standard surface soil moisture prod-
ucts. Both NASA AMSR-E daytime and nighttime products

Figure 2. Comparison of computing results from assimilation run and reference run with field
measurements. Correlation coefficients denoted by R for assimilation run and reference run are 0.80 and
0.57, respectively. RMSE are 0.030 and 0.057 for assimilation run and reference run, respectively.

Figure 3. Comparison between observed precipitation and GLDAS precipitation at the experiment site.
Large uncertainties are included in GLDAS precipitation data.
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are shown in Figure 4 and they have almost the same
values. Surface soil moisture from the assimilation algo-
rithm clearly outperforms NASA AMSR-E moisture prod-
ucts according to two error metrics, RMSE (Root Mean
Square Error) and R (Correlation Coefficient). It is also
found that NASA AMSR-E soil moisture products cannot
reflect the absolute soil moisture values over the temperate
and semiarid regions [Gruhier et al., 2008]. Some studies
[Draper et al., 2009] indicate that the poor performance of
NASA AMSR-E soil moisture is due to its retrieval algo-
rithm. In addition, inversion algorithms retrieves soil sur-
face moisture merely according to the instantaneous
information recorded by remote sensors and other ancillary
ground data, which are hard to be acquired accurately at a
regional or global scale. Here the merit of the data assim-
ilation algorithm presented in this study is obviously
exhibited, though the hydrological model and the water
index (SWI) are simple.
[34] The dynamic model used in the assimilation algo-

rithm is constructed at the daily time step and the thermal

process is not taken into account. This differs from the
assimilation work by Yang et al. [2007]. In their work, the
model SiB2 is applied as dynamics, which characterizes
both hydrological and thermal processes of the land surface
and integrates forward with hourly meteorological forcing
data. Consequently, microwave brightness temperature is
directly assimilated through a dual-pass method that first
estimates optimal model parameters and then estimates soil
moisture. Figure 5 shows comparisons of soil moisture
between Yang’s and our algorithms at the same site. The
algorithm presented in this work slightly overestimates the
water content relative to Yang’s method during conditions
of intensive precipitation, but the two estimates are quite
comparable according to the error metrics or visually.

6.2. Retrievals of Model Parameters

[35] The retrieval of soil texture properties from soil
surface information, especially the remote sensing signal,
attract much attention from researchers in different fields
since they play an important role in the determination of soil

Figure 4. Comparison of soil moisture between the assimilation and NASA AMSR-E retrievals at
ascending pass and descending pass.

Figure 5. Comparison of daily mean soil moisture between the algorithm presented in this study and the
dual-pass assimilation by Yang et al. [2007]. Note that this study uses a daily time step for integration of
the LSM while Yang et al. uses hourly time step.
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hydraulic and thermal properties, which greatly affect the
soil water and heat movement. However, barely effective
values could be retrieved for each pixel with remote sensing
information as constraints, because the variability of soil
properties in both horizontal and vertical directions is rather
large and there is not enough information to retrieve these
heterogeneous properties.
[36] In this work, model parameters are also estimated

in addition to soil moisture, which are [%sand, %clay, qsat,
b, c]. In the following, the main focus is on three soil
parameters %sand, %clay, and qsat since they are physical
properties of soil, from which soil parameters that control
water and heat movement are estimated. These three param-
eters should keep stable or change slightly around some
values after going through an intense adjustment at the initial
stage of the whole assimilation. Moreover, twenty trials are
performed in order to investigate the sensitivity of both the
retrieved soil moisture and the retrieved values of %sand,
%clay, and qsat to initial values of state variables and all
parameters. As shown in Figure 6, initial settings almost
have no influence on retrieved surface soil moisture in
accordance with two error metrics. However, the values of
retrieved parameters %sand, %clay, and qsat do not converge
to certain fixed points although they are stable after the initial
stage, as indicated in Figure 7. The retrieved %sand and
%clay have a large variability, but retrieved soil saturation
qsat shows a small variability and stays within a reasonable
range according to measured soil saturation at three different
sites, MGS, DRS, and BTS. There are no soil texture data
available. Thus some quantitative comparisons cannot be
given to %sand and %clay retrievals. Many investigators
have found that it is very difficult to retrieve soil properties
by using soil surface moisture information. This could be
explained by the concept of equifinality [Beven and Freer,
2001] which essentially recognizes that different initial states
can lead to similar end states. According to Beven’s point of

view, only a certain a posteriori joint probability distribution
could be obtained for parameters to be estimated. The more
information, which is closely related to variables and param-
eters, is included in observations, the more uncertainties are
removed in retrieved results. Different combinations of
values of parameters could lead to similar observations.
Each line in Figure 7 can be regarded as a realization of
the posterior distribution.

7. Conclusions

[37] Accurate estimation of soil moisture is very impor-
tant since it is a key parameter in the terrestrial water cycle.
Traditional methods for collecting soil moisture information
cannot meet the requirements in many applications. Remote
sensing has become a feasible approach to map surface soil
moisture on a global scale. However, it cannot obtain soil
moisture status in the root zone since the remote sensing
signal generally reflects superficial land surface informa-
tion. The data assimilation method can couple land surface
models and remote sensing observations so that it opens up
prospects for accurate estimation of the soilmoisture. Research
on this topic has been widely performed in a range of fields
such as hydrology, agriculture, and meteorology.
[38] In this study, a relatively simple data assimilation

system is developed. This DA scheme takes the daily-based
model as dynamic constraints, a new water index derived
from the microwave radiative transfer as the observation
operator, and a particle filter as merging scheme, and then
assimilates microwave AMSR-E data to jointly estimate soil
moisture and model parameters. Retrieval results from the
assimilation algorithm presented in this study are compared
with field measurements, retrieved soil moisture from the
standard AMSR-E inversion algorithm, and a dual-pass
assimilation scheme with an hourly-based LSM. Compar-
isons indicate that this assimilation algorithm can estimate

Figure 6. Retrieval results of surface soil moisture according to RMSE and R in 20 assimilation trials
with different initial values.
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soil surface moisture with satisfactory speed and precision
at a daily time resolution. Particularly, the temporal vari-
ability of AMR-E product is too small compared to the
observed one in our studied area. At the same time, soil
hydraulic properties are also estimated. Results show that
the retrieved soil texture cannot converge to a fixed value or

a narrow range in our experiments while the retrieved soil
porosity is confined to a relatively narrow range. However,
retrieved soil surface moisture agrees well with station-
averaged moisture measurements. Soil moisture in the root
zone or deep zone could not be retrieved with a high
accuracy since there is no sufficient information to derive

Figure 7. Variation of retrieved soil texture and soil porosity with time, given different initial values in
20 trials.
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relevant soil parameters, which possibly change with the
soil depth. Some researchers also find this problem that the
water content in the root zone cannot be easily retrieved,
just relying on the soil surface moisture information without
accurate soil hydraulic properties.
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[1] Despite significant recent developments in computational power and distributed
hydrologic modeling, the issue of how to adequately address the uncertainty associated
with hydrological predictions remains a critical and challenging one. This issue needs to
be properly addressed for hydrological modeling to realize its maximum practical potential
in environmental decision-making processes. Arguably, the key to properly addressing
hydrologic uncertainty is to understand, quantify, and reduce uncertainty involved in
hydrologic modeling in a cohesive, systematic manner. Although general principles and
techniques on addressing hydrologic uncertainty are emerging in the literature, there exist
no well-accepted guidelines about how to actually implement these principles and
techniques in various hydrologic settings in an integrated manner. This paper reviews, in
relevant detail, the common data assimilation methods that have been used in hydrologic
modeling to address problems of state estimation, parameter estimation, and system
identification. In particular, the paper discusses concepts, methods, and issues involved in
hydrologic data assimilation from a systems perspective. An integrated hierarchical
framework is proposed for pursuing hydrologic data assimilation in several progressive
steps to maximally reduce uncertainty in hydrologic predictions.
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1. Introduction

[2] Hydrologic modeling has benefited from significant
developments over the past two decades, including dramatic
growths in computational power, ever increasing availabil-
ity of distributed hydrologic observations, and improved
understanding of the physics and dynamics of the hydro-
logic system. This has led to the building of higher levels of
complexity into hydrologic models, and an advance from
lumped, conceptual models toward semidistributed and
distributed physics-based models. Paradoxically, while
these advances reflect our growing understanding, they
have also increased the need for concrete methods to deal
with the increasing uncertainty associated with the models
themselves, and with the observations required for driving
and evaluating the models. It is now being broadly recog-
nized that proper consideration of uncertainty in hydrologic
predictions is essential for purposes of both research and
operational modeling [Wagener and Gupta, 2005]. The
value of a hydrologic prediction to water resources and
other relevant decision-making processes is limited if rea-
sonable estimates of the corresponding predictive uncertain-
ty are not provided [e.g., Georgakakos et al., 2004].
[3] To adequately address uncertainty in hydrologic mod-

eling, there are three distinct yet related aspects to be
considered: understanding, quantification, and reduction of
uncertainty. Arguably, understanding uncertainty is an inte-

gral part of any application of uncertainty quantification
and/or reduction. Many uncertainty analysis frameworks
have been introduced in the hydrologic literature, including
the generalized likelihood uncertainty estimation (GLUE)
methodology [Beven and Binley, 1992], the Bayesian recur-
sive estimation technique (BaRE) [Thiemann et al., 2001],
the Shuffled Complex Evolution Metropolis algorithm
(SCEM) [Vrugt et al., 2003a], the multiobjective extension
of SCEM [Vrugt et al., 2003b], the dynamic identifiability
analysis framework (DYNIA) [Wagener et al., 2003], the
maximum likelihood Bayesian averagingmethod (MLBMA)
[Neuman, 2003], the dual state-parameter estimation meth-
ods [Moradkhani et al., 2005a, 2005b], and the simultaneous
optimization and data assimilation algorithm (SODA) [Vrugt
et al., 2005]. However, few of these methods completely
address all the above three critical aspects of uncertainty
analysis in an explicit and cohesive way.
[4] Methods of probabilistic prediction and data assimi-

lation (DA) for quantification and reduction of state uncer-
tainty have been extensively explored in the atmospheric
and oceanic sciences [e.g., Daley, 1991; Courtier et al.,
1993; Anderson and Anderson, 1999]. Their application in
the hydrological sciences is relatively new, although deter-
ministic hydrological prediction and parameter estimation
have become reasonably mature. Nevertheless, the hydro-
logic literature has seen various applications of data assim-
ilation and/or uncertainty analysis in hydrology ranging
from characterization of soil moisture and/or surface energy
balance [e.g., Entekhabi et al., 1994; Houser et al., 1998;
Entekhabi et al., 1999; Galantowicz et al., 1999; Boni et al.,
2001; Walker et al., 2001; Reichle et al., 2001a, 2001b,
2002a, 2002b; Margulis et al., 2002; Dunne and Entekhabi,
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2005], to rainfall-runoff modeling [e.g., Restrepo, 1985;
Moradkhani et al., 2005a, 2005b; Vrugt et al., 2005], to
flood foresting [e.g., Kitanidis and Bras, 1980; Young,
2002], to estimation of hydraulic conductivity [e.g., Katul
et al., 1993; Lee et al., 1993], to groundwater flow and
transport problems [e.g., Eigbe et al., 1998; Graham and
McLaughlin, 1991; McLaughlin et al., 1993], to estimation
of water table elevations [e.g., Van Geer et al., 1991;
Yangxiao et al., 1991], and to water quality modeling
[e.g., Beck, 1987].
[5] One critical issue for hydrologic modeling is how the

DA methods used in atmospheric and related sciences can
best be adapted and combined with hydrologic methods to
cope with the uncertainties arising from hydrologic model-
ing in a cohesive, systematic way to maximally reduce and
adequately quantify the predictive hydrologic uncertainty
[Krzysztofowicz, 1999; Mantovan and Todini, 2006]. Al-
though general principles and techniques on addressing
hydrologic uncertainty are emerging in the literature, there
exist no well-accepted guidelines about how to actually
implement these principles and techniques in various hy-
drologic settings. In this paper we discuss the sources of
uncertainty in hydrological modeling from a systems per-
spective, illustrate in detail some of the common DA
methods that have been used to quantify and reduce
hydrological uncertainty, and propose a (preliminary) hier-
archical data assimilation framework for systematically
addressing the various types of uncertainties as a way to
move forward. It is worth noting that this paper does not
attempt to provide a comprehensive review of the literature
regarding all the methods, applications, and issues related to
data assimilation in hydrology; instead, we aim to present to
the readers an illustrative and integrated (rather than frag-
mented) picture of the state of the art of hydrological data
assimilation from a systems perspective.
[6] The paper is organized as follows: Section 2 discusses

the three important aspects in addressing hydrologic uncer-
tainty, i.e., understanding, quantifying, and reducing uncer-
tainty; in section 3 we present an integrated view of
uncertainty in hydrologic modeling from a systems perspec-
tive; Bayes’ theorem and its application to data assimilation
are discussed in section 4; sections 5, 6, 7, and 8 are devoted
to reviews of the common methods that have been used to
approach problems of system identification, parameter esti-
mation, state estimation, and simultaneous state and param-
eter estimation, respectively; an integrated Bayesian
hierarchical framework for handling all hydrologic uncer-
tainty in a cohesive, systematic manner is proposed in
section 9; and the paper closes with some general discussions
and recommendations for future research in section 10.

2. Understanding, Quantifying, and Reducing
Hydrologic Uncertainty

[7] As mentioned in the introduction, understanding,
quantification, and reduction of uncertainty are the three
critical aspects to be considered in order to adequately
address uncertainty in hydrologic modeling and prediction.
For a full uncertainty analyses one may argue that there
exists an additional aspect where uncertainty in the predic-
tions are analyzed and interpreted to infer the deficiencies in
the model and data, a process that Wagener and Gupta
[2005] referred to as ‘‘uncertainty communication.’’ This,

however, is beyond the scope of the current paper, which
focuses on hydrologic data assimilation.
[8] Obviously, without first adequately understanding all

the different uncertainty sources and the relationships be-
tween them, it is difficult to conduct uncertainty quantifi-
cation and reduction in a meaningful way. This is because
different uncertainty sources may introduce significantly
different error characteristics that require different techni-
ques to deal with; and missing important uncertainty sour-
ces may lead to misleading uncertainty predictions in the
hydrologic outputs. As of today, our understanding of
hydrologic uncertainty is still far from complete and there
is much room for further efforts in search of cohesive,
systematic means to approach this. It is also very important
to distinguish modeling uncertainty from predictive uncer-
tainty: While modeling uncertainty comes mainly from the
imperfect fit to the truth of the past, predictive uncertainty
can also arise from extrapolation errors or temporal predic-
tion errors due to the fact that the future typically does not
look exactly like the past [e.g., Morgan et al., 1990;
Krupnick et al., 2006]. In other words, predictive uncer-
tainty is related to, but not necessarily equivalent to,
modeling uncertainty; and reduction in modeling uncer-
tainty does not necessarily lead to enhanced predictability
of the model under changing conditions. In decision-making
processes, there may exist other types of uncertainty, such as
decision uncertainty, which arises ‘‘whenever there is am-
biguity and controversy about how to quantify or compare
social objective’’ [Finkel, 1990, p. 16], and scenario uncer-
tainty, which is related to the inability of the scenarios to
account for all the factors affecting the key output/decision
variables [Cullen and Frey, 1999]. In the context of hydro-
logical data assimilation, addressing modeling uncertainty is
of primary interest, which, in turn, will have an impact on
predictive uncertainty.
[9] As far as quantifying uncertainty is concerned, a

classical and straightforward way presented in the literature
is to represent the predictions in terms of a probability
distribution, computed by performing probabilistic instead
of deterministic prediction/modeling [e.g., Kuczera and
Parent, 1998; Krzysztofowicz, 1999; Montanari and Brath,
2004; Tamea et al., 2005]. For example, by producing an
ensemble of hydrologic predictions (instead of a single
deterministic prediction as does traditional hydrologic mod-
eling), probabilistic prediction seeks to take into account
uncertainties in the equations and/or parameters that are
used to describe the physical system and in the hydrologic
observations that are made on the system and used in the
prediction/modeling process. Of course, for effective quan-
tification of the uncertainty, some prior knowledge (esti-
mate) about the error characteristics that describe the
probability distribution of the uncertainties is required,
indicating that quantification of uncertainty is, indeed, to a
large degree dependent on the understanding of uncertainty.
In practical applications of probabilistic prediction, the high
nonlinearity of the hydrologic system and the complex
interactions between different components of the system
result in it being highly difficult to estimate and apply
probability distributions that accurately represent the true
joint distributions of the uncertainties without creating
computational and/or mathematical difficulties. Hence, in
practice, locally linear assumptions are usually made about
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the system, and uniform or (truncated) Gaussian/normal
distributions are typically used to quantitatively represent
various sources of uncertainties [e.g., Moradkhani et al.,
2005a, 2005b]. To quantify the uncertainty in hydrologic
outputs, sampling (sometimes called ensemble) methods are
now widely used by taking samples from the assumed error
probability density functions (PDFs) and running the model
forward for a certain amount of time. With a sufficiently
large sample of predictions, statistics describing the uncer-
tainties in model outputs can be easily derived from the
sample. In most cases, quantification of uncertainty is
embedded in the data assimilation processes aiming to
reduce predictive uncertainty as discussed below.
[10] There are three main areas where actions can be

taken toward reducing uncertainty in hydrologic predic-
tions: (1) acquisition of more informative and higher quality
hydrological data (including data of new types) by devel-
oping improved measurement techniques and observation
networks; (2) development of improved hydrologic models
by incorporating better representations of physical processes
and using better mathematical techniques; and (3) develop-
ment of efficient and effective techniques that can better
extract and assimilate information from the available data
via the model identification and prediction processes.
[11] While hydrologic science has witnessed astonishing

advances in the availability of hydrologic data (area 1) and
the complexity/reliability of hydrological models (area 2),
there is an urgent need for techniques that effectively and
efficiently assimilate important information from the data
into the models to produce improved hydrological predic-
tions (area 3). We will generally refer to such techniques as
data assimilation (DA) methods, defined here as

procedures that aim to produce physically consistent representations
or estimates of the dynamical behavior of a system by merging the
information present in imperfect models and uncertain data in an
optimal way to achieve uncertainty quantification and reduction.

[12] It is worth mentioning that this description of the DA
problem is broadly encompassing, not being limited only to
problems of ‘‘state estimation’’ as the term is often applied
to in the literature. Instead, it describes the more compre-
hensive problem of ‘‘merging models with data’’ and
therefore includes the three related problems of system
(structure) identification, parameter estimation, and state
estimation, which are all critical to the reduction of uncer-
tainty in model predictions. More details on these concepts
are provided in section 3.
[13] Arguably, understanding uncertainty should always

be an integral part of any application of uncertainty

quantification/reduction; and given the continual arrival
of different kinds of observations, one should not stop at
the quantification step but continue to reduce the uncer-
tainty by assimilating new observations. In most cases of
DA applications, the process of uncertainty reduction
inherently involves the quantification of uncertainty in
the model inputs, parameters, structure, and observations,
and preferably provides quantitative information about
uncertainty in model predictions or forecasts. In recogni-
tion of this, the focus of this paper is given to under-
standing and reduction of hydrologic uncertainty from a
systems perspective (sections 3–9).

3. Hydrologic Uncertainty From a Systems
Perspective

[14] Uncertainty in hydrologic modeling may arise from
several sources: model structure, parameters, initial condi-
tions, and observational data used to drive and evaluate the
model. In this section, to formally specify the different
sources, we will describe a model as being composed of
multiple components from the perspective of systems the-
ory. Errors in each of these model components can give rise
to uncertainty in hydrologic modeling. In this sense we
include within the realm of data assimilation any procedure
that assimilates information from observations to reduce the
uncertainty associated with one or more of the model
components, be it the state, the parameters, or the system
structure.

3.1. Model Components in Systems Theory

[15] For the purpose of communication, here we consider
a model to be composed of seven different components
(Figure 1): system boundary (B), inputs (u), initial states
(x0), parameters (q), structure (M), states (x), and outputs (y).
Note not all the hydrologic applications existing in the
literature comply with this definition/terminology of system
components (see below).
[16] In this exposition we define the inputs u and outputs

y as fluxes of mass and/or energy into and out of the system
across the system boundary B; states x as time-varying
quantities of mass and/or energy stored within the system
boundary B; and parameters q as characteristic properties of
the system that are assumed to be ‘‘time-invariant’’ (remain
constant over the time duration of interest). Note that in
some fields, the system ‘‘state’’ x* is taken to be some other
quantity somehow related to the mass or energy state x; in
such cases the same general equations hold but with some
modifications to account for the relationship of x* to x.
Also, we shall return to the issue of time-invariance of
model parameters in a moment. For example, in catchment
modeling, u may refer to the time-varying two-dimensional
spatial distribution of precipitation flux over the catchment;
y may refer to the time-varying two-dimensional distribu-
tion of streamflow flux at all points along the river network
and of evaporation and transpiration from the surface of the
catchment; x may refer to the three-dimensional time-
varying spatial distribution of surface and subsurface mois-
ture stored within the catchment boundary; and q may refer
to the time-invariant three-dimensional spatial distribution
of catchment characteristics such as the soil hydraulic
properties.

Figure 1. Schematic diagram of model components from a
systems perspective.
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[17] The model structure M consists of two components:
M x and M y (i.e., M = {M x, M y}). Here M x and M y are (in
general) nonlinear vector functional relationships, where
M x represents the input-to-state mapping and M y represents
the state-to-output mapping. For example, M x may refer to
the coupled equations describing the three-dimensional
evolution of surface and subsurface moisture in response
to catchment inputs and outputs (precipitation, evaporation,
transpiration, and outflow), and M y may refer to the
coupled equations describing the dependence of catchment
outputs (evaporation, transpiration, and outflow) on the
system states. These mappings can be described or con-
structed in a variety of different ways, including the
continuous-time differential equation formulation (using t
to represent continuously varying time):

dx=dt ¼ Mx x; ujqð Þ ð1Þ

y ¼ My xjqð Þ; ð2Þ

and the discrete-time difference equation formulation (using
k to represent discrete moments in continuously varying
time t):

xkþ1 ¼ Mx
kþ1 xk ; ukþ1jqð Þ ð3Þ

ykþ1 ¼ M
y
kþ1 xkþ1jqð Þ: ð4Þ

[18] Since computer-based implementations are usually
constructed to make predictions at discrete moments of
time, we shall (without loss of generality) use the discrete
time formulation described by equations (3) and (4) in all
subsequent discussion. Note that the formulation must
implicitly employ the continuity equation dx/dt = u � y to
ensure physical consistency in the time-dependent account-
ing for mass and energy fluxes.
[19] As mentioned above, this formulation assumes that

the model parameters q do not vary with time over the
duration of interest. As a conceptual extension, one might
wish more generally to permit the system characteristics
represented as ‘‘parameters’’ to vary slowly with time, in
response to changes in the model state and/or system inputs.
In general, we would expect (for reasons of physical
consistency) that the rate of this ‘‘parameter’’ variation is
slower than that of the variation of the state. To complete
the mathematical description, we would then introduce an
additional set of mapping relationships that describes, in a
manner analogous to the input-state relationship, the time-
evolution of the parameters q (see equations (5)–(7)).

qkþ1 ¼ M q
kþ1 xk ; ukþ1; qk jfð Þ ð5Þ

xkþ1 ¼ Mx
kþ1 xk ; ukþ1jqkð Þ ð6Þ

ykþ1 ¼ M
y
kþ1 xkþ1jqkð Þ: ð7Þ

[20] Note that this revised formulation introduces a new
set of (uncertain) time-invariant coefficients f which must
be specified a priori or estimated from data; for example, if

q is believed to take the same Gaussian distribution at all
time steps, f might represent the (time-invariant) mean and
covariance of that distribution (f � N(mq, sq

2)). However, if
we define an extended ‘‘state’’ vector x0 = [x, q] by adjoining
the time-varying quantities x and q into a single variable,
and define a new ‘‘parameter’’ vector f, the formulation in
(5)–(7) is not fundamentally different from that given in
equations (3)– (4). For simplicity of notation, we will
therefore proceed by adopting the representation of
equations (3)–(4) and let the reader make the appropri-
ate substitutions for the more general case as necessary.

3.2. Errors in Different Model Components

[21] Of the seven model components illustrated in
Figure 1, five of them (i.e., B, u, x0, q, and M) must be
specified, estimated, or defined before the model can be
actually run, while the remaining two (x and y) are com-
puted by running the model. Each of the five predefined
components may be uncertain in various characteristic
ways, and the consequence of these uncertainties will be
mapped into the model states and outputs. Hence input data,
parameters, the model structure, initial conditions, and the
system boundary represent five major sources of uncertain-
ties in hydrologic modeling. In most cases, model inputs
and initial conditions are specified or estimated from in situ
observations. Accordingly, errors in these two sources can
be collectively considered as data errors or observation
errors. Errors in output observations that are used to
evaluate the model results should be considered as data
errors as well. Note in cases where x0 are treated as model
parameters, errors associated with x0 can be considered as
parameter errors [e.g., Liu et al., 2003]. Definition of the
system boundary is part of the model conceptualization
process; hence the uncertainty associated with B can be
considered as one source of structural uncertainty. In
summary, there are three primary types of uncertainties in
hydrologic modeling: structural errors, parameter errors,
and data errors (see also discussions by Wagener and Gupta
[2005]).
[22] 1. Models are assemblies of assumptions and sim-

plifications and thus inevitably imperfect approximations to
the complex reality, i.e., the true system that a model seeks
to characterize. Conceptualization with inappropriate
approximations and omissions can result in large (albeit
poorly understood) errors in the conceptual structure of a
numerical model. Structure errors can also arise from the
mathematical implementation (e.g., spatial and temporal
discretizations) that transforms a conceptual model into a
numerical model [Neuman, 2003].
[23] 2. Model parameters are conceptual aggregate rep-

resentations of spatially and temporally heterogeneous
properties of the real system. Parameters are an integral
part of the equation-based modeling approach, and the use
of ‘‘effective’’ parameter values in hydrologic modeling is
essential. Errors in the estimates of parameter values can
result in huge errors in the model outputs as shown in many
modeling studies [e.g., Gupta et al., 1998; Liu et al., 2005].
However, the ‘‘conceptual’’ and spatiotemporal aggregate
nature of parameters sometimes makes it difficult to specify
them directly and unambiguously from observations made
in the field (of course exceptions exist, such as pumping
tests to estimate system conductivities). In other words,
parameters are not often easily measurable, and must

4 of 18

W07401 LIU AND GUPTA: HYDROLOGIC DATA ASSIMILATION W07401



generally be estimated by indirect means (e.g., prior knowl-
edge or model calibration) with consequent introduction of
errors and uncertainties.
[24] 3. Data errors can generate uncertainties in hydro-

logic predictions through the model inputs and initial
conditions, both of which can be estimated from observa-
tions [e.g., Clark and Slater, 2006]. A data error is also
referred to as a measurement error if, as typically is the case,
the data of concern is measured. A measurement error
usually consists of two components: (1) instrument error
due to imperfect measurement devices that do not accurately
record the variables they are designed to measure and
(2) representativeness error due to scale incompatibility or
differences (in time or space) between the variable mea-
sured by a device and the corresponding model variable.
Representativeness error can be discussed in terms of
spacing (distance or interval between samples), extent
(overall coverage of measurements in space or time), and
support (averaging volume or area of samples) [Blöschl and
Grayson, 2000]. These two error components tend to have
very different characteristics which may vary from variable
to variable. To effectively quantify or reduce uncertainty in
the predictions, statistics of both errors should be considered
and adequately specified.
[25] Structural, parameter, and data errors collectively

lead to uncertainties in hydrologic predictions of model
outputs and states. Among these three types of errors,
structural errors are generally the most poorly understood
and the most difficult to cope with; nevertheless, their
impacts on hydrologic predictions can be far more detri-
mental than those of parameter errors and data errors
[Carrera and Neuman, 1986; Abramowitz et al., 2006].

3.3. Addressing Uncertainty in Different Model
Components

[26] Viewing model components and the errors in them
within a dynamic systems framework (as described in
sections 3.1 and 3.2) helps to better understand and organize
the different uncertainty sources in hydrologic modeling.
The next critical issue is how to adequately represent (or
quantify) the uncertainties in these sources and feed them
into a DA framework to effectively and efficiently reduce
the predictive uncertainty. A DA application usually
requires proper specifications or assumptions of the char-
acteristics of errors associated with the four major error
sources (initial conditions, inputs, parameters, and model
structure). This, however, is not a trivial issue, because prior
knowledge on the error characteristics is usually not avail-
able, especially for errors associated with poor specification
of the model structure. In the meantime, one should realize
that different DA problems may require different techniques/
algorithms that best fit into the specific problem setting.
[27] Loosely speaking, there are three types of data

assimilation problems based on the model component being
considered: state estimation, parameter estimation, and
system identification, described as follows.
[28] 1. State estimation seeks to characterize the true

‘‘state’’ of the system by optimally combining state informa-
tion represented by the model with that inferable from all
kinds of available data sources, quantitative or qualitative. In
the literature the term data assimilation is commonly used to
refer specifically to state estimation only [e.g., McLaughlin,
1995, 2002]. Note that the definition (including dimension)

and computation of the model state are conditional on the
specification of a model structure and values for the param-
eters. While current data assimilation methods are praised for
their ability to deal with all the three types of errors men-
tioned above (i.e., structural errors, parameter errors, and
measurement errors), most applications of state estimation
have been focused on the measurement errors only, without
rigorous treatment of structural and parameter errors [e.g.,
Reichle et al., 2002a, 2002b].
[29] 2. Parameter estimation aims to estimate proper

values of the model ‘‘parameters’’ based on available data,
so that the model makes sufficiently accurate simulations or
predictions of the true input-state-output response. Note that
the definition, dimension, and specification of the model
parameter set are conditional on the specification of a model
structure (the form of the input-state-output relationship).
Traditionally, parameter estimation has been conducted by
using deterministic (manual or automatic) calibration tech-
niques that tend to ignore model structural errors and
measurement errors [e.g., Duan et al., 1992; Yapo et al.,
1998]. Recently, stochastic data assimilation methods have
been developed and applied to parameter estimation prob-
lems [e.g., Thiemann et al., 2001; Moradkhani et al., 2005a,
2005b].
[30] 3. System identification involves the selection of

appropriate structures (i.e., conceptual models) for a math-
ematical or numerical model that aims to represent the real
system. More specifically, a system identification process
aims to define a set of proper mappings (typically equations,
e.g., equations (3) and (4)) that accurately represent the
relationships between the model inputs, parameters, states,
and outputs [e.g., Neuman, 2003].
[31] Among the three types of DA problems, system

identification is the most important and, typically, also the
most difficult, as it may involve the development of
qualitative diagnostic measures and include the use of
expert knowledge and subjectivity. Regardless of that, to
maximally reduce the final total uncertainty in hydrologic
predictions, all these three types of problems should be
addressed, with order of importance being system identifi-
cation, parameter estimation, and state estimation, and,
when necessary, in an iterative manner. In the meantime,
all types of errors (i.e., structural, parameter, and data
errors) should be properly considered in each of three types
of DA processes to reduce bias and uncertainty in the final
predictions.
[32] As mentioned above, we define data assimilation as a

process that assimilates information from observational data
(quantitative or qualitative) in such a way as to improve
estimation/representation of any of the three major model
components of concern (i.e., model states, parameters, and
structure). The following sections review the methods
typically used in hydrological modeling, including methods
for system identification, parameter estimation, and state
estimation. In general, Bayes’ theorem has been employed
as the foundation of various data assimilation methods and
is therefore discussed first (section 4).

4. Bayes’ Theorem and Its Application to Data
Assimilation

[33] We consider two events A and B, which we expect
(from empirical observation or for reasons of physical
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consistency) to be related in some manner. We further
assume that the probability in the occurrence (or observa-
tion) of events A and B can be described by P(A) and P(B).
Then, the cooccurrence (or observation) of A and B is
represented by the joint probability function P(A \ B),
and this can be further expressed as

P A \ Bð Þ ¼ P AjBð Þ 
 P Bð Þ ¼ P BjAð Þ 
 P Að Þ; ð8Þ

where P(AjB) is the conditional probability of occurrence of
event A given knowledge that event B has occurred (and
similarly for P(BjA)). This leads directly to Bayes’ theorem:

P BjAð Þ ¼ P AjBð Þ 
 P Bð Þ
P Að Þ : ð9Þ

[34] In the Bayesian use of probabilities, the marginal
probabilities (P(A) and P(B)) and the conditional probabil-
ities (P(AjB) and P(BjA)) are referred to as the prior and
posterior PDFs, respectively. Bayes’ law provides a power-
ful basis for a full stochastic representation of all the
uncertainties in the model and the data in hydrologic
modeling. Using Bayes’ theory, equation (9) can be refor-
mulated to describe all three aspects of data assimilation,
including system identification, parameter estimation, and
state estimation.
[35] As discussed in section 2, the five uncertain quanti-

ties (B, u, x0, q, and M) must be specified in order to use
equations (3) and (4) to compute estimates of the two
remaining quantities (x and y). We represent the prior
knowledge of the quantities (B, u, x0, q, and M) by the
probabilities pprior(B), pprior(u), pprior(x0), pprior(q), and
pprior(M), respectively. We further assume that there may
become available a set of uncertain observations z which
may contain information about any of the system aspects of
interest. For example, z may consist of direct or indirect
measurements on any of the system fluxes (u and y), state
variables (x), parameters (q), or initial conditions (x0 and B),
or more generally can consist of qualitative assessments of
any of these quantities, including the model structure (M).
Of course, such observations will generally be incomplete,
in the sense that they refer to values at a limited and discrete
set of points in the four dimensions of space and time.
Further, such observations may generally be indirect, in the
sense that they actually describe some quantity that is
related to the uncertain model quantity of interest. For
example, this indirect relationship might arise from inexact
correspondence such as scaling differences (e.g., point scale
observations are made of spatially distributed soil hydraulic
properties, whereas the model representation describes the
mean spatial value over some larger scale). Alternatively, it
may arise from observing some closely related quantity
(e.g., remotely sensed observations are made of radiances
which are then related to the system properties of interest
via radiative-transfer models). By considering all such
factors, we define the following general observation equation:

zk ¼ Mz yk ; xk ; uk ; x0; q;B;Mð Þ: ð10Þ

[36] To solve the DA problem, we are now interested in
the posterior probability distribution (PPD) of the various

quantities of interest: the model structure, parameters, state
variables, and outputs. By application of Bayes’ theory it
can be shown that for given observations z,

pposterior M jzð Þ ¼ p zjMð Þ 
 pprior Mð Þ
p zð Þ : ð11Þ

[37] Equation (11) provides a means for identifying
appropriate model structures M by describing the posterior
probability associated with a selected model structure in
terms of the ‘‘likelihood’’ p(zjM) that the observations z
might have been generated by the model assuming that the
structure M is the correct one, multiplied by the probability
that the model structural assumption is correct (pprior(M)).
Acknowledging the logical progressive chain of conditional
dependence described as {M! q! x! y}, we can further
derive

pposterior qjz;Mð Þ ¼ p zjM ; qð Þ 
 pprior qjMð Þ 
 pprior Mð Þ
p z;Mð Þ ð12Þ

pposterior xjz;M ; qð Þ

¼ p zjx;M ; qð Þ 
 p xjM ; qð Þ 
 pprior qjMð Þ 
 pprior Mð Þ
p z;M ; qð Þ ð13Þ

pposterior yjx; z;M ; qð Þ

¼ p zjy; x;M ; qð Þ 
 p yjx;M ; qð Þ 
 p xjM ; qð Þ 
 pprior qjMð Þ 
 pprior Mð Þ
p x; z;M ; qð Þ :

[38] For simplicity of presentation we have ignored the
additional dependence on the system boundary B and
initial conditions x0. In equation (11), p(z) is a constant
that normalizes the posterior probability mass to unity.
Equation (12) describes how to compute posterior esti-
mates of the model parameters q given the model structure
M and observations z; equation (13) describes how to
compute posterior estimates of the model states x given the
model structure M, parameters q, and observations z; and
equation (14) describes how to compute posterior esti-
mates of the model outputs y given the model structure M,
parameters q, states x, and observations z. In data assimi-
lation these equations serve as the fundamental basis for
system identification (equation (11)), parameter estimation
(equation (12)), state estimation (equation (13)), and
quantification of uncertainty in hydrologic predictions
(equation (14)).

5. Methods for System Identification

[39] In hydrologic modeling or analysis, a system iden-
tification problem typically involves selecting or construct-
ing a valid model structure or a set of equally valid model
structures (i.e., conceptual models and mathematical imple-
mentations) for the hydrologic system of concern. Histori-
cally, hydrologic modeling has relied on a single conceptual
model of a particular hydrologic environment. Beven and
Freer [2001, p. 1] point out that for a complex environ-
mental system, there may actually exist ‘‘many different

ð14Þ

6 of 18

W07401 LIU AND GUPTA: HYDROLOGIC DATA ASSIMILATION W07401



model structures and many different parameter sets within a
chosen model structure that may be behavioral or acceptable
in reproducing the observed behavior of that system,’’ a
phenomenon that Beven [1993] has termed as ‘‘equifinal-
ity.’’ This may be partially, if not primarily, due to the
limited ability of current conceptual models in representing
the complex, heterogeneous hydrologic systems that have
unknown, and possibly unique system characteristics
[Beven, 2000]. In this sense, hydrologic predictions based
on a single conceptual model or model structure are
invariably subject to statistical bias (if an invalid model is
chosen) and underestimation of uncertainty (if equivalent
valid models are not included) [Neuman, 2003]. Hence the
‘‘system identification’’ problem in hydrologic modeling
can be approached through using a suite of ‘‘independent’’
plausible model structures with probability of each structure
properly defined so that collectively, these model structures
adequately and unambiguously approximate the true under-
lying system.
[40] In most data assimilation techniques (such as those

described later in sections 6 and 7), errors in model
structures are usually accounted for by adding an (unbiased)
error term to the model transition equation (see section 7.1).
However, because of equifinality of models as described
above, a full consideration of the model structure error
requires involving at least several ‘‘independent’’ alternative
model structures that encompass a range of different
assumptions [Beven and Young, 2003]. In this sense, a
multimodel approach based on a suite of conceptual
models is better suited for handling uncertainty associ-
ated with model structure errors than single-model
approaches [National Research Council, 2001; Neuman,
2003; Georgakakos et al., 2004]. In the hydrologic litera-
ture, Beven and Binley [1992] introduced the generalized
likelihood uncertainty estimation methodology (GLUE)
where multiple competing model structures and parameter
sets are allowed to account for the possibility of equifinality
of models, producing a likelihood-weighted probability
distribution of output predictions. GLUE is described in
more detail as a model calibration and uncertainty estima-
tion methodology in section 6.2.1.
[41] Along the same line of reasoning, a coherent mech-

anism for handling structural uncertainty is the concept of
Bayesian model averaging (BMA) [Hoeting et al., 1999]. In
BMA, the posterior distribution of the prediction on a
quantity y given the observation z is approximated by the
weighted sum of the posterior distributions of a set of K
independent (or mutually exclusive) models M = {M1, . . .,
MK}, i.e.,

p yjzð Þ ¼
XK
k¼1

p yjMk ; zð Þp Mk jzð Þ; ð15Þ

where the weights are determined by the posterior
distributions of the models p(Mkjz) given by Bayes’ theorem
as expressed in (11), where the normalization factor p(z) is
obtained by

p zð Þ ¼
XK
k¼1

p zjMkð Þp Mkð Þ ð16Þ

and the likelihood of each model Mk (given by p(zjMk)) is
calculated as

p zjMkð Þ ¼
Z

p zjqk ;Mkð Þp qk jMkð Þdqk : ð17Þ

[42] In equations (16) and (17), p(zjMk) is the likelihood
of observing the data z given the model Mk; p(zjqk, Mk) is
the joint likelihood of model Mk and its parameter set qk;
p(qkjMk) is the prior density of qk given the model structure
M; and p(Mk) is the prior probability that the model
structure Mk is valid. The BMA framework provides a
cohesive way to jointly assess model structure and
parameter uncertainties; however, it tends to be computa-
tionally demanding/cumbersome and also requires reliable
prior information about model parameters. Neuman [2002,
2003] proposed a maximum likelihood version of BMA
(MLBMA) that proves to be more computationally feasible
and capable of dealing with situations where reliable prior
information is lacking [Ye et al., 2004, 2005].
[43] In atmospheric science it has recently become very

popular to use a multimodel ensemble method (MME) for
weather and climate forecasting [e.g., Doblas-Reyes et al.,
2000; Palmer et al., 2000; Ziehmann, 2000; Palmer, 2004;
Hagedorn et al., 2005a, 2005b]. In an MME approach a
larger ensemble of predictions is composed from a suite of
smaller ensembles, each generated based on an independent,
plausible model (i.e., several ensembles are generated using
each model structure). Instead of computing the probability
of each model as in a BMA approach, the goal of MME is to
account for uncertainty in the model structure, the
assimilated data, and, in particular, the uncertainty asso-
ciated with knowledge of initial conditions, by means of
sampling from the output distributions of several different
models. Most MME-based studies have reported that the
performance of (properly selected) multimodel ensembles is
superior to that of single-model ensembles, due not only to
error compensation among different models, but also to the
greater consistency and reliability of multimodel ensembles
that cover a broad range of possible solutions [e.g.,
Georgakakos et al., 2004; Hagedorn et al., 2005a, 2005b].
[44] For all the three methodologies mentioned above

(i.e., GLUE, BMA, and MME), all probabilities (including
the final posterior) are implicitly conditioned on the set of
selected models M. Hence it is critical to select a set of
relatively independent, plausible models that are most
strongly supported by available data. Otherwise, there is
no confidence about whether uncertainty is overestimated or
underestimated, and there is no guarantee that the truth will
even lie within the range of a model ensemble. This,
however, is not straightforward, for there exist no well-
accepted guidelines in the literature about how to define
‘‘independent’’ model structures or how many ‘‘indepen-
dent’’ models are needed to adequately span the model
space.

6. Methods for Parameter Estimation

[45] Despite the physical basis of many hydrological
models, their parameters are often conceptual, effective
quantities that cannot be measured in the field, and must
therefore be estimated indirectly. The parameter estimation
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problem is referred to by different names in the literature,
including model calibration, parameter optimization, data
assimilation, inverse problem, parameter tuning, among
others. Arguably, an adequate parameter sensitivity analysis
should always precede a parameter estimation study to
identify sensitive parameters, for including insensitive
parameters may render a parameter estimation process
ineffective and cumbersome, especially for a complex
model that has a large number of parameters [e.g., Liu et
al., 2004, 2005]. In this section we review traditional,
deterministic model calibration methods as well as the
newly emerging, stochastic data assimilation methods for
parameter estimation.

6.1. Model Calibration Methods

[46] As an illustration to the general concept of model
calibration, we consider a physically based model with p
parameters (q = {q1, . . ., qp}), which is to be calibrated by
assimilating the information from N different time series of
observations {Zn, n = 1,. . ., N} corresponding to N model
outputs {Yn, n = 1,. . ., N}. The parameter estimation problem
can bemost generally stated as a vector optimization problem
as follows [Gupta et al., 1998]:

Minimize F qð Þ ¼ fn qð Þ; n ¼ 1; . . . ;Nf g subject to q � Q; ð18Þ

where fn(q) is an objective function (also called a criterion)
for measuring the distance between the nth model output
and the nth observation; Q is the physically feasible p-
dimensional parameter space; and F(q) is a vector in the case
of a multiobjective parameter estimation problem (N � 2)
and a scalar in single-objective cases (N = 1).
[47] The two major strategies used for parameter estima-

tion have been the ‘‘manual-expert’’ approach and the
‘‘automatic’’ approach. While manual-expert strategies rely
on the informed but subjective judgment and skill of an
experienced hydrologist, automatic strategies utilize the
power of computer-based optimization techniques based in
nonlinear regression theory. With the emergence of increas-
ingly complex hydrological models with larger numbers of
model parameters, effective and efficient automatic
approaches have become more popular than the time-
consuming, expertise-demanding manual approaches. Duan
et al. [1992] introduced the Shuffled Complex Evolution
algorithm (SCE), a global optimization strategy applicable
to a broad class of single-criterion calibration problems.
This algorithm was extended to the multiobjective complex
optimization method (MOCOM) by Yapo et al. [1998],
thereby enabling the use of multiple complementary
measures for better extraction of information from the data,
resulting in improved parameter estimates.
[48] The single- and multiple-criteria methods for param-

eter estimation mentioned above rely on deterministic
nonlinear optimization techniques that seek to identify a
single (few) ‘‘best’’ parameter set (sets), thus implicitly
ignoring the uncertainties associated with observed data,
model structure and parameters. In the case of significant
system and data noise or bias, such methods can lead to
parameter estimates that provide biased model predictions.
Recently, Vrugt et al. [2003a] presented an efficient Markov
Chain Monte Carlo (MCMC) sampler called the Shuffled
Complex Evolution Metropolis algorithm (SCEM, with a
multiobjective extension MOSCEM presented by Vrugt et

al. [2003b]), which converges to an ensemble of parameter
sets that approximates the posterior distribution of model
parameters. This posterior description of parameter un-
certainty obtained through SCEM or MOSCEM can be used
to assess the uncertainty in hydrological outputs arising
from parameter uncertainty, representing an improvement
over traditional deterministic optimization methods (e.g.,
SCE and MOCOM) in accounting for uncertainties
associated with model parameters.
[49] Nevertheless, application of any of the methods

mentioned above is implicitly based on an assumption that
there exists a feasible parameter set for which the specific
model structure under consideration is able to provide
unbiased estimates of the model states and outputs at each
time step. When this is not true (as is generally the case), we
must acknowledge the existence of model structural and
data errors and combine the (stochastic) parameter estima-
tion methods with methods for system identification as
described below in section 6.2. In addition, it should be
mentioned that most (traditional) parameter estimation
methods do not exploit the full power of the Bayesian
framework, because they rely on ‘‘batch’’ processing of
long-term historical data, and therefore lack the ability to
recursively reduce parameter (and hence prediction) uncer-
tainty as new data become available. An exception is the
data-based mechanistic (DBM) approach to stochastic mod-
eling, which is based on advanced recursive methods of
time series analysis and has been successfully applied to
hydrological systems modeling and data assimilation [e.g.,
Young, 2003, and references therein]. When considered in
Bayesian terms, the DBM approach has the advantage of
quantifying the uncertainty in the model and the data
without resort to Monte Carlo methods, resulting in
comparatively simple online implementation for flood
forecasting and warning [e.g., Young, 2002; Romanowicz
et al, 2006].

6.2. Parameter Estimation Based on Stochastic
Methods

[50] In recognition of the two major limitations of the
model calibration methods mentioned above, there has been
recent growing interest in the use of stochastic, sequential
data assimilation techniques for parameter estimation. Such
techniques operate within the Bayesian updating framework
for estimation of predictive uncertainty. Examples include
the generalized likelihood uncertainty estimation method
(GLUE, [Beven and Binley, 1992]), the Bayesian recursive
estimation method (BaRE [Thiemann et al. [2001]), and
other more recent techniques for simultaneous state and
parameter estimation (see relevant details in section 8).
6.2.1. Generalized Likelihood Uncertainty Estimation
(GLUE)
[51] Beven and Binley [1992] introduced the generalized

likelihood uncertainty estimation (GLUE) methodology for
model calibration that takes into account the effects of
uncertainty associated the model structure and parameters.
A fundamental assumption underlying GLUE is the ‘‘equi-
finality’’ or ‘‘nonuniqueness’’ concept [Beven, 1993], where
multiple model structures and many parameter sets within a
chosen structure are considered equally likely as simulators
of the system. In other words, it is assumed that there exists
no optimal model or parameter set due to structural and
parameter uncertainties. This has introduced a different
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philosophy to the venue of model calibration where the
primary goal had historically been identifying an optimal
parameter set based on a single model.
[52] To implement the GLUE methodology, several al-

ternative model structures are selected and appropriate prior
parameter uncertainty distributions are assumed for each
model. Samples are then taken from these parameter dis-
tributions (coupled with their corresponding model struc-
tures) to generate Monte Carlo simulations. To evaluate the
degree of correspondence between each simulation and the
observed system behavior, a likelihood value is calculated
based on a predefined likelihood measure (i.e., a measure of
goodness of fit). The likelihood values are then used to
determine whether a model structure-parameter set is ‘‘be-
havioral’’ or ‘‘nonbehavioral’’ according to a subjectively
defined threshold of likelihood values; and only behavioral
model structure-parameter sets are retained to provide
predictions of the system behavior. To assess the uncertainty
associated with the predictions, weights of the behavioral
sets of model structure and parameters are calculated by
normalizing the corresponding likelihood values so that all
the weights sum up to one; the distribution of these weights
is then taken as the probabilistic distribution of the predicted
variables to reflect the uncertainty impacts of structural and
parameter errors on model predictions.
[53] The primary improvement of the GLUE methodol-

ogy over the deterministic calibration methods lies in its
ability to explicitly account for the combined effects of
model structure and parameter uncertainty, by using mul-
tiple models and assuming proper prior distributions for
each parameter. Moreover, when a new observation period
arrives or there exist different observation types (quantita-
tive or qualitative), the likelihood values can be updated to
estimate the posterior distribution of parameter sets (and
thus that of model predictions), based on Bayes’ theorem.
One concern that has been raised is that the Bayesian
equation may not properly apply in GLUE in certain cases,
because in GLUE, a certain likelihood measure, or essen-
tially an objective function, is used in place of a formal
likelihood function that is consistent within the framework
of Bayes’ theorem [e.g., Thiemann et al., 2001; Mantovan
and Todini, 2006]. In addition, in the GLUE procedure,
uncertainties associated with input data and output data (i.e.,
data errors) are not explicitly and/or formally considered.
6.2.2. Bayesian Recursive Estimation (BaRE)
[54] Thiemann et al. [2001] introduced the Bayesian

recursive parameter estimation (BaRE) methodology that
poses the parameter estimation problem within the context
of a formal Bayesian framework. Unlike in GLUE where
error sources are only implicitly considered with a like-
lihood measure, BaRE makes strong, explicit assumptions
about the characteristics of errors in the observations by
using an exponential power density error model. Like in
GLUE, proper parameter ranges and prior probability
distributions are specified; and the Monte Carlo approach
is used to sample from the predefined distributions to
represent parameter uncertainty.
[55] Once the error model is defined and model structure-

parameter selections are initialized from their prior distri-
butions, the BaRE methodology consists of two recursive
steps that are common to the other data assimilation
methods for state estimation (see section 7): prediction

and update. At time tk, BaRE predicts the outputs and the
uncertainty in the outputs by running the model forward to
the next observation time tk+1 (i.e., when the observation
zt+1 is available) for each set in the model structure-
parameter ensemble. To update the probability of the model
structure-parameter sets, a recursive version of the Bayesian
equation for parameter estimation (equation (12)) is used to
obtain the posterior probability of each model structure-
parameter set i as follows:

pposterior Mi; qikþ1jzkþ1
� � / p zkþ1jMi; qik

� �
pprior qik jMi

� �
pprior Mi

� �
:

ð19Þ

[56] After updating, the model system continues to run
forward to the next observation time, using the posterior
model structure-parameter distribution at time tk+1 as the
prior distribution. With a well-posed modeling system, this
recursive process of conditioning parameters on available
observations would gradually reduce uncertainty associated
with the model structure-parameter set and lead to a
progressively smaller region of high probability density
(HPD) in the model-parameter space. In some cases, the
sampling limitation of the Monte Carlo approach may lead
to the HPD parameter region converging to one single point
[Beven and Young, 2003; Gupta et al., 2003]. Misirli [2003]
proposed an improvement on the BaRE methodology by
including a resampling technique to reduce the effect of the
sampling limitation.
[57] Like GLUE, the BaRE methodology introduced a

broader paradigm for parameter estimation without resort-
ing to traditional optimization techniques. By adopting a
recursive rather than ‘‘batch’’ approach, BaRE allows
model parameters to behave as though time-variant and
also reduces the dependence on availability of substantial
input and output data before estimation can begin. More
important, BaRE explicitly considers the uncertainties as-
sociated with model-parameter selection and output meas-
urements, which has not been possible for most previous
model calibration studies through parameter optimization,
and explicitly represents these in the state and output
predictions.
[58] Nevertheless, the BaRE methodology is not the final

word on what can be achieved for model-parameter estima-
tion. First of all, input data uncertainty and model structural
uncertainty are not specifically separated out and are only
implicitly considered, by expanding the predictive uncer-
tainty bounds in a somewhat subjective manner. In addition,
in the current BaRE methodology for which parameter
estimation is the primary focus, the outputs and associated
uncertainty remain un-updated after the posterior parameter
distributions are obtained; in other words, the effects of
reduction on parameter uncertainty (through incorporating
new knowledge from available observation) do not properly
propagate to the estimation of outputs and associated
uncertainty in a timely manner. Accordingly, it would be
beneficial to conduct simultaneous state and parameter
estimation to generate unbiased parameter estimates, as well
as more accurate state estimates. Several such approaches
are reviewed in section 8. Finally, given that system
structures and model parameters naturally vary slowly in
time, it would be more appropriate to employ a time interval
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sufficiently larger than the typical observation time step
when performing model structure-parameter estimation. In
other words, better results may be achieved by adopting an
estimation algorithm that combines the advantages of batch
and recursive methods through using an assimilation time
interval of proper length.

7. Methods for State Estimation

[59] State estimation for dynamic systems is a process
where information is extracted from observations and ac-
cumulated in time into the model, propagating to all state
variables. For a well-behaved model with consistent con-
straints of physical properties of the system, improved state
estimates can be obtained through data assimilation. This
section focuses on state estimation methods assimilating
observations that are distributed in time. Given observations
available up to the current time, there are three types of state
estimation problems: (1) smoothing problems that seek to
characterize system states at a past time; (2) filtering
problems that seek to characterize system states at the
current time; and (3) forecasting problems that seek to
characterize system states at a future time point [Gelb,
1974; McLaughlin, 2002]. Smoothing problems are usually
found in reanalysis or retrospective studies, while filtering
and forecasting problems are most commonly seen in real-
time or operational forecasting applications. In dealing with
these problems, batch-processing methods (or smoothers)
are employed to estimate model states in a batch mode
through least squares approximations, while sequential
methods (or filters) are typically used for recursive
estimation/correction of the states of a system each time
an observation becomes available. In hydrologic data
assimilation the most commonly used methods are Kalman
filtering, particle filtering, and variational data assimilation.
These methods are explained in detail below, with an
introduction to the state-space formulation commonly used
for state estimation applications.

7.1. State-Space Formulation

[60] For the convenience of illustrating the different state
estimation methods, let us consider the following generic
dynamic state-space formulation of a stochastic model:

xkþ1 ¼ Mkþ1 xk ; q; ukþ1ð Þ þ hkþ1 ð20Þ

zkþ1 ¼ Hkþ1 xkþ1; qð Þ þ ekþ1; ð21Þ

where xk and xk+1 represent the true system state vectors at
time tk and tk+1, respectively; the nonlinear operator Mk+1

(equivalent to the model structure mentioned earlier in
section 3) expresses the system propagation from time tk to
tk+1 in response to the model input vector uk+1; q is a vector
of time-invariant model parameters; the observation vector
zk+1 is related to the model parameters and states through an
observation operator Hk+1 (equivalent to Mz mentioned in
equation (10)); hk+1 denotes the model error with mean hk+1
and covariance Qk+1; and ek+1 denotes the observation error
with mean ek+1 and covariance Rk+1. In the context of
Bayesian updating (equation (13)), the state equation (20)
represents the model prior at time tk+1, while the observation
equation (21) can be used to calculate the likelihood of the

observation zk+1. Note in the literature, the state equation is
also referred to as ‘‘transition equation,’’ ‘‘forward model,’’
‘‘forecast model,’’ or ‘‘dynamic system’’; and the observa-
tion equation is often referred to as ‘‘measurement equation/
model/system.’’
[61] To set up the assimilation system using the above

state-space formulation, some assumptions have to be made
on the statistics of the two error terms h and e, based on the
prior knowledge of the deficiencies in the assimilating
system. For example, the mean values of h and e (i.e.,
biases) reflect the systematic errors in the modeling and
observation systems, while the error covariances Qk and Rk

in particular reflect the uncertainty in the model predictions
and observations. In practice, since these error character-
istics cannot be observed directly and are difficult to
estimate via indirect methods such as calibration, approx-
imations to the error PDFs are typically unavoidable [e.g.,
Reichle et al., 2001a, 2001b]. One popular approach is to
assume that the errors are zero-mean white noise sequences
with a normal (i.e., Gaussian) probability distribution. In
addition, it is typically assumed that the model error and
observation error are uncorrelated in order to obtain optimal
estimates.

7.2. Kalman Filtering

[62] In the case of Gaussian model and measurement
errors and linear model and observation operators, the data
assimilation problem presented in (20) and (21) can be
easily solved by an optimal recursive data processing
algorithm known as the Kalman filter (or KF [Kalman,
1960]). The KF algorithm originates from the optimal least
squares analysis and consists of recursive implementation of
a prediction step (equations (22) and (23)) and an update
step (equations (24) and (25)) as follows:

x�kþ1 ¼ Mkþ1 xþk ; q; ukþ1
� � ð22Þ

P�kþ1 ¼Mkþ1Pþk M
T
kþ1 þ Qkþ1 ð23Þ

xþkþ1 ¼ x�kþ1 þ Kkþ1dkþ1 ð24Þ

Pþkþ1 ¼ P�kþ1 � Kkþ1Hkþ1P�kþ1; ð25Þ

where P is the error covariance matrix of the state variables;
M and H stand for the linear (or ‘‘linearized’’ in nonlinear
cases) model operator and observation operator presented in
matrix forms, respectively; the minus and plus superscripts
are used to discriminate the states and the error covariance
matrix before and after updating, respectively; T stands for
transpose; and d is the innovation vector and is defined as
the difference between the actual observation z and the
model forecast of z (denoted as z�), i.e.,

dkþ1 ¼ zkþ1 � z�kþ1 ð26Þ

z�kþ1 ¼ Hkþ1 x�kþ1; q
� �

: ð27Þ
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K is called the Kalman gain and can be calculated as
follows:

Kkþ1 ¼
P�kþ1H

T
kþ1

Hkþ1P�kþ1H
T
kþ1 þ Rkþ1

: ð28Þ

[63] The calculations of (22)–(28) can be repeated at the
next time step k + 2 to assimilate a new observation
available at that time; and this process can progress
sequentially into the future to assimilate all available
observations if desired. Note by updating the states with
equation (24), the assimilation algorithm does not explicitly
comply with fundamental physical principles such as
conservation of mass, momentum, and energy within the
model system.
[64] Equation (28) shows that the Kalman gain K is

determined by the relative magnitudes of the state error
covariance P and the observation error covariance R and
acts as a weighting factor on the innovation term. In other
words, the larger the observation error covariance, the
smaller the Kalman gain, and the smaller the update
correction applied to the forecast state vector. This indicates
that the assimilation results can be highly sensitive to the
choice of the priors, i.e., the statistics of model structural,
parameter, and measurement errors. It is worth noting that
low correlation between model states and observations will
also result in a small Kalman gain, suggesting the importance
of using appropriate observations in an assimilation study.
[65] The KF algorithm described above is easy to imple-

ment and has proved effective and efficient in the case of
linear system dynamics [e.g.,Eigbe et al., 1998; Galantowicz
et al., 1999]. However, in practice, hydrologic systems are
often inevitably highly nonlinear, limiting the use of
Kalman filtering. Hence variations of the KF algorithm
have been developed to make it applicable to nonlinear
problems, including the commonly used extended Kalman
filter (EKF [Jazwinski, 1970]) and ensemble Kalman filter
(EnKF [Evensen, 1994]).
[66] In the EKF algorithm, local (tangent linear) approx-

imation of the nonlinear state and measurement equations
(i.e., the model operator M and the observation operator H)
is performed each time data assimilation is conducted.
When implementing the EKF, the same equations (22)–(27)
for the KF algorithm will be used; however, the linearized
forms of the model and observation operators (M and H)
will be used in those equations. Some successful applica-
tions of the EKF have been seen in the hydrological
literature [Katul et al., 1993; Entekhabi et al., 1994; Walker
and Houser, 2001]; the EKF, however, may produce
instabilities or even divergence due to closure approxima-
tion by neglecting the second- and higher-order derivatives
of the model [Evensen, 1994].
[67] Evensen [1994] introduced the ensemble Kalman

filtering (or EnKF) algorithm as an alternative to the EKF to
address difficulties arising from high-dimensional nonlinear
filtering problems. By making a Monte Carlo generation
from random input perturbations, EnKF nonlinearly propa-
gates an ensemble of model states using (20), maps them to
an ensemble of prior estimates of the observations using
(21), and then updates the prior ensemble based on the
Kalman gain. The EnKF still consists of a prediction step

(equation (29)) and an update step (equation (30)) as
follows:

x
�;i
kþ1 ¼ Mkþ1 x

þ;i
k ; q; uikþ1

� �
i ¼ 1; 
 
 
 ; n ð29Þ

x
þ;i
kþ1 ¼ x

�;i
kþ1 þ Kkþ1dikþ1 i ¼ 1; 
 
 
 ; n; ð30Þ

where n is the size of the ensemble; the input ensemble
uk+1
i is obtained by adding a noise term zk+1

i to the nominal
input uk+1, i.e., uk+1

i = uk+1 + zk+1
i (zk+1

i � N(0, Uk+1); and
Uk+1 is the error covariance of uk+1). A noise term ek+1

i can
also be added to the nominal observation zk+1 to calculate
the innovation ensemble using the following two equations
(as compared with (26) and (27)):

dikþ1 ¼ zkþ1 þ eikþ1 � z
�;i
kþ1 eikþ1 � N 0;Rkþ1ð Þ; i ¼ 1; 
 
 
 ; n

ð31Þ

z
�;i
kþ1 ¼ Hkþ1 x

�;i
kþ1; q

� �
i ¼ 1; 
 
 
 ; n: ð32Þ

[68] Unlike in the EKF, no linearization of M or H is
needed. More important, the prior (or prediction) error
covariance Pk+1

� of the state variables can be directly
calculated from the ensemble {xk+1

�,i } as expressed in (33),
saving substantial computation resources in propagating and
updating P using (23) and (25),

P�kþ1 ¼ Sxx
kþ1 ¼ E X�kþ1 X�kþ1

� �Th i
; ð33Þ

where S denotes covariance and Xk+1
� = {xk+1

�,i }i = 1
n . In fact,

the state error covariance P is never explicitly needed in
EnKF, for the Pk+1

� Hk+1
T term in (28) is essentially the cross

error covariance of the state prediction {xk+1
�,i } and the

observation prediction {zk+1
�,i }, i.e.,

P�kþ1H
T
kþ1 ¼ Sxz

kþ1 ¼ E X�kþ1Z
�
kþ1

� �
; ð34Þ

where Zk+1
� = {Zk+1

�,i }i = 1
n . Similarly, the prediction error

covariance in the observation space (i.e., the Hk+1 Pk+1
� Hk+1

T

term in (28)) can be calculated from {zk+1
�,i } as follows:

Hkþ1P�kþ1H
T
kþ1 ¼ Szz

kþ1 ¼ E Z�kþ1 Z�kþ1
� �Th i

: ð35Þ

Consequently, the Kalman gain in the EnKF algorithm can
be easily derived by substituting (34) and (35) into the
following equation:

Kkþ1 ¼ Sxz
kþ1 Szz

kþ1 þ Rkþ1
� ��1

: ð36Þ

Similar to the standard KF and EKF algorithms, EnKF can
also be implemented recursively in time to sequentially
assimilate observations as they become available.
[69] The applicability to nonlinear problems and easy

implementation of the EnKF method has led to extensive
applications of this DA technique in hydrology, meteorol-
ogy, and other fields [e.g., Burgers et al., 1998; Margulis et
al., 2002; Reichle et al., 2002a, 2002b; Moradkhani et al.,
2005a; Vrugt et al., 2005].
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7.3. Particle Filtering

[70] Particle filtering (PF) is another commonly used data
assimilation algorithm for recursive estimation of model
states. In the literature the algorithm is also known as
bootstrap filtering, the condensation algorithm, sequential
Monte Carlo (SMC) sampling, interacting particle approx-
imations, and survival of the fittest [Arulampalam et al.,
2002]. In particle filtering, the posterior probability
distribution (PPD) of model states at time tk+1 is
characterized by a set of discrete random particles
({xk+1

i }i=1
n ) with associated importance weights ({wk+1

i }i=1
n )

as follows:

p xkþ1jz1:kþ1ð Þ �
Xn
i¼1

wi
kþ1d xkþ1 � xikþ1

� �
; ð37Þ

where n is the number of particles and d denotes the Dirac
delta function. If n is sufficiently large, the discrete
expression on the left-hand side of (37) becomes an
effective approximation to the PPD of the true state space
at time tk+1.
[71] The PPD is best represented if the particles are

directly sampled from the posterior distribution of the states,
which, however, is generally not possible. To circumvent
this obstacle, a sequential importance sampling (SIS) strat-
egy has typically been adopted, where a proposal distribu-
tion q() (referred to as importance density in the literature) is
used and the importance weights are calculated as follows:

w
i *ð Þ
kþ1 ¼ p xikþ1jz1:kþ1

� �
=q xikþ1jz1:kþ1
� �

i ¼ 1; 
 
 
 ; n; ð38Þ

where {wk+1
i(*)}i=1

n are the weights before normalization (i.e.,

wk+1
i = wk+1

i(*)/
Pn
i¼1

wk+1
i(*)). In practice, equation (38) can be

rearranged as below to allow recursive evaluation of the
importance weights as successive observations become
available (see Arulampalam et al. [2002] for detailed
derivation):

w
i *ð Þ
kþ1 ¼ w

i *ð Þ
k

p zkþ1jxikþ1
� �

p xikþ1jxik
� �

q xikþ1jxik ; zkþ1
� � i ¼ 1; 
 
 
 ; n: ð39Þ

[72] Choice of an appropriate proposal importance den-
sity is crucial in the SIS algorithm as reported by several
studies [e.g., Doucet et al., 2000; Arulampalam et al.,
2002]. In a generic approach the importance density is often
conveniently chosen to be the prior; and the weight
calculation in (39) simplifies to

w
i *ð Þ
kþ1 ¼ w

i *ð Þ
k p zkþ1jxikþ1

� �
i ¼ 1; 
 
 
 ; n: ð40Þ

This renders the importance weights proportional to the
likelihood p(zk+1jxk+1i ) calculated using the observation
equation (21).
[73] Particle filtering based on the above SIS algorithm

consist of recursively propagating the particles using (20)
and updating the importance weights associated with each
particle using (21) and (40) as successive observations
become available in time. Compared with the Kalman
filtering algorithms discussed earlier (i.e., the standard KF,

EKF, and EnKF), PF performs updating on the particle
weights instead of the state variables. In addition, PF has the
desirable characteristics of being applicable to any state-
space model of any form, linear or nonlinear, Gaussian or
non-Gaussian.
[74] Implementation of the SIS particle filter in practice,

however, may often be complicated by the well-known
degeneracy problem where many particles are found to
have negligible weights after a few iterations, thus making
little or no contribution to the final representation of the
posterior distribution [Doucet et al., 2000] (Note that this
same problem arose in the implementation of the BaRE
algorithm, which has conceptual and implementational
similarities.) As a result, only a small number of particles
effectively participate in the filtering process according to
the following measure [Doucet et al., 2000; Arulampalam et
al., 2002]:

Neff � 1=
Xn
i¼1

wi
kþ1

� �2
; ð41Þ

where Neff is the effective sample size that can be used to
measure the degree of degeneracy in the filter. In general,
the required number of particles n is likely to increase with
the dimension of the state vector, the overlap between the
prior and the likelihood, and the required number of time
steps for filter operation; there exists, however, no universal
provable criterion for defining the minimum effective
sample size required to achieve a satisfactory approximation
to the true PPD of the state vectors [Gordon et al., 1993].
[75] In practice, to reduce the effect of the degeneracy

problem, a resampling procedure is usually added to the SIS
algorithm when there exists significant degeneracy (i.e.,
when Neff is below a certain predefined threshold). The
resampling step involves eliminating particles with small
weights by replacing them with high-weight particles and
then applying uniform weights to all the particles [e.g.,
Arulampalam et al., 2002;Moradkhani et al., 2005b]. When
resampling is applied at each step (without evaluating Neff), the
standard SIS algorithm becomes the sampling importance
resampling (SIR) filter, a special case of the SIS filter.
[76] Although resampling can reduce the effect of degen-

eracy, it also introduces another practical problem known as
sample impoverishment due to loss of diversity among
particles, especially for systems with small noises. In the
case of severe sample impoverishment, all particles may
converge to one single point in the state space, rendering
poor final representation of the posterior distribution. Musso
et al. [2001] introduced a modified PF known as the
regularized particle filter (RPF) to solve the above problem
by resampling from a continuous approximation to the
importance density, instead of a discrete approximation as
the SIR does.
[77] For more details on the implementation and applica-

tions of particle filtering and various SMC methods, the
readers are referred to Gordon et al. [1993], Carpenter et al.
[1999], Crisan et al. [1999], Doucet et al. [2001],
Arulampalam et al. [2002], and Djurić et al. [2003].

7.4. Variational Data Assimilation (VDA)

[78] Unlike Kalman filtering and particle filtering, which
approach the assimilation in a sequential manner, variational
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methods operate in a batch-processing manner over a given
time window which contains a sequence of observation time
points. Hence variational methods are smoothers and mostly
suitable for solving smoothing problems. Theoretically,
VDA methods can also be used for filtering problems if a
new smoothing problem is defined sequentially at each
observation time point; this, however, can be compu-
tationally inefficient for real-time applications where the
measurement vector z needs to be expanded indefinitely
as new observations arrive continually. Depending on
the spatial and temporal dimensions of the state variable,
VDA methods can be one-dimensional (1D-Var), three-
dimensional (3D-Var), or four-dimensional (4D-Var) (see
unpublished lecture available at www.ecmwf.int/newsevents/
training/rcourse_notes/pdf_files/Assim_concepts.pdf).
[79] For illustration purposes we assume that the prior

estimate of state variables at time t0 is x0
� (with error

covariance Q0); and the assimilation is to operate over the
time interval [t1, tn], with observations [z1, z2, . . ., zn]
available at the n discrete time points [t1, t2, . . ., tn]. A
general variational data assimilation problem can then be
defined as the minimization of the following cost function
J, which represents the aggregated error over the entire
assimilation window (assuming that errors at different
times are independent and additive):

J x; u; qð Þ ¼
Xn
i¼1

hTi Q
�1
i hi þ

Xn
i¼1

zi � Hi xi½ �ð ÞTR�1i zi � Hi xi½ �ð Þ

þ x0 � x�0
� �T

Q�10 x0 � x�0
� �

þ
Xn
i¼1

ui � u�i
� �T

C�1uu ui � u�i
� �

þ q� q�ð ÞTC�1q q� q�ð Þ
¼ JM þ JO þ J0 þ Ju þ Jq; ð42Þ

where hi represents the model error at ti; ui
� and q� denote

the prior model inputs at ti and the prior time-invariant
parameters, respectively; and Cuu and Cq are the time-
invariant error covariances of inputs and parameters,
respectively. The purpose of variational data assimilation
is, by means of minimizing J, to obtain the least squares
estimates of state variables xi and input variables ui for
each time point within the assimilation window and the
time-invariant parameters q. The minimization problem is
subject to the strong constraint that the state, input, and
parameter estimates obtained by VDA must be consistent
with the state equation (20). Alternatively, one can turn the
constrained minimization problem into an unconstrained
one by adjoining the state equation to the cost function
(42) with a Lagrange multiplier l as follows:

J x; u; qð Þ ¼ JM þ JO þ J0 þ Ju þ Jq þ
Xn
i¼1

lT
i xi �Mi xi�1; ui; qð Þ½ �:

ð43Þ

[80] In the above general formulations of the cost func-
tion, the first term JM penalizes the difference between the
estimated model error vector hi and its prior mean (assumed
to be zero in this case); the second term JO is used to
penalize the differences between model predictions and

observations at all time points within the assimilation
window; and J0, Ju, and Jq are included to measure the
errors associated with the initial conditions, model inputs
and parameters, respectively. When summed together to
form the aggregated cost function, each of the errors is
weighted by the corresponding error covariance (i.e., Q, R,
Q0, Cuu, or Cq). In this general VDA framework, errors from
various sources (e.g., the model, observations, initial
conditions, inputs, and parameters) can be collectively
taken into account.
[81] In practice, however, nonlinear, high-dimensional

hydrologic applications render the comprehensive optimi-
zation problem as represented by (42) very difficult, and
often impossible, to solve. Consequently, simplifications
and approximations are often introduced by, for example,
neglecting model/parameter errors and/or linearizing the
state and observation equations. Even with simplifications,
solving a VDA problem analytically is not easy, and often a
numerical algorithm such as the adjoint model technique is
used to obtain solutions in an iterative manner.
[82] To illustrate the implementation process of variation-

al data assimilation, we consider a simple VDA system
where the objective is to minimize the following cost
function with only the measurement term JO considered:

J xð Þ ¼ JO ¼
Xn
i¼1

zi � Hi xi½ �ð ÞTR�1i zi � Hi xi½ �ð Þ: ð44Þ

[83] According to the state equation (20), given q, ui, and
hi (assumed to be zero in this case), the state prediction at ti
(i.e., xi) is solely dependent on prediction at the previous
time step ti�1 (i.e., xi�1), which is in turn solely dependent
on xi�2. This indicates that xi is ultimately determined by the
initial condition x0, the only fundamental unknown in this
VDA problem. The objective of VDA is then to find the
best estimate of x0 that minimizes JO (x0). The optimization
process requires the evaluation of both the cost function and
its gradient rJO (x0), which can be computed as follows
using the adjoint technique (see detail derivations by Huang
and Yang [1996]; see also unpublished note available at
http://citeseer.ist.psu.edu/huang96variational.html):

rJO x0ð Þ ¼
Xn
i¼1

Yi�1
k¼0

MT
k

" #
HT

i di ð45Þ

di ¼ R�1i zi � Hi xi; qð Þð Þ

where Mk
T is the transpose of the tangent linear model of Mk

at point xk; similarly, Hi
T denotes the transpose of the tangent

linear model of Hi at point xi and di is the normalized
difference between model prediction and the observation at
time ti. For computational efficiency, we define the adjoint
model at time ti as

~xi�1 ¼MT
i ~xi þHT

i di
� �

; ð46Þ

where ~xi is called the adjoint variable. It can be proved that if
we start from the end point of the assimilation interval tnwith
~xn initialized to zero and then integrate the adjoint model
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(46) backward in time to the initial time t0, we obtain ~x0,
which is exactly equal torJO (x0) defined by (45). With this
method of computing the cost function gradient, a VDA
problem can be solved through an iterative minimization
process to identify a best estimate of x0, which can then be
used to compute the value of x at any time point within the
assimilation window by integrating the state equation (20)
forward in time.
[84] A number of examples of designing and solving a

VDA problem can be found in the literature. Huang and
Yang [1996] discussed in detail the general procedure to
construct a VDA system using the adjoint technique based
on a nonlinear mathematical model, with only observation
errors considered in the cost function. Applications of
similar VDA techniques are given by McLaughlin [1995,
2002], Bouttier and Courtier [1999], Reichle et al. [2001a,
2001b], and Seo et al. [2003]. The readers are referred to
these references for more details of using the VDA
algorithms.
[85] Compared with the sequential equivalents KF and

EKF, the VAR methods are preferable for data assimilation
in a realistic, complex system (e.g., a numerical weather
prediction framework) because they are much less expen-
sive computationally than KF and EKF methods. In addi-
tion, by using observations inside the assimilation interval
all at once, VDA methods are also more optimal than KF
and EKF methods inside (within) the interval (at the end of
the interval, VDA and KF methods are expected to give the
same results for linear systems; in the presence of high
nonlinearity, the results from the two methods may diverge
because VDA gives the mode of an uncertain variable while
KF estimates the expected value). However, the sequential
KF methods are more suitable for real-time data assimila-
tion to process observations that arrive continuously in time,
while VDA methods can only be run for a finite time
interval; also, KF methods provide error covariance esti-
mates for the prediction, while a VDA method itself does
not provide any estimate of the predictive uncertainty. When
the assimilation system is nonlinear, both EKF and VDA
methods rely on using the tangent-linear models M and H to
approximate the state and observation equations; if the
nonlinearity is important, it makes more sense to use
ensemble (or Monte Carlo) approaches such as EnKF and
PF for data assimilation.

8. Simultaneous State and Parameter Estimation

[86] In general, parameter estimation tends to focus on
uncertainty in the parameter estimates only, while neglect-
ing partial or all of the other uncertainty sources. On the
other hand, state estimation via data assimilation methods,
although having the potential for explicitly handling various
uncertainties arising from model inputs and observations,
typically does not take into account the uncertainties asso-
ciated with model parameters. In either case, there is a
tendency to generate biased model predictions due to biased
parameter and/or state estimates. Hence it would be desir-
able to combine parameter estimation with state estimation
to account for all kinds of uncertainties.
[87] Vrugt et al. [2005] applied a simultaneous optimiza-

tion and data assimilation (SODA) approach to estimate
both states and parameters of two hydrological models. The
SODA approach estimates model parameters using the

batch calibration strategy SCEM, with EnKF updating of
state estimates performed at each time step in each model
run during the calibration process. This way of combining
optimization with data assimilation is conceptually simple
and easy to implement. Preliminary results show that the
SODA approach is able to produce both less biased
parameters and less biased model states, compared with
the results from using only SCEM or EnKF. The SODA
approach is certainly a step forward from traditional
parameter estimation and data assimilation methodologies,
in that it reasonably uses calibration to correct long-term
systematic biases due to parameter uncertainties and uses
ensemble data assimilation to correct short-term or
instantaneous system biases associated with model states,
data, and other sources of errors. The SODA approach,
however, is still not wholly satisfactory in that it optimizes
model parameters in one single batch, without allowing
parameters to vary over time while also requiring consider-
able computational time.
[88] Moradkhani et al. [2005a, 2005b] presented two

dual state-parameter estimation methods based on EnKF
and PF, respectively. These two methods were designed to
recursively estimate both states and parameters using two
parallel filters. In these methods, Monte Carlo sampling and
sequential updating (via EnKF or PF techniques) are applied
to not only a vector of state variables, but also to a different
vector of model parameters at each assimilation time step.
Accordingly, the probability distributions of both model
states and parameters are (independently) recursively
updated each time a new observation is available. In these
approaches, better state and parameter estimates enable the
modeling system to evolve consistently over time and make
improved predictions with proper uncertainty bounds.
Along the same lines, Labarre et al. [2006] presented an
approach to jointly estimate the model states and the
hyperparameters of the data assimilation algorithm using the
mutually interactive state and parameter estimation (MISP)
technique [Todini, 1978a, 1978b] with two conditionally
linked Kalman filters running in parallel.
[89] Another way of conducting joint state-parameter

estimation is to extend the current state vector with the
model parameters, a technique known as ‘‘state augmenta-
tion’’ [e.g., Gelb, 1974; Drécourt et al., 2005]. Here the
model parameters are recast as state variables to form an
extended state vector; and the simultaneous state and
parameter estimation problem is reduced to a state
estimation problem. If we assume the parameters are time-
variant with normally distributed errors xk at time tk (xk �
N(0, Vk)), then with state augmentation, the new model
equation and observation equation can be expressed as
follows (as opposed to the original equations (20) and (21)):

xkþ1
qkþ1

 �
¼ Mk 0

0 I

 �
xk
qk

 �
þ hk

xk

 �
or x0kþ1 ¼M0kx

0
k þ h0k ð47Þ

ykþ1
qkþ1

 �
¼ Hk 0

0 I

 �
xk
qk

 �
þ ek

xk

 �
or y0kþ1 ¼ H0kx

0
k þ e0k ; ð48Þ

where x0, y0, M0, H0, h0, and e0 are the new state vector,
observation vector, model operator, observation operator,
model error, and observation error, respectively. These new
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quantities should be used in place of the old ones when a
data assimilation algorithm (e.g., EKF or EnKF) is applied
to recursively update the states and parameters simulta-
neously. Being conceptually simple, this method, however,
may render the estimation process unstable and intractable
because of complex interactions between states and
parameters in nonlinear dynamic systems [Todini, 1978a,
1978b]. In addition, since parameters generally vary much
more slowly than the system states, unstable problems may
also result from the fact that both model states and
parameters are updated at each observation time step in this
method. This same argument may apply to the dual state-
parameter estimation methods presented by Moradkhani et
al. [2005a, 2005b].

9. An Integrated Uncertainty Framework for
Hydrological Modeling

[90] The data assimilation methods introduced in
sections 5–8 are designed for system identification, param-
eter estimation, state estimation, and combined state and
parameter estimation, respectively. As described in section
4, Bayes’ theorem is the fundamental basis of these DA
methods. However, one criticism of Bayesian methods is
that the computation of posteriors depends on prescribed
priors that could be wrong, rendering the possibility of
unrealistic uncertainty estimation. For example, state esti-
mation is often conducted under the assumption that the
model structure and parameters are correct (i.e., assuming
the model/parameter priors to be unity), which is hardly the
case in hydrologic modeling. To adequately quantify the
total uncertainty in hydrologic predictions and to maximally
reduce it, we shall consider an integrated uncertainty
framework that can facilitate the implementation of all the
three types of DA applications in a cohesive, systematic
manner.
[91] Berliner [1996] introduced a Bayesian hierarchical

modeling (BHM) approach to complex environmental DA
problems, where one can obtain the joint distribution of the
model process x and parameters q, given observational data
z, by computing a hierarchy of conditional models based on
Bayesian rules as follows (see also Wikle [2003]):

p x; qjzð Þ / p zjx; qð Þp xjqð Þp qð Þ: ð49Þ

With the logical progressive chain of conditional depen-
dence {M! q! x! y} as described in section 4, we can
derive the following integrated hierarchical framework in a
manner analogous to the BHM approach described above:

p y; x; q;M jzy; zx; zq; zM� � / p M jzM� �
1ð Þsystem identification


 p qjzq;M� �
2ð Þparameter estimation


 p xjzx; q;Mð Þ 3ð Þstate estimation


 p yjzy; x; q;Mð Þ 4ð Þoutput prediction

where zM, zq, zx, zy denote independent observations on
which the model structure, parameters, states, and outputs
are progressively conditioned, respectively. To assess the
total uncertainty of a hydrological model, it is really critical

that the joint output-state-parameter-structure distribution
p(y, x, q, M) (instead of the individual distributions) be
examined, considering the complex interactions between the
model outputs, states, parameters, and structure. The
purpose of the hierarchical approach is to obtain this
complicated joint distribution, which is difficult to compute
directly, by factoring it into a sequence of conditional
probabilities that are easier to characterize utilizing avail-
able knowledge and data.
[92] In the framework defined in (50), one starts with

(1) system identification by computing p(MjzM) given the
observation z M and some prior knowledge of the model
parameters; (2) the model parameters are then estimated
through a parameter estimation technique given a different
set of observations zq and the models M (and their
probability distribution obtained in the previous step;
(3) with the observation z x , and M and q obtained in (2),
the distribution of the model states x can be updated; and
(4) finally, with M, q, and x defined in the last three steps
and the observation z y, one can predict the final uncertainty
reflected in the model outputs y. The joint distribution of the
model outputs, states, parameters, and structures, which
captures the complex interactions among these components,
can be obtained by multiplying the four conditional
probability terms together as shown in (50). When a period
of new observations arrives, the above progressive steps can
be repeated to update the conditional probability distribu-
tions and the overall joint distribution.
[93] In implementing this uncertainty framework, one

should choose a most suitable data assimilation method
for each of the four steps. In particular, special attention
should be paid to the appropriate timescales when deciding
which DA method to use. For example, as discussed in
section 3, we expect model parameters to vary much more
slowly in time than the states and outputs. In this sense, it
would be appropriate to adopt a smoothing or variational
approach for parameter estimation in step 2 and a sequential
or filtering approach for state estimation in step 3. In
principle, a method used for state estimation is expected
to be applicable to output prediction as well, for model
states and outputs generally share the same dynamic char-
acteristics/frequencies. We can also reasonably assume that
the model structure does not vary with time or varies at a
very low frequency (even lower than that of the parameters).
Precisely how to adjust the existing DA methods so that
they can be cohesively nested within the above integrated
hierarchical framework remains an important topic for
further research.

10. Summary and Discussions

[94] Application of data assimilation techniques to hy-
drologic modeling is relatively new, and there is a lack of
general guidance in the hydrologic literature on how to
choose and implement a suitable DA technique so that the
hydrologic uncertainty is properly considered. This may
come to limit the extensive application of hydrologic data
assimilation. On the other hand, it has not been realized by
the general hydrologic community that the traditional data
assimilation focus on state estimation alone is not sufficient
for adequate consideration of the uncertainties associate
with all sources in hydrologic modeling. In most cases,

ð50Þ
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uncertainty in model structures and parameters is ignored in
data assimilation applications.
[95] In this analysis we have discussed the three critical

aspects of addressing hydrologic uncertainty, namely, un-
derstanding, quantifying, and reducing uncertainty, to arrive
at a general context for hydrologic data assimilation. The
intention of this paper is to provide not an extensive review
of all the data assimilation techniques and applications
existing in the hydrologic literature, but a discussion of
the main recent developments, potential future directions,
and some open issues in hydrologic data assimilation. We
explore uncertainties associated with different sources from
a systems perspective, leading to the definition of the three
major types of DA problems: system identification, param-
eter estimation, and state estimation. Bayesian techniques
for addressing these uncertainty problems and typical meth-
ods used in the hydrologic literature were then described in
relevant detail to provide sufficient guidance on how to
properly implement these methods. To adequately quantify
the hydrologic predictive uncertainty and reduce it to a
maximum degree, we call for the adoption of an integrated
framework such as the one proposed in section 9, where
system identification, parameter estimation, state estima-
tion, and ultimately output prediction are progressively
conducted in a cohesive, systematic manner. Proper imple-
mentation of all these DA problems within such a single,
integrated framework would greatly improve the effective-
ness and efficiency in extracting information from available
data and assimilating it into hydrologic predictions.
[96] Nevertheless, there remain critical issues that need to

be properly addressed before the proposed integrated frame-
work can be implemented to realize its maximum potential.
For example, the exposition assumes that we have success-
fully described the information extraction process via the
definition of suitable likelihood functions [e.g., Beven and
Young, 2003; Gupta et al., 2003], a topic that merits
rethinking and further research. Also, the fundamental
Bayesian rule requires that the error models used as inputs
to data assimilation applications be properly prescribed
from prior information, which is often difficult to satisfy for
real-world hydrologic applications. Although we all recog-
nize that real hydrologic systems are seldom linear or close
to linear, there often has been no other choice but to prescribe
the error distributions as Gaussians; better strategies (e.g., via
using mixtures of Gaussians [Wójck et al., 2006]) are desired
to avoid this subjectivity in prescribing various types of
errors, and new mathematical developments might be
necessary to circumvent this difficulty. Also, we must
recognize that a hydrological system (i.e., a model structure)
and its physical properties (i.e., model parameters) naturally
tend to vary much more slowly in time than the states and
fluxes of the system. In other words, proper timescales (or
time intervals) should be identified and utilized in the
different steps within the framework. In addition, implement-
ing such an integrated framework would require a substantial
amount of data, encompassing various observation types that
are suitable for different kinds of DA problems including
system identification, parameter estimation, and state
estimation. Other issues to be addressed may include, for
example, handling temporally and spatially correlated errors
in hydrological variables [e.g., Drécourt et al., 2005] and
resolving the scale differences between model states and

observations. To facilitate addressing these issues, the next
generation of hydrologic models should be developed in
coordination with developments in DA techniques to
facilitate the implementation of the proposed integrated
hierarchical framework. Finally, it is useful to be aware that
complete accounting for model structure errors might never
be achieved, as there exists no means to define a model space
(with a set of truly independent model structures) that can
perfectly represent the reality.
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ABSTRACT

An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assim-
ilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts.
This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by
minimizing −2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied
to Kalman filtering data assimilation with imperfect models when the model error statistics are not known.
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1. Introduction

Kalman filtering (Cohn, 1997) is a popular sequen-
tial analysis scheme for data assimilation. It is well
known that estimation of forecast error covariance
matrices plays a key role in the performance of the
Kalman filtering schemes (e.g. Miller et al., 1994).

An approach for estimating forecast error covari-
ance matrices in the Kalman filtering assimilation
schemes is to parameterize the error covariance matri-
ces, and then to estimate the parameters by minimiz-
ing the −2log-likelihood of observed-minus-forecast
residuals (e.g., Dee and da Silva, 1999; Ozaki et al.,
2000). A major obstacle for this approach is that it is
difficult to parameterize forecast error covariance ma-
trices, especially when they are not stationary in time.

A more popular approach is to generate an ensem-
ble of perturbation forecasts by perturbing an initial
state, and then the forecast error covariance matrix
is estimated as the sampling covariance matrix of the
ensemble (for example, Bengtsson et al., 2003). While
this approach does not require parameterization of the
forecast error covariance matrix, the estimation may
depend on magnitude and number of the perturba-
tions. Therefore, there is no guarantee that the sam-
pling covariance matrix is a good estimation of the

forecast error covariance matrix.
In this paper, we propose an approach for estimat-

ing forecast error covariance matrices by combining
both approaches. A real-time forecast error covariance
matrix is initially estimated using an ensemble of per-
turbation forecasts. This initially estimated matrix is
then adjusted with scale parameters that are estimated
by minimizing the −2log-likelihood of observed-minus-
forecast residuals. The proposed scheme permits im-
perfect models, but knowledge of the model error co-
variance matrices is not required.

The paper is arranged as follows. In section 2,
the details of the proposed approach are described.
Sections 3 is devoted to the tests of the proposed ap-
proach using the data sets simulated by Burgers’ equa-
tion model. Our conclusions are given in section 4.

2. Methodology

In this section, the proposed Kalman filtering data
assimilation is outlined and a method for the adaptive
estimation of the real time forecast error covariance
matrices is proposed.

2.1 Proposed Kalman filtering

Using the notation similar to that proposed by Ide
et al. (1997), a nonlinear discrete time prediction-

∗Corresponding author: Xiaogu ZHENG, x.zheng@niwa.co.nz
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observation system is of the form

xi+1,t = Mi[xi,t] + ηi , (1)

yi,o = Hixi,t + εi , (2)

where i is the time step index, the xi,t is the true
state vector with dimension n at the time step i with
t abbreviating for “true”; Mi is an prediction oper-
ator such as a numerical weather forecasting model;
yi,o is the observation vector with dimension pi;Hi;
is a pi×n matrix indicating which linear combination
of states is observed; ηi and εi are the model error
and the observation error vectors, which are assumed
to be statistically independent of both each other and
time and have zero mean vectors and covariance ma-
trices Qi and Ri respectively. The goal of Kalman
filtering data assimilation is to find a series of anal-
ysis states {xi,a} that is sufficiently close to the true
states {xi,t} by using the information provided by the
operators {Mi} and the observations {yi,o}.

Suppose an initial analysis state x0,a is known, our
proposed Kalman filtering data assimilation comprises
the following steps. Except for Step (ii) below for the
estimation of the real time forecast error covariance
matrices, the steps are those of the standard Kalman
filter.

Step (i). Forecast the model state at time i:

xi,f = Mi−1[xi−1,a] , (3)

where xi,f is assumed to be a Gaussian random vector
with mean vector xi,t and covariance matrix P i,f.

Step (ii). Estimate the forecast error statistics:
The forecast error covariance matrix could be es-

timated as the sampling covariance matrix which is
defined by

P i≡
m∑

j=1

wj

(
jxi,f−

m∑

k=1

kxi,fwk

)
×

(
jxi,f−

m∑

k=1

kxi,fwk

)T

(4)

where { jxi,f, j = 1, . . . m} are the perturbation
forecast states from the perturbed analysis states
{ jxi−1,a, j = 1, . . . m}, and {wj , j = 1, . . . m} are
the weights. All of the existing approaches for de-
riving perturbed analysis states are able to be applied
here, including the approach by perturbing observa-
tions used in the ensemble Kalman filtering assimila-
tion (Anderson, 2001).

For the standard ensemble Kalman filtering assim-
ilation, wj is chosen as 1/m, and P i is regarded as an
estimation of P i,f (Bengtsson et al., 2003). However,

if { jxi,f, j = 1, . . . m} are not samples of population
of the forecast state xi,f, and/or m is not sufficiently
large, P i can be far from the forecast error covariance
matrix. To mitigate this shortfall, the estimated fore-
cast error covariance matrix is rescaled to

P̂ i,f = [λi]P i[λi] , (5)

where λi is a vector representing a scale change of P i

and [λi] is a diagonal matrix with diagonal vector λi.
By choosing an appropriate λi, P̂ i,f could be a better
approximation of P i,f than P i could be. The detailed
estimation procedure for λi is proposed in this paper,
and is documented in section 2.2. Intuitively, [λi] can
be viewed as a multivariate covariance inflation opera-
tor. While the common covariance inflation factor is a
scalar value and is estimated by trials (Constantinescu
et al., 2007), this study extends it to the diagonal ver-
sion, and also optimizes it.

Step (iii). Calculate the observed-minus-forecast
residuals:

di = yi,o −Hixi,f , (6)

where di is assumed to be Gaussian with a zero mean
vector and covariance matrix Hi[λi]P i[λi]HT

i + Ri.
Step (iv). Calculate the analysis state:

xi,a = xi,f + P̂ i,fH
T
i (HiP̂ i,fH

T
i + Ri)−1di (7)

Step (v). If yi,0 is not the last observation, put
i = i + 1 and return to step (i). Otherwise, stop the
filtering. xi,a are the filtered states. Each xi,a is Gaus-
sian with mean xi,t and covariance matrices

P i,a = P̂ i,f−P̂ i,fH
T
i (HiP̂ i,fH

T
i +Ri)−1HiP̂ i,f . (8)

From Eq. (7), HiP̂ i,f and HiP̂ i,fH
T
i are sufficient

to determine xi,a. They can be estimated by

HiP̂ i,f =
m∑

j=1

wj

(
Hi[λi]( jxi,f −

m∑

k=1

kxi,fwk)

)
×

(
[λi](jxi,f −

m∑

k=1

kxi,fwk)

)T

(9)

and

HiP̂ i,fH
T
i =

m∑

j=1

wj

(
Hi[λi]( jxi,f −

m∑

k=1

kxi,fwk)

)
×

(
Hi[λi](jxi,f −

m∑

k=1

kxi,fwk)

)T

.

(10)
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Usually, the observational dimension pi is signif-
icantly less than the model dimension n. Then the
computational cost for HiP̂ i,f and HiP̂ i,fH

T
i is more

economical than that for P̂ i,f.

2.2 Estimation of scale parameter λi

We estimate λi by minimizing the −2log-likelihood
of the observed-minus-forecast residual di = yi,o −
Hixi,f. Since di is assumed to be Gaussian with a zero
mean vector and covariance matrix Hi[λi]P i[λi]HT

i +
Ri [Eq. (2)], its −2log-likelihood function is

−2Li(λi) = ln[det(Hi[λi]P i[λi]HT
i + Ri)]+

dT
i (Hi[λi]P i[λi]HT

i + Ri)−1di , (11)

where det represents the determinant of a matrix (Dee
and da Silva, 1999; Ozaki et al., 2000).

Vector λi is comprised of the two components:
the observable component λi,o (i.e., Hi[λi] depends
on λi,o), and an unobservable component λi,u (i.e.,
Hi[λi] is independent of λi,u). From Eq. (11), the
−2log-likelihood function is the function of Hi[λi].
Then it is only the function of the observable com-
ponent λi,o. Therefore, the unobservable component
λi,u cannot be estimated by minimizing function (11).
These two components should be estimated separately.

2.2.1 Estimate observable component λi,o

The observable component λi,o can be estimated
by minimizing −2Li(λi) ([see Eq. (11)]. To do this
effectively, we need to calculate its first derivative
∇λLi(λ) and its second derivative ∇2

λLi(λ). Then,
the fastest descendent direction of the likelihood func-
tion is

δλ = −∇λLi(λ)[∇2
λLi(λ)]−1 . (12)

For this purpose, we introduce the following matrix
notation. For a matrix A, the i-th column is denoted
as ai and its (i, j)-th entry is denoted as aij . Suppose
matrices A and B have a same dimension. A × B
represents the matrix with (i, j)-th entry aijbij (i.e.,
element-by-element or Shur product).

Under these notations, the first derivative of Li(λ)
at time step i is

∇λ[−Li(λ)] =




(∂/∂λ1)(−Li(λ))
(∂/∂λ2)(−Li(λ))

· · ·
(∂/∂λn)(−Li(λ))




= −




(pT
1 [λ]q1

(pT
2 [λ]q2

· · ·
(pT

n [λ]qn


+c×




(pT
1 [λ]c

(pT
2 [λ]c
· · ·

(pT
n [λ]c


 ,

(13)

where P ≡ P i,Q ≡ HT(H[λ]P [λ]HT+R)−1H, and
c ≡ HT(H[λ]P [λ]HT+R)−1d with H = Hi,d = di

and R = Ri. The detailed proof is documented in the
Appendix.

The second derivative of Li(λ) [the Hessian matrix
∇2

λLi(λ)] is

∂

∂λ

(
pT

1 [λ]q1 pT
2 [λ]q2 · · · pT

n [λ]qn

)

− ∂

∂λ

(
(cT × (pT

1 [λ]c pT
2 [λ]c · · · pT

n [λ]c)
)

= Q× P − (P [λ]Q)× (Q[λ]P )− (P [λ]Q)[λ]P )×Q

+ Q× (P [λ]ccT[λ]P ) + (Q[λ]P )× (P [λ]ccT)−

P × (ccT) + (P [λ]Q)× (ccT[λ]P )+

(P [λ]Q[λ]P )× (ccT) (14)

The detailed proof is also documented in the Ap-
pendix. Note that both derivatives also only depend
on λi,o.

After the fastest descendent direction is obtained,
λi is substituted by λ + µδλi, where 0 < µ 6 1 is a
scalar to guarantee that −2Li(λi + µδλi) is less than
−2Li(λ).

2.2.2 Estimate unobservable component λi,u

Although the likelihood at the time step i is in-
dependent of the unobservable component λi,u, the
−2log-likelihood at time step i + 1(−2Li+1) does de-
pend on λi,u. This is because Li+1 depends on xi,a,
the analysis state at time step i. From Eq. (7),

xi,a =xi,f+[λi]P i[λi]HT
i (Hi[λi]P i[λi]HT

i +Ri)−1di ,
(15)

which depends on both λi,o and λi,u.
We shall estimate λi,u and λi+1,o jointly. For a

λi+1,o, find a new λi,u to reduce −2Li+1 by direct
search. Then, apply the procedure documented in sec-
tion 2.2.1 to find a new λi+1,o that further reduces
−2Li+1. Continue this procedure iteratively until Li+1

converges.

2.2.3 Constraint on parameter λ

The dimension of λ is equivalent to the dimension
of analysis states (n), that is often too large to esti-
mate λ. In practice, constraints are often imposed on
λ. As an example, we may assume components of λ
at one vertical level are all the same in meteorological
data assimilation.

The first derivative and the second derivative
of the constrained L(λ) can be easily derived
from the first derivative and second derivative of
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the unconstrained L(λ). Suppose the analysis
space is partitioned into N(N 6 n) blocks, i.e.,
λN = (λ1, · · · , λ1, λ2, · · · , λ2, · · · , λN , · · · , λN ) Then
the first derivative of constrained L(λN ) is the N di-
mensional vector which element for a block is the sum
of elements of ∇λL(λN ) within that block. Similarly,
the second derivative of constrained L(λN ) is the N
by N matrix which element for a block pair is the sums
of element of ∇2

λL(λN ) within the block pairs.
Because the constraint has always to be applied for

large models, the dimension of the second derivatives
∇2

λL(λ) will not be large. Therefore, the inverse of
∇2

λL(λ) in Eq. (12) can be calculated directly.

2.3 Computing (H[λ]P [λ]HT + R)−1

(H[λ]P [λ]HT+R)−1 can be calculated as follows.
Decompose H[λ]P [λ]HT into

H[λ]P [λ]HT =
m∑

i=1

ziz
T
i , (16)

where

zj = H[λ]
√

wj

(
jxi,f −

m∑

k=1

kxi,fwk

)
. (17)

Define Ai =
i∑

k=1

zkzT
k + R. It is easy to check that

A−1
1 =R−1−(R−1z1z

T
1 R−1)/(1+zT

1 R−1z1) , (18)

and for 1 6 j 6 m− 1

A−1
j+1 =A−1

j −(A−1
j zjz

T
j A−1

j )/(1+zT
j A−1

j zj) . (19)

Thus, (H[λ]P [λ]HT+R)−1 = A−1
m can be calculated

iteratively.
In this way, the inverse (H[λ]P [λ]HT +R)−1 can

be calculated without significantly computational cost,
providing the inverse of the observational matrix R−1

is known. However, R−1 is also required for any vari-
ational approach. Most ensemble based Kalman fil-
tering are likely to be as computationally expensive
as 4D-VAR, and perhaps significantly more expensive
when there are an overwhelmingly large number of ob-
servations, such as very high resolution satellite images
(Hamill, 2006). Our proposed approach for calculat-
ing the inverse provides a solution to overcome this
obstacle.

3. Application to Burgers’ equation model

3.1 Burgers’ equation model

Burgers (1974) proposed the following equation

∂u

∂t
+ u

∂u

∂x
= v

∂2u

∂x2
(20)

to describe the one-dimensional advection-diffusion
process over an infinite spatial domain. Recently, Zhu
and Kamachi (2000) used it as a test bed for several
data assimilation schemes. In the present study, we
also use it to test our proposed methodology. For the
readers’ convenience, we briefly introduce how to sim-
ulate the solution of a Burgers equation following Zhu
and Kamachi (2000). This solution is then used as the
series of true states in the present study. Knowing the
true states, the root mean square error (RMSE) of the
assimilated analysis states can be estimated.

The numerical model is defined as a finite-
difference leapfrog scheme with a forward step every 15
time steps. This simple scheme gives accurate results
by comparing with one analytical solution (Uboldi and
Kamachi, 2000). We will use the following abbrevia-
tions: m for meter, km for kilometer, s for second and
h for hour. The computation spatial domain is [−1000,
1000] km, but only the solution within [−100, 150] km
is considered. A large computation domain is used to
reduce the boundary effects on the interior solution.
The model parameters are: time step ∆t = 60 s; spa-
tial grid resolution ∆x = 5 km. Therefore, n (the
dimension of state vector) is 51(= 150/5 + 1 + 100/5).
The simulation time is T = 16 h. The “true” solution
is generated by running the model with the initial con-
dition

u(x, 0) =




0 x < −L; x > L
u0(1 + 2x/L)(1− 2x/L)2 0 6 x < L
u0(1− 2x/L)(1 + 2x/L)2 −L < x < 0

(21)

where u0 = 5 m s−1, and L = 50 km and with diffu-
sion coefficient v = 1.0× 104 m2 s−1. Denote the true
solution by ut(x, t), where −100 km6 x 6 150 km and
0 h6 t 6 16 h.

In the data assimilation experiments with the im-
perfect model, the diffusion coefficient is set to be
v = 1.4×104 m2 s−1 to simulate the model error. The
model error caused by the wrong diffusion coefficient
is estimated by running the model twice with the same
above initial condition, but with different diffusion co-
efficients. The spatially averaged root mean square of
the model error is shown in Fig. 2 of Zhu and Kamachi
(2000) with an overall averaged error of about 0.13 m
s−1. The overall averaged signal is about 0.9 m s−1

in the time-space domain. The averaged model error
is about 14% of the average signal. The observations
are assumed to be available at every other model grid
point from x = −100 km to 150 km. In total there are
26 observation stations (total of 51 model grid points).
The observations are available only at hour 1, 4, 7 and
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10, and are statistically independent of each other with
standard deviation 0.15 m s−1.

3.2 Results

To construct P i in Eq. (4), the number of per-
turbations m and the weights {wj , j = 1, · · · ,m}
are selected similar to that in the unscented ensem-
ble Kalman filter (Julier and Uhlmann, 2004), where
m = 2n + 1 and

wj =

{
k/(n + k) j = 0 ,

1/2(n + k) j = 2, · · · , n + 1 ,
(22)

where k is a parameter. Julier and Uhlmann (2004)
suggested that if the forecast error is Gaussian, set
n + k = 3. Otherwise set n + k < 3. Since the fore-
cast error is assumed Gaussian and n = 51, we set
k = −48. The perturbed analysis states is selected as

jxi,a =





xi,a j = 1 ,
xi,a+αδj j =2, · · · , n+1 ,
xi,a−αδj j =n+2, · · · , 2n+1 ,

(23)

where δj is j-th column of the n by n identity matrix
and α > 0 is the perturbation parameter. Here α is
set as 0.1 m s−1 to match the overall averaged initial
error of 0.13 m s−1 (Zhu and Kamachi, 2000). Scale
parameters for the 26 observational points λi,o and the
scale parameters for the other 25 unobservable points
λi,u are constraint as one parameter respectively.

The estimated scale parameters, the −2log-
likelihood, and the RMSE of the analysis state at each
time step with observation are listed in Table 1. The
RMSE of the analysis state from hour 1 to hour 16
are plotted in Fig. 1. As a comparison, the −2log-
likelihood, and the RMSE of analysis without the pa-
rameter adjustment (i.e., λ = I) are listed in Table
2, and the corresponding RMSE are also plotted in
Fig. 1.  

    Fig. 1. Root mean square errors of the analysis states
with the parameter adjustment (dashed) and without the
parameter adjustment (solid).

Table 1. Results with the parameter adjustment.

Hour 1 Hour 4 Hour 7 Hour 10

RMSR (m s−1) 0.12 0.097 0.068 0.04
−2log [Li(λi)] −389 −421 −429 −436
Observable λi,o 10 2 4 0.5

Unobservable λi,o 11 1 4 ∗

Note: Unobserved λi,o is not required at the last time step.

Table 2. Results without the parameter adjustment.

Hour 1 Hour 4 Hour 7 Hour 10

RMSR (m s−1) 0.35 0.19 0.14 0.09
−2log [Li(I)] −251 −387 −411 −421

Tables 1 and 2 show that the −2log-likelihood of
the observed-minus-forecast residual with the parame-
ter adjustment is significantly less than those without
parameter adjustment. Correspondingly, the RMSE
for the analysis states with the parameter adjustment
are less than the half of those without the parameter
adjustment. This fact is also shown in Fig. 1.

Zhu and Kamachi (2000) proposed a number of
adaptive variational assimilation schemes with imper-
fect models. They tested their schemes against the
simplified 4D-VAR assimilation scheme and the space
variable optimal nudging assimilation scheme, using
Burgers’ equation model as the test bed. The RSME
derived by these schemes are shown in Fig. 3a of Zhu
and Kamachi (2000). For these schemes, the RMSE
for the reduced order adaptive variational method
(ROAV) is the best one. Comparing the RMSE de-
rived by ROAV with the RMSE shown in Fig. 1 and
in Table 1, our RMSE is comparable to theirs at early
hours (1 and 4), but ours is 0.03 m s−1 less (at hour
7) and 0.01 m s−1 less (at hour 10) than theirs. Fur-
thermore there are only seven parameters (Table 1) to
be estimated in our proposed schemes, while there are
51 parameters in ROAV. These facts indicate that the
adaptive estimation of forecast error statistic proposed
in this paper is at least a competitive scheme.

4. Conclusions

An adaptive estimation of forecast error statistics
is proposed for Kalman filtering data assimilation for
non-linear imperfect models. It has the advantage that
the model error statistics do not need to be known
and the forecast error statistics and observational er-
ror statistics can depend on time steps. The proposed
scheme may have potential in data assimilation with
large models. It is showed, by a case study, that the
proposed inflation can improve the assimilation. In the
future, we plan to further study the possibility of ap-
pling the proposed inflation approach to improve the
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assimilation when the number of ensemble members is
small.
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APPENDIX

Proof of the Derivatives of the Log-Likelihood

1. Proof of the first derivative of the log-likeli
hood

Let subscripts r and s represent components of the
model state vector.

∂

∂λr
{ln[det(H[λ]P )[λ]HT + R)]}

=tr
[
(H[λ]P [λ]HT+R)−1 ∂

∂λr
(H[λ]P [λ]HT+R)

]

=tr
[
(H[λ]P [λ]HT+R)−1H([δr]P[λ]+[λ]P[δr])HT

]

=tr
[
(H[λ]P [λ]HT+R)−1H[δr]P[λ]HT

]

+tr
[
(H[λ]P [λ]HT+R)−1H[λ]P[δr]HT

]

=2tr
[
(P [λ][δr](HT(H[λ]P[λ]HT + R)−1H)

]

= 2pT
r [λ]qr . (A1)

∂

∂λr
[dT(H[λ]P [λ]HT + R)−1d]

= −dT(H[λ]P [λ]HT+R)−1×

∂

∂λr
(H[λ]P [λ]HT+R)(H[λ]P [λ]HT+R)−1d

= −[dT(H[λ]P [λ]HT+R)−1H)([δr]P [λ]+

+ [λ]P [δr])(HT(H[λ]P [λ]HT + R)−1d)

= −cT[δr]P [λ]c− cT[λ]P [δr]c

= −crp
T
r [λ]c− cT[λ]prcr

= −2crp
T
r [λ]c . (A2)

From Eq. (11) and Eqs. (A1)–(A2)

∂

∂λr
Li(λ) = −1

2
(2pT

r [λ]qr − 2crp
T
r [λ]c)

= −pT
r [λ]qr + crp

T
r [λ]c .

Thus, the first derivative [i.e., Eq. (13)] is derived.

2. Proof of the second derivative of the log-
likelihood

∂

∂λs
Q = HT

{
∂

∂λs
(H[λ]P [λ]HT + R)−1

}
H

= −HT{(H[λ]P [λ]HT + R)−1H([δs]P [λ]+

[λ]P [δs])HT(H([λ]P [λ]HT + R)−1}H

= −Q([δs]P [λ] + [λ]P [δs])Q .

Then

∂

∂λs
pT

r [λ]qr

= pT
r

(
∂

∂λs
[λ]

)
qr + pT

r [λ]
∂

∂λs
qr

= pT
r [δs]qr − pT

r [λ]Q[δs]P [λ]qr−

pT
r [λ]Q[λ]P [δs]qr

= prsqsr − (pT
r [λ]qs)(p

T
s [λ]qr)−

(pT
r [λ]Q[λ]ps)qsr .

Thus,

∂

∂λ

(
pT

1 [λ]q1 pT
2 [λ]q2 · · · pT

n [λ]qn

)

= Q× P − (P [λ]Q× (Q[λ]P )−
(P [λ]Q[λ]P )×Q (A3)
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Since

∂

∂λs
c = HT

{
∂

∂λs
(H[λ]P [λ]HT + R)−1

}
d

= −HT{(H[λ]P [λ]HT + R)−1H([δs]P[λ]+

[λ]P[δs])HT(H[λ]P [λ]HT + R)−1}d
= −Q([δs]P [λ] + [λ]P [δs])c ,

it follows that
∂

∂λs
crp

T
r [λ]c

=
(

∂

∂λs
cr

)
pT

r [λ]c + crp
T
r

(
∂

∂λs
[λ]

)
c+

crp
T
r [λ]

(
∂

∂λs
c

)

= −qT
r ([δs]P [λ] + [λ]P [δs])cpT

r [λ]c + crp
T
r [δs]c

− crp
T
r [λ]Q([δs]P [λ] + [λ]P [δs])c

= −qrs(P [λ]ccT[λ]P )sr − (Q[λ]P )rs(P [λ]ccT)rs+

prs(ccT)rs − (P [λ]Q)rs(P [λ]ccT)sr−

(P [λ]Q[λ]P )rs(ccT)sr

Therefore
∂

∂λ

(
cT × (pT

1 [λ]c pT
2 [λ]c · · · pT

n [λ]c)
)

= −Q× (P [λ]ccT[λ]P )−

(Q[λ]P )× (P [λ]ccT)+

P × (ccT)− (P [λ]Q)× (ccT[λ]P )−

(P [λ]Q[λ]P )× (ccT) (A4)

The Hessian matrix (Eq. 14) is derived from Eqs.
(A3)–(A4).
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PART IV: APPLICATIONS OF DATA ASSIMILATION  

 

 

 

This part introduces some novel and live application cases about data assimilation, 

covering the water and energy cycle, the crop monitoring and yield estimation. Some 

assimilation skills will be present. The multi-institution North American Land Data 

Assimilation System (NLDAS) is presented. 

 



An EKF assimilation of AMSR-E soil moisture into the ISBA land
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[1] An Extended Kalman Filter (EKF) for the assimilation of remotely sensed near-
surface soil moisture into the Interactions between Surface, Biosphere, and Atmosphere
(ISBA) model is described. ISBA is the land surface scheme in Météo-France’s Aire
Limitée Adaptation Dynamique développement InterNational (ALADIN) Numerical
Weather Prediction (NWP) model, and this work is directed toward providing
initial conditions for NWP. The EKF is used to assimilate near-surface soil moisture
observations retrieved from C-band Advanced Microwave Scanning Radiometer
(AMSR-E) brightness temperatures into ISBA. The EKF can translate near-surface soil
moisture observations into useful increments to the root-zone soil moisture. If the
observation and model soil moisture errors are equal, the Kalman gain for the root-zone
soil moisture is typically 20–30%, resulting in a mean net monthly increment for July
2006 of 0.025 m3 m�3 over ALADIN’s European domain. To test the benefit of evolving
the background error, the EKF is compared to a Simplified EKF (SEKF), in which the
background errors at the time of the analysis are constant. While the Kalman gains for the
EKF and SEKF are derived from different model processes, they produce similar soil
moisture analyses. Despite this similarity, the EKF is recommended for future work where
the extra computational expense can be afforded. The method used to rescale the near-
surface soil moisture data to the model climatology has a greater influence on the analysis
than the error covariance evolution approach, highlighting the importance of developing
appropriate methods for rescaling remotely sensed near-surface soil moisture data.

Citation: Draper, C. S., J.-F. Mahfouf, and J. P. Walker (2009), An EKF assimilation of AMSR-E soil moisture into the ISBA land

surface scheme, J. Geophys. Res., 114, D20104, doi:10.1029/2008JD011650.

1. Introduction

[2] Soil moisture can have a strong influence onNumerical
Weather Prediction (NWP) forecasts, both at short [Baker et
al., 2001; Drusch and Viterbo, 2007] and medium range
[Zhang and Frederiksen, 2003; Fischer et al., 2007]. Cur-
rently, soil moisture is initialized in most operational NWP
models based on errors in short-range forecasts of low-level
humidity and temperature [e.g., Giard and Bazile, 2000;
Hess, 2001; Bélair et al., 2003]. While these schemes can
in general produce reasonable boundary layer forecasts
[Drusch and Viterbo, 2007], they assume a causative rela-
tionship between low-level atmospheric forecast errors and
local soil moisture errors. As a result, soil moisture is often
adjusted to compensate for errors elsewhere in the model,
resulting in soil moisture fields that are frequently unrealistic
[Seuffert et al., 2004; Draper and Mills, 2008]. The accu-
mulation of model errors in surface variables also makes it
difficult to diagnose the source of these errors. Additionally,

these schemes cannot be sensibly applied to situations where
the local soil moisture–atmospheric boundary layer feed-
back is weak; for example, during periods of strong advec-
tion, or weak radiative forcing. The effectiveness of a soil
analysis based on screen-level variables is also limited by the
availability of screen-level observations, which are particu-
larly sparse across much of the Southern Hemisphere. A
particularly promising approach to addressing some of the
above mentioned shortcomings is the possibility of assimi-
lating remotely sensed near-surface soil moisture into NWP
models [e.g., Seuffert et al., 2004; Balsamo et al., 2007;
Scipal et al., 2008]. This approach is explored here, using
an Extended Kalman Filter (EKF) to assimilate remotely
sensed near-surface soil moisture into Météo-France’s Aire
Limitée Adaptation Dynamique développement InterNational
(ALADIN) NWP model.
[3] Recent interest in the assimilation of remotely sensed

near-surface soil moisture is anticipating the planned launch
of the European Space Agency’s Soil Moisture and Ocean
Salinity (SMOS [Kerr et al., 2001]) mission. SMOS is the
first purpose designed soil moisture remote sensing mission,
and will be followed by NASA’s Soil Moisture Active
Passive (SMAP [Entekhabi et al., 2004]) mission. However,
while SMOS and SMAP are expected to enhance the
accuracy and utility of remotely sensed soil moisture data,
currently orbiting microwave sensors can already provide
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useful soil moisture observations. For this study, near-surface
soil moisture has been retrieved from passive microwave
brightness temperatures observed by the Advanced Micro-
wave Scanning Radiometer –Earth Observing System
(AMSR-E). While it is difficult to quantitatively verify
remotely sensed soil moisture due to the scarcity of soil
moisture data at the appropriate scales [Reichle et al., 2004],
some encouraging comparisons have been made between
soil moisture derived from AMSR-E and that from other
sources. At the local scale, AMSR-E derived soil moisture
has a good temporal association to in situ soil moisture data
[Wagner et al., 2007; Rüdiger et al., 2009; Draper et al.,
2009], and to model data [Rüdiger et al., 2009]. At the
continental scale, it shows a clear response to precipitation
[McCabe et al., 2005; Draper et al., 2009], and using a
novel evaluation technique, Crow and Zhan [2007] showed
that the assimilation of AMSR-E derived soil moisture into
a simple water balance model added value to that model.
[4] In addition to recent advances in the remote sensing

of soil moisture, there has also been focused development of
suitable assimilation strategies for near-surface soil moisture
observations. Early studies based on synthetic data showed
that observation increments of near-surface soil moisture, or
similarly microwave brightness temperature, can be propa-
gated into the deeper soil layers [Reichle et al., 2001;
Walker and Houser, 2001]. Studies of single column models
run over heavily instrumented field sites confirmed that such
an assimilation can improve the model deep soil moisture
[Seuffert et al., 2004; Muñoz Sabater et al., 2007]. Using
remotely sensed data at the continental scale, Drusch [2007]
used a simple nudging scheme to assimilate Tropical Rainfall
Measuring Mission Microwave Imager derived near-surface
soil moisture into the ECMWF Integrated Forecast System
model over the southern United States, and Scipal et al.
[2008] used the same method to assimilate European Remote
Sensing scatterometer derived soil moisture globally. Both
demonstrated that the nudging scheme improved the root-
zone soil moisture (compared to ground data), and both
recommended the development of a more sophisticated
assimilation scheme. Using NASA’s global Catchment Land
Model (CLM), Ni-Meister et al. [2006] showed that an
Ensemble Kalman Filter (EnKF) assimilation of near-surface
soil moisture derived from Scanning Multichannel Micro-
wave Radiometer (SMMR) generated improvements in the
CLM soil moisture over Eurasia. Also using an EnKF with
the CLM, Reichle et al. [2007] demonstrated modest
improvements in the model root-zone soil moisture com-
pared to ground data by assimilating near-surface soil mois-
ture from SMMR and AMSR-E.
[5] A significant hurdle to the assimilation of near-surface

soil moisture in NWP models has been the expense of the
additional model integrations required by advanced assim-
ilation methods. However, this expense can be reduced by
assimilating the data into an off-line version of the land
surface model. Using a simplified 2D-Variational assimila-
tion approach, Balsamo et al. [2007] showed that the
information content of different observation types (including
screen-level variables and microwave brightness temperature)
is similar for assimilation into either an off-line or atmo-
spherically coupled land surface model. In the same exper-
imental setup as used here,Mahfouf et al. [2009] developed a
surface analysis for ALADIN, based on assimilating screen-

level temperature and humidity into an off-line version of its
land surface scheme, the Interactions between Surface,
Biosphere, and Atmosphere (ISBA) model. Mahfouf et al.
[2009] used a Simplified EKF (SEKF), in which a static
background error was assumed at the time of each analysis,
and the observation operator was a 6-h ISBA integration. In
an experiment over July 2006, they showed that the dynamic
Kalman gain terms for the SEKF were similar to the analyt-
ically derived coefficients used in the operational Optimal
Interpolation (OI) scheme [Giard and Bazile, 2000]. As well
as confirming the viability of the SEKF, this demonstrates
that the off-line system captures the necessary surface–
screen-level interactions for the assimilation of screen-level
observations, since the OI coefficients were derived using the
full atmospheric model [Bouttier et al., 1993].
[6] This work extends that of Mahfouf et al. [2009] to

assimilate remotely sensed near-surface soil moisture derived
from AMSR-E observations into ISBA, and is a preliminary
step before the combined assimilation of remotely sensed
near-surface soil moisture and screen-level observations. The
screen-level data assimilated by Mahfouf et al. [2009] were
reliably available for each analysis cycle, and the use of a
static background error was based on the assumption that the
increase in the background error during each forecast step
was balanced by the reduction from the previous analysis.
This assumption is less valid in this study, since the remotely
sensed data used here are not available with the same
regularity, motivating the development of a full EKF. Addi-
tionally, the dynamic error covariances will be of greater
importance for the future combined assimilation of screen-
level observations and near-surface soil moisture, which are
available at different frequencies [Rüdiger et al., 2007]. The
aim of this study is to determine whether an off-line assim-
ilation of remotely sensed near-surface soil moisture is a
viable method for analyzing root-zone soil moisture in ISBA,
and to understand how the near-surface soil moisture incre-
ments are translated into deeper-layer increments by the
Kalman filter. Additionally, the benefit of using dynamic
background error covariances is tested by comparing the
SEKF and EKF assimilation of near-surface soil moisture.

2. Methodology

2.1. ISBA Land Surface Scheme

[7] ISBA [Noilhan and Mahfouf, 1996] is the land
surface scheme used in the ALADIN NWP model. The
moisture and energy dynamics in ISBA are modeled using
a force-restore method [Deardorff, 1977], with eight prog-
nostic variables: surface temperature, mean (deep layer)
surface temperature, surface water content (liquid/frozen),
total (deep layer) water content (liquid/frozen), vegetation
intercepted water content, and snow water content. There is
free drainage from the lower boundary, and each grid is
divided into a vegetated and bare soil fraction, with evapo-
ration calculated separately from each (although there is a
single heat budget). For moisture, the near-surface water
reservoir (w1) is defined as the depth from which moisture
can be extracted by bare soil evaporation (�10 mm), and the
total water reservoir (w2) is defined as the depth from which
moisture can be extracted through bare-soil evaporation or
transpiration (0.1 to 10 m, depending on the local soil type
and climate). Both soil layers are forced by precipitation and
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evaporation, and transpiration is applied to w2, with the
atmospheric forcing acting more slowly on w2. The model
restore term adjusts w1 toward an equilibrium between
capillary and gravity forces, while w2 is restored toward field
capacity by gravitational drainage. For ALADIN, the soil
moisture and temperature states are currently analyzed from
screen-level observations of humidity and temperature,
using the OI technique of Giard and Bazile [2000].
[8] The EKF assimilation uses an off-line version of ISBA

within the Surface Externalized (SURFEX) environment.
In SURFEX the atmospheric forcing is applied at the first
atmospheric model layer (17 m); this is higher than most
off-line land surface models, to enable off-line assimilation
of screen-level observations. For this experiment ISBA has
been run in an environment that resembles the operational
ALADIN model as closely as possible. One month of hourly
forcing fields (precipitation, temperature, specific humidity,
pressure, wind components, and short- and long-wave
radiation) has been generated from ALADIN, and inter-
polated onto the ISBA time step (300 s). Eventually the
surface analysis from SURFEX will be semicoupled to the
NWP model, so that ALADIN is updated with the soil
moisture analyses, and the SURFEX forcing supplied from
the updated atmospheric forecast. However, for this initial
investigation static forcing has been used, neglecting feed-
back between the soil moisture updates and the atmospheric
forecasts. For further details of SURFEX, and how it would
be coupled to the NWP for a land surface assimilation, refer
to Mahfouf et al. [2009].

2.2. Soil Moisture From AMSR-E

[9] Near-surface soil moisture retrieved from AMSR-E
brightness temperatures has been provided by the Vrije
Universiteit Amsterdam (VUA) in collaboration with
NASA-GSFC [Owe et al., 2007]. C-band AMSR-E data is
used here, since Njoku et al. [2005] showed that C-band
Radio Frequency Interference (RFI) is not widespread across
Europe (with the exception of isolated pockets over some
urban areas). The descending AMSR-E data (approximate
overpass time: 0130 LST) is used, since the nighttime soil
moisture retrievals are more accurate [Owe et al., 2001;
Draper et al., 2009]. The resolution of C-band AMSR-E
data is 45� 75 km [Njoku et al., 2003], however the swath is
oversampled at approximately every 5 km, and (level 2 and 3)
C-band data is typically reported on a 0.25� grid, which is
thought to approximate the scale of the information in the
signal. The ALADIN France model has an irregular
(stretched) grid, which covers most of Europe with resolution
�9.5 km. Rather than disaggregating the 0.25� AMSR-E
data, the level 1 swath data have been regridded onto the
ALADIN grid using a nearest neighbor approach.
[10] AMSR-E provides global cover in less than two days

[Njoku et al., 2003], with coverage decreasing toward the
equator. For July 2006 the daily coverage over Europe is
reduced from nearly 100% at 58�N, to 70% at 33�N.
AMSR-E soil moisture data must be screened to remove
data contaminated by RFI or open water, or where dense
vegetation or frozen ground cover conceals the near-surface
microwave signal. RFI contamination has been identified
based on the RFI index of Li et al. [2004], which is
provided by VUA with the soil moisture data. The only
region shown as having significant RFI is Italy, and roughly

50% of the data over the Italian peninsula has been removed
(in contrast to Njoku et al. [2005], who found limited C-
band RFI over Europe, and X-band RFI over Italy in
2003, also using the index of Li et al. [2004]). Frozen
ground cover is identified and removed during the moisture
retrieval, although this is not expected to be significant in
July. For vegetation, the VUA-NASA retrieval algorithm
partitions the passive microwave signal into soil moisture
and vegetation optical depth [Owe et al., 2001]. The
vegetation optical depth is linearly proportional to the
vegetation water content, and the sensitivity of the micro-
wave brightness temperature to soil moisture decreases with
increasing vegetation optical depth [e.g., de Jeu et al., 2008].
Owe et al. [2001] show that the soil moisture sensitivity is
quite low for optical depths above about 0.75, and a mean
monthly optical depth threshold of 0.8 has been adopted to
screen out densely vegetated regions, following de Jeu et al
[2008].

2.3. Extended Kalman Filter

[11] The state forecast and update equations for the EKF
are:

xbt ¼Mt� xat�
� � ð1Þ

xat ¼ xbt þKt y
o
tþ6 �H xbt

� �� � ð2Þ

where

Kt ¼ B
f
t H

T
t HtB

f
t H

T
t þ R

� ��1
ð3Þ

xt indicates the model state at the time of the analysis, t, and
the superscripts a and b indicate the analysis and back-
ground, respectively. yt+6

o is the observation vector (6 h after
the analysis time).Mt� is the nonlinear state forecast model
(ISBA) from the time of the previous analysis, t�, K is the
Kalman gain, and B and R are the covariance matrices of
the background and observation errors. H is the nonlinear
observation operator, and H is its linearization. Here, the
state variable consists of the superficial soil moisture (w1)
and the total soil moisture (w2), and the observation operator
is a 6-h integration of ISBA from time t. The AMSR-E near-
surface soil moisture observations are assumed to occur at the
end of the assimilation window, at 0000 UTC, and the
quantity observed by AMSR-E is taken to be equivalent to
the model w1 (both represent the soil moisture in approxi-
mately the uppermost 10 mm of soil). The model update is
made 6 h before the observation time (in contrast toMahfouf
et al. [2009] who add the increment at the observation time).
[12] The linearization of H is obtained by finite differ-

ences, using a first-order Taylor expansion about x. For
each analysis cycle, this requires an additional (perturbed)
6-h model integration for each element of the state vector.
For the ith observation, and the jth element of the control
vector:

Hij;t ¼
H xt þ dxj;t
� �

i
� H xtð Þi

dxj
ð4Þ
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[13] The background error covariance matrix undergoes
an analogous forecast and analysis cycle:

B
f
t ¼Mt�B

a
t�M

T
t� þQ ð5Þ

Ba
t ¼ I�KtHtð ÞB f

t ð6Þ

[14] In the forecast step (equation (5)), the previous
analysis, Ba

t� , is forecast forward in time by the tangent
linear of the state forecast model, M, and the forecast error
covariance matrix, Q, is added to account for errors in the
model forecast, giving the background error matrix fore-
cast, Bt

f. The model state analysis decreases the model
error, and B is reduced by an analysis step (equation (6)).
The linearization of M is obtained by the same finite
difference method used for H. The linearization of M is
made affordable by the assumption that there is no
horizontal correlation in the model errors. The 24-h model
Jacobian is estimated as the product of four 6-h Jacobians
(Mt!t+24 = PMt+18!t+24Mt+12!t+18Mt+6!t+12Mt!t+6), to
reduce the potential for nonlinearities.
[15] An alternative, and more common EKF formulation

for the assimilation of near-surface soil moisture retrievals is
to make the update at the time of the observations, and use
H = (1 0) rather than including the model inH [e.g., Walker
and Houser, 2001; Reichle et al., 2002; Muñoz Sabater et
al., 2007]. This form of the EKF is analytically the same as
that used here, except for the timing of the addition of Q
(see Appendix A). While the H = (1 0) method avoids the
additional integrations required here to linearize H, it is
dependent on the observed variable being included in the
state vector. If the assimilation of remotely sensed soil
moisture proves useful, it is intended that it be combined
with the assimilation of screen-level observations. The
screen-level observations cannot be sensibly included in the
update vector, since they are not prognostic within SURFEX:
they are diagnosed by interpolating the humidity and tem-
perature between the ISBA surface and the (prescribed)
value at the first atmospheric model layer. For consistency
withMahfouf et al. [2009] and future studies, the EKF form as
initially described (ISBA included in H) is used here.
[16] The error correlations for the AMSR-E and ALADIN

soil moisture have been set based on the assumption that the
standard deviation of the observed and modeled soil mois-
ture errors are equal. The variance of the difference between
the (rescaled) AMSR-E and ALADIN near-surface soil
moisture (w1) is 0.0061, which gives an error standard
deviation of 0.055 m3 m�3 for each, assuming that the
observation and model error are independent and unbiased.
This agrees closely with the error estimates that have been
made for AMSR-E (see, for example, Table 1 of de Jeu et al
[2008]), and the observation error standard deviation has
been set at this value. Only the diagonal entries of the model
error matrices (B and Q) have been prescribed (i.e., error
cross correlations have not been applied), and following
Mahfouf et al. [2009] the model soil moisture errors are
assumed to be proportional to the soil moisture range (the
difference between the volumetric field capacity (wfc) and the
wilting point (wwilt), calculated as a function of soil type, as
given by Noilhan and Mahfouf [1996]). For B, the initial

model error standard deviations for bothw1 andw2 have been
set to 0.6 � (wfc � wwilt), which converts to a mean
volumetric error standard deviation of 0.052m3m�3, slightly
lower than that used for the observation error. The magni-
tude of the diagonal elements of Q were selected to
minimize long-term tendencies in B, on the assumption
that B should not dramatically increase or decrease over
time. Using this method values of 0.3 � (wfc � wwilt) and
0.2 � (wfc � wwilt) were chosen for the w1 and w2 error
standard deviations, respectively. The EKF assimilation is
compared to a SEKF assimilation of soil moisture, which
neglects the evolution of the background error (equations (5)
and (6)), and assumes that B is constant at the start of each
analysis cycle (some dependence on the conditions of the
day is introduced through the use of the model in H). For
the SEKF analysis, the same R was used, and B was set at
the same initial value as was used for the EKF.

3. Results

3.1. Scaling the Observations to the Model Climatology

[17] Since the soil moisture quantity observed by remote
sensors differs from that defined in models, soil moisture
data must be rescaled before assimilation, so as to be
consistent with the model climatology [Reichle et al.,
2004]. Here, the AMSR-E data are rescaled by matching
its Cumulative Distribution Function (CDF [Reichle and
Koster, 2004; Drusch et al., 2005]) to that of the superficial
soil moisture forecast by ALADIN for 0000 UTC each day
(this is the 6-h forecast from 1800 UTC, which provides the
first guess for the operational soil moisture analysis). Ideally,
a long data set is used to sample the model and observation
climatology and the CDF matching is performed on as
localized a scale as possible, however for this study only
1 year of ALADIN soil moisture fields are available. Reichle
and Koster [2004] demonstrated that the CDF matching
operator can be estimated from 1 year of data by using spatial
averaging to compensate for the reduced temporal sample
size, and the CDF-matching operator has been estimated here
using a one-degree window around each grid cell.
[18] CDF matching is based on the assumption that

the differences between the model and observations are
stationary, however for ALADIN and AMSR-E this is not the
case. For example, Figure 1 shows a time series of the
AMSR-E data before and after the CDF matching at a
location in northern France. While both the AMSR-E and
ALADIN time series have a similar range of short-term
(up to several days) variability with amplitude between 0.1
and 0.2 m3 m�3, the seasonal cycle in the AMSR-E data has a
greater magnitude (>0.2 m3 m�3) than that in the ALADIN
data (�0.1 m3 m�3). To compensate for the variance gener-
ated by the enhanced seasonal cycle in the AMSR-E data,
the CDF matching has overly dampened the short-term
variability, resulting in a lessened response to rain events in
the CDF-matched time series. Additionally, at the seasonal to
monthly scale there are biases in the CDF-matched time
series (e.g., around day 100 in Figure 1).
[19] To avoid these problems, the CDF matching has

been repeated using seasonally bias-corrected AMSR-E
data, generated by subtracting the observation-model dif-
ference in the 31-day moving average. The resulting time
series in Figure 1 has retained an appropriate response to
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precipitation, and the monthly biases are reduced. For this
experiment (July 2006) the mean monthly bias is reduced
from �0.014 m3 m�3 in the initial CDF-matched data to
0.001 m3 m�3 in the seasonally corrected and CDF-matched
data, compared to 0.14m3m�3 in the original data. If a longer
data set were available the difference in the seasonal cycles
could be removed based on the climatological seasonal
cycles, which would retain any seasonal bias anomalies in
the observations. With just 1 year of data seasonal bias
anomalies cannot be detected (regardless of the method used
to rescale), and the approach used here is necessarily conser-
vative, assuming that the ISBA 2006 seasonal cycle was
correct.
[20] The mean monthly RMSD between the CDF-matched

(and seasonally corrected) AMSR-E data and the ALADIN
w1 is 0.007 m3 m�3. Figure 2 shows that the RMSD is
relatively large (>0.09 m3 m�3) over most of the Italian
peninsula, where much of the data was removed due to RFI,
suggesting that the remaining data is of poor quality (all data
were rejected at locations with less than 100 observations
over 2006, and the poor match is unlikely to be due to
reduced data coverage). The RMSD is also relatively high
in many locations adjacent to regions screened for dense
vegetation, most likely due to increased error in the AMSR-E
data due to vegetation interference. Additionally, the higher
RMSD over the Alps and the Pyrenees could be due to
inaccuracies in the model and/or the data, since both have
known problems in regions of steep terrain [Rüdiger et al.,
2009].

3.2. Tangent-Linear Approximation

[21] The magnitude of the perturbations used to estimate
M was chosen by examining the difference between the
Jacobians estimated using positive and negative perturba-
tions for a range of magnitudes, following Walker and
Houser [2001] and Balsamo et al. [2004]. On the basis of
this method, a perturbation of 10�4 � (wfc � wwilt) was
selected for estimating M, and also H (the linearization of
H is not discussed here, since linearity over 24 h strongly
suggests linearity over 6 h). The difference between the
Jacobians estimated with the positive and negative pertur-

bations gives a measure of the nonlinearity of M for
perturbations of that size. Scatterplots of the Jacobian
terms estimated with positive and negative perturbations
of magnitude 10�4 � (wfc � wwilt) for the analysis cycle
on 1 July 2006 show virtually all of the points aligned
along the one-to-one line (not shown), consistent with M
being well approximated by M within the range of the
applied perturbation. This is confirmed by the statistics in
Table 1, which show little difference between the mean,
standard deviation, and extreme values for the Jacobians
estimated with the positive and negative perturbations. The
extreme sensitivity causing the very large maximum values
in Table 1 for perturbedw1 is quite rare, and less than 0.2% of
the grid cells have a @w2(t + 24)/@w1(t) or @w1(t + 24)/@w1(t)
greater than 10. Mahfouf et al. [2009] used the same pertur-
bation size to estimate the Jacobians for ISBA over 6 h,
yet the occurrence of nonlinearities as observed by Mahfouf
et al. [2009] does not occur here, since the (dissipative) land-
surface component of the model is less prone to the non-
linearities that can occur in the atmosphere.
[22] The above analysis indicates thatM is well approx-

imated byM within the range of the very small perturbations

Figure 1. Time series of near-surface soil moisture (m3 m�3) for a grid cell in France (47.30 E/0.06 N)
over 2006, from ALADIN (gray, solid), the original AMSR-E data (gray, dashed), and the seasonally
corrected (black, solid) and nonseasonally corrected (black, dotted) CDF-matched AMSR-E data.

Figure 2. Root-mean-square difference (m3 m�3) between
the CDF-matched AMSR-E near-surface soil moisture and
ALADIN w1 over 2006. White indicates that no AMSR-E
soil moisture data are available.
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that were applied, however this does not guarantee that M
approximatesM well when applied to the errors in B, since
these errors are typically much larger than the applied
perturbations. To test the potential error generated when M
is used to propagate B, the model Jacobians estimated using
perturbations with magnitude similar to the expected model
error (10�1 � (wfc � wwilt) � O(10�2)) have been compared
to the above estimates. Table 1 shows that the mean Jacobian
estimates for this larger perturbation are very similar to
those based on the smaller perturbations, although the distri-
bution of values about the mean is different, with differences
in their extreme values and variances. The difference between
the Jacobians estimated with the smaller and larger per-
turbation is greater than 0.1 for 4% (@w1(t + 24)/@w1(t)),
0% (@w2(t + 24)/@w1(t)), 23% (@w1(t + 24)/@w2(t)), and
10% (@w2(t + 24)/@w2(t)) of the grid cells, indicating that
the larger perturbation is outside the model’s linear regime
in more instances (for the positive and negative perturba-
tions considered above the difference was greater than 0.1
for less than 1% of the grids for all of the Jacobian terms).
However, the Jacobian estimates compare favorably over
the majority of grid cells, indicating thatM estimated with
perturbations of 10�4 � (wfc � wwilt) leads to an acceptable
approximation of nonlinear M for propagating B forward
24 h.

3.3. ISBA Jacobians

[23] The ISBA Jacobians reflect the force-restore dynam-
ics of the model. The superficial soil layer responds rapidly
to atmospheric forcing, so that a perturbation applied to w1 is
gradually reduced over 24 h. As a result the mean @w1/@w1 is
reduced from 0.80 over 6 h to 0.25 over 24 h (with the
Jacobians estimated from 1800 UTC on 1 July 2006). In
addition to its short timescale, w1 represents a very small
physical reservoir, and cannot influence w2 strongly, so that
@w2/@w1 is insignificant (mean < 0.01 over 6 or 24 h). In
contrast tow1, the atmospheric forcing is appliedmore slowly
to the total soil moisture, and w2 has a timescale of 10 days.
Over a comparatively short 24-h period a w2 perturbation
is largely retained (mean @w2(t + 24)/@w2(t): 0.95). The
influence of w2 on w1 increases over time, and the mean
@w1(t + 6)/@w2(t) is 0.20, increasing to 0.60 for @w1(t +
24)/@w2(t). Since w1 does not have a strong or persistent
influence on the other surface variables, its accurate

analysis is less important than that of w2. While w1 could
then be excluded from the control variable, (to reduce the
number of linearization required), this would result in an
underestimation of the model w1 error, since a large
component of this is due to short-lived errors (i.e., the
element q11 of the Q matrix).
[24] The background error matrix used in each analysis

is largely derived from the previous w2 error correlations
and the applied (static) Q, since the w1 errors are short-
lived and do not influence w2. The important terms in the
24-h linear tangent model are then @w1(t + 24)/@w2(t)
and @w2(t + 24)/@w2(t), both of which are shown in Figure 3
for a 24-h period. The Soil Wetness Index (SWI; SWI =
(w2 � wwilt)/(wfc � wwilt)), a measure of soil water
availability in the root zone, is provided in Figure 4 for
comparison. Over the full diurnal cycle the ISBA moisture
dynamics, and hence Jacobians, are dominated by the force
component (precipitation and evapotranspiration) of its
force-restore scheme. The addition of moisture from precip-
itation reduces the sensitivity of w1 to w2, and the reduced
@w1(t + 24)/@w2(t) across much of southeast Europe and in
smaller regions in northern Spain and along the Pyrenees
was caused by rain (these locations have been excluded from
the statistics given below). In the absence of precipitation,
the 24-h Jacobians are most strongly influenced by evapo-
transpiration, specifically its sensitivity to w2. Under dry
conditions the parameterization of transpiration depends

Table 1. Statistics of 24-h Jacobian Terms From 1800 UTC on

1 July 2006a

Mean SD Minimum Maximum

@w1(t + 24)/@w1(t) +ve 0.25 1.9 �0.11 189
�ve 0.26 1.9 �0.11 189
lrg 0.30 1.9 �0.10 67

@w2(t + 24)/@w1(t) +ve �0.0024 0.0045 �0.15 0.0050
�ve �0.0024 0.0045 �0.15 0.0045
lrg �0.0025 0.0055 �0.19 0.0

@w1(t + 24)/@w2(t) +ve 0.60 0.96 �2.4 120
�ve 0.60 0.97 �0.37 120
lrg 0.60 0.53 �0.15 23

@w2(t + 24)/@w2(t) +ve 0.95 0.054 0.21 1.0
�ve 0.95 0.053 0.42 1.0
lrg 0.96 0.044 0.00 1.0

aEstimated using a perturbation size of +10�4 � (wfc � wwilt) (positive),
�10�4 � (wfc � wwilt) (negative), and +10�1 � (wfc � wwilt) (large). Units
are in (%/%).

Figure 3. Jacobian terms for the forward model (M):
(a) @w1(t + 24)/@w2(t) and (b) @w2(t + 24)/@w2(t) from
1800 UTC on 1 July to 1800 UTC on 2 July 2006. Note
that @w1(t + 24)/@w1(t) and @w2(t + 24)/@w1(t) are not
shown, as w1 has little memory over 24 h.
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strongly on w2, with the dependence increasing as w2

approaches wwilt. In these moisture limited conditions a
small increase in w2 generates a relatively large increase in
transpiration, reducing w2, and hence @w2(t + 24)/@w2(t).
In turn, this leads to an increase in @w1(t + 24)/@w2(t) when
the enhanced transpiration reduces the surface temperature,
which reduces the depletion of w1 by bare-ground evapora-
tion, giving a relative increase in w1. This mechanism has
been confirmed by testing the impact on the model forecasts
of switching off aspects of the model physics. It is also
evidenced in Figure 3. Most obviously, where w2 is below
the wilting point, transpiration ceases and w2 perturbations
are not communicated to w1. As a result, the regions of
negative SWI in Figure 4 in North Africa, and also in Spain
and France, correspond to @w2(t + 24)/@w2(t) close to 1 (for
negative SWI, the mean @w2(t + 24)/@w2(t) is 1, compared to
0.96 across the whole domain), and reduced @w1(t + 24)/
@w2(t) (to a mean of 0.31, compared to 0.64 for the whole
domain). For the rest of the domainwhere the SWI is positive,
the Jacobians are most sensitive to moisture availability
where there is sufficient vegetation present to generate
substantial transpiration. Where the fractional vegetation
cover in ISBA is greater than 0.5, @w2(t + 24)/@w2(t) is
reduced (mean: 0.92) and @w1(t + 24)/@w2(t) is increased
(mean: 0.79) where the SWI is below 0.25 (compared to
means of 0.96 and 0.68, respectively for all grids with
positive SWI and fractional vegetation greater than 0.5). In
contrast, where the fractional vegetation cover is less than
0.5, there is no obvious difference in the @w2(t + 24)/@w2(t)
across all grids and across grids with SWI less than 0.25
(mean 0.96 for both), while @w1(t + 24)/@w2(t) is slightly
reduced in the drier locations (mean 0.56, compared to 0.59
for all sparsely vegetated cells). The role of vegetation can
be seen in Figure 3. Over France and the UK, where the
vegetation fraction is greater than 0.75, @w1(t + 24)/@w2(t)
is generally elevated (>0.8) where the SWI in Figure 4 is
low (<0.25), yet in sparsely vegetated Spain (vegetation
fraction < 0.5), where the SWI is similarly low there is no
such relationship.
[25] The 6-h model Jacobians used in the observation

operator are plotted in Figure 5. While the 24-h Jacobian
terms reflect ISBA’s force component, for the descending
pass AMSR-E data used here the 6-h Jacobians are esti-
mated during the night, when the forcing is weak (excepting

regions of rain). In the absence of strong forcing, ISBA
restores w1 toward w2 to achieve a balance between capillary
rise and gravitational drainage. This introduces a weak
nighttime sensitivity of w1 to w2 resulting in a mean
@w1(t + 6)/@w2(t) of 0.20 (as already noted, this is much
lower than the corresponding value over 24 h). There is also
less spatial variability in the 6-h nighttime Jacobians (for
@w1/@w2 the variance over 6 h is 0.007, compared to 0.1 over
24 h). Owing to the absence of strong forcing and the slow
timescale of the model restore term, @w1(t + 6)/@w1(t) is
reasonably high, with a mean of 0.80. Comparison of
Figures 4 and 5 suggests a tendency for decreased @w1(t + 6)/
@w2(t) where the SWI is lower (@w1(t + 6)/@w1(t) is also
slightly increased in these regions, although this is not
evident at the plotted scale), suggesting that capillary rise
increases nonlinearly with increasing surface water availabil-
ity. There is an additional influence from the soil type in
ISBA (not shown), with lower clay content giving more rapid
flow through the soil, corresponding to increased @w1(t + 6)/
@w2(t) and decreased @w1(t + 6)/@w1(t).

3.4. Kalman Gain

[26] Figure 6 shows the Kalman gain for w2 (k2) for the
EKF and the SEKF on 2 July. The EKF k2 is between 0.2
and 0.4 across most of Europe, with a mean of 0.27. The
SEKF gain is smaller, due to the slightly larger background
errors used in this experiment, and is generally less than 0.2,
with a mean of 0.12. The spatial patterns for the two gain
terms differ, since they are determined by different processes.
For the SEKF, the (static) B is evolved 6 h byH, and there is

Figure 4. Surface wetness index at 1800 UTC on 2 July
2006 from the EKF analysis.

Figure 5. Jacobian terms for the observation operator (H):
(a) @w1(t + 6)/@w1(t) and (b) @w1(t + 6)/@w2(t), from 1800
to 2400 UTC on 2 July 2006.
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a qualitative correspondence in Figure 6b (SEKF gain) and
Figure 5 (H), with the gain being reduced where @w1(t + 6)/
@w2(t) is lower (e.g., northern France and North Africa). In
contrast, the EKF gain is determined by a combination of the
Jacobian terms over 6 h (H) and 24 h (M), and it shows a
combination of features from both. Even after a single
assimilation cycle, the 24-h M has introduced much more
fine-scale spatial heterogeneity into the EKF gain than is
present in the SEKF gain.

3.5. Soil Moisture Analyses

[27] The time series in Figure 7 shows the soil moisture
states for the EKF and the SEKF at four locations with
contrasting conditions, together with an open-loop simulation,
in which the model surface is allowed to evolve without
data assimilation. The grid cells in Slovakia and France are
in vegetated regions where transpiration links w2 to w1

(@w1(t + 24)/@w2(t) � 0.6 in Figure 3 for both). In both
cases the observations are consistently higher than the model
forecast w1, and the assimilation improves the fit between
the model w1 and the observations by adding moisture to w2.
The EKF and SEKF produce similar results, except for a few
isolated large increments generated by the EKF in Slovakia.
The observation increments in Slovakia are unusually large,
particularly in the first part of the month where the observa-
tions (if correct) suggest a precipitation event not present in
the model forcing. As a result, a large volume of water is
added in Slovakia, and the difference between thew2 SWI for
the analyses and the open loop approaches 0.5 at times. The
large observation increment on day 18 in France does not

Figure 6. Kalman gain (m3 m�3/m3 m�3) for w2 at
1800 UTC on 2 July 2006 for the (a) EKF and (b) SEKF.

Figure 7. Time evolution of (left) w1 (m3 m�3) and (right) w2 (as SWI) through July 2006, from the
open loop (black), EKF (red), and SEKF (blue). Observations of w1 are indicated as diamonds.
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translate into an analysis increment as it is screened out by
the observation quality control, which discards data more
than 0.1 m3 m�3 away from the model w1.
[28] The grid cells in Spain and Algeria both have sparse

vegetation cover, and with limited transpiration the depen-
dence of w1 on w2 is weaker, particularly in Algeria, where
w2 is below the wilting point, and @w1(t + 24)/@w2(t) in
Figure 3 is �0.05 (compared to �0.2 in Spain). In Spain
the observations are generally lower than the model w1,
and the analysis consistently decreases w2. In the first half
of the month, despite the SWI having been decreased by 0.5,
neither analysis generates substantial changes in w1, and the
analysis continues to deplete w2 until a very large net
increment is evolved. It is only after the w2 SWI has been
decreased by nearly one that the analysis generates a slight
reduction in w1 (which does give a better fit to the data). A
similar situation occurs in Algeria where the observations
are consistently above the model, and the analysis makes a
series of positive increments to w2, which do not affect w1

until a large net change is accumulated. By the end of the
month w2 is approaching a SWI of 0, and w1 shows an
enhanced diurnal cycle, with greater nighttime increases. In
both of these cases, since there is little transpiration to expose
w1 to the w2 increments (compare the ratio of the net change
inw2 andw1 to that from the previous examples), the analysis
continues to make monotonic corrections to w2 until a large
(and likely erroneous) net increment has been imposed onw2.
Initially, the SEKF and EKF increments are similar in
magnitude, however as the month progresses the EKF incre-
ments become larger. This is due to an inflation of the
background error where transpiration is limited. Recall from
Figure 3 that @w2(t + 24)/@w2(t) approaches one in regions
with little transpiration. As a result the b22 element of B is
not decreased during the forecast step (equation (5)), and
B gradually increases with each addition of Q (which is
generally greater than the analysis reduction). While the Q
used here does not generate a discernible trend in B across
the remainder of the domain, b22 in north Africa and Spain
is almost doubled within two weeks.
[29] Figure 8 shows the net soil moisture increments added

by the EKF and the SEKF over July 2006. Even though the

Kalman gain terms for each depend on different aspects of
the model physics, the resultant analyses are similar. For
both the EKF and the SEKF moisture has been added across
most of the domain, except for areas in southern Spain and
central North Africa (as well as some smaller isolated in
northern and eastern Europe). The mean monthly net incre-
ment is 0.025 m3 m�3 for the EKF and 0.018 m3 m�3 for the
SEKF. The EKF has a greater spread of increments, with
more extreme values (both positive and negative), resulting
in a larger standard deviation of the net monthly increment
(0.037 m3 m�3) than for the SEKF (0.023 m3 m�3). Some
of the very large (>0.1 m3 m�3) increments for the EKF
surrounding the Alps correspond to the high RMSD
between the CDF-matched AMSR-E and ALADIN soil
moisture in Figure 2, where there are known errors in both
the model and observations (section 3.1). The increments
are also large over Italy, where the coverage of AMSR-E
data is limited by RFI, and the quality of the remaining
data is questionable. In general, the analysis increments are
relatively large compared to the dynamics of w2, being
approximately the same magnitude as the mean range of w2

throughout July 2006 (0.02 m3 m�3). In terms of the net
volume of water added to the surface, the EKF added a
monthly mean volume of 55 mm, while a mean of 41 mm
was added by the SEKF (with a total range of approxi-
mately ±200 mm for both). This represents a substantial
component of the monthly water balance, and is similar to
the mean monthly volume added by precipitation (50 mm).
Similarly large increments were obtained by Mahfouf et al.
[2009] for the assimilation of screen-level observations.
The large volume of water being added (or removed) is partly
due to the two-layer structure of ISBA, since increments to
w2 must be applied across the total soil depth, leading to
large net increments, as discussed by Mahfouf et al. [2009].
[30] Owing to the strong seasonal cycle in the AMSR-E–

ALADIN bias, it was necessary to bias-correct the seasonal
cycle in the AMSR-E data before performing the CDF
matching (section 3.1). To highlight the central role of data
quality to the analysis, the EKF assimilation has been
repeated with the original CDF-matched (no seasonal bias
correction) AMSR-E data. In this case, the resultant analyses

Figure 8. The net monthly w2 increments (m3 m�3) over July 2006, from the (a) EKF and (b) SEKF for
assimilation of the seasonal-bias corrected AMSR-E data, and (c) EFK assimilation of the nonseasonal-bias
corrected AMSR-E data.
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differed substantially from the results obtained with the
seasonally bias-corrected data. The mean absolute differ-
ence between the net monthly increments produced by
assimilating the AMSR-E data with and without seasonal
bias correction was 0.039 m3 m�3, compared to a mean
difference between the EKF and SEKF assimilation (for the
seasonally bias-corrected data) of 0.014 m3 m�3. Figure 8c
shows the net monthly soil moisture increments for the
assimilation of the nonseasonally bias-corrected data. In
this case the quality control (removal of all data greater than
0.01 m3 m�3 from the model w1) was not applied as this
resulted in most data being removed. Figure 8c is quite
different from the previous two panels, and has net positive
increments in northern Europe and net negative increments
elsewhere, consistent with the strong negative bias over
July 2006 in the nonseasonally bias corrected AMSR-E data.
[31] The current operational analysis also includes analysis

of the soil temperature. While it is beyond the scope of this
paper, an additional experiment was carried out with soil
temperature included in the control variable. This experiment
showed that total (deep layer) soil temperature analysis
increments can also be obtained from near-surface soil
moisture observations, and also that the inclusion of tem-
perature has a slight effect on the soil moisture analysis, but
does not alter the main findings presented here.

3.6. Comparison to SIM Water Balance

[32] While the focus here is on the mechanics of the
assimilation, the resultant analyses have been reality
checked by comparison to simulations from SAFRAN-
ISBA-MODCOU (SIM [Habets et al., 2008]). SIM is a
three-layer version of ISBA forced with high-quality data
[Quintana-Seguı́ et al., 2008] over France. The soil moisture
from SIM compares favorably to other estimates of soil
moisture [Rüdiger et al., 2009], and it can be regarded as
the best available estimate of the true surface state over
France. As outlined byMahfouf et al. [2009], the total change
in column soil moisture over a time period gives an integra-
tion of the surface-moisture inputs (precipitation), outputs
(evapotranspiration, runoff), and soil moisture increments

(where an assimilation is performed). Figure 9 shows the
change in the total-column soil moisture over July 2006 from
SIM (Figure 9a), the open loop (Figure 9b), and the EKF
(Figure 9c) (the SEKF is not included, since its results are
very similar to the EKF). The open loop is forced with the
same ALADIN forecasts used in the EKF experiment, and
the difference between the change in soil moisture from SIM
and from the open-loop simulation will be predominantly due
to errors in these forecasts. It is hoped that the assimilation
can correct for some of the forcing errors, bringing the total
change in soil moisture closer to that from SIM.
[33] In comparison to SIM (Figure 9a), the open loop

(Figure 9b) has a tendency toward excessive drying and
insufficient wetting, resulting in a mean monthly change in
soil moisture for the open loop of �20 mm, compared to
�11 mm for SIM. The open loop has generated incorrect
drying (in spatial extent and magnitude) along the English
Channel coast and in central France, with a region of
insufficient moistening in between, associated with a low
bias in the ALADIN precipitation forcing. Also, the open
loop did not moisten the regions along the Atlantic Coast and
south of the Alps indicated by SIM. The EKF (Figure 9c) has
added moisture across most of France, increasing the mean
monthly increment to �7 mm (overshooting the SIM mean).
The EKF shows a general improvement in the correspon-
dence to SIM. It has corrected the band of insufficient
moistening in the north, as well as the lack of moistening
along the Atlantic coast and in the southeast. However, in the
east it has degraded the open loop by adding moisture where
drying was correctly identified in the open loop.

4. Discussion

[34] This experiment has demonstrated that the total soil
moisture in ISBA can be analyzed using an EKF from
remotely sensed near-surface soil moisture observations, in
this case from AMSR-E. Assuming that the background and
observation errors are (approximately) equal, the EKF Kal-
man gain over July 2006 was typically around 20–30%,
giving a mean net monthly increment of 0.025 m3 m�3

Figure 9. Change in total soil moisture storage (mm) from 1 to 31 July 2006, from (a) SIM, (b) open
loop, and (c) the EKF.
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(equivalent to 55 mm of water added to the soil column).
While the EKF increments are large compared to the model
dynamics and water balance, they are similar in magnitude
to the increments generated by Météo-France’s operational
OI scheme over the same period [Mahfouf et al., 2009].
Comparison of the monthly water balance generated by the
EKF analysis to that from SIM over France showed a general
improvement compared to an open loop, although some areas
were degraded. The EKF requires the linearization of the
forecast model in order to propagate background errors
through time. The inaccuracy introduced by the linearization
has been estimated by comparing the model Jacobians
(calculated using a perturbation small enough that the
model is approximately linear) to the Jacobians generated
by applying a perturbation of the approximate size of the
expected background errors. This test indicated that the
linearization provides a good approximation of the model
Jacobians for use in the EKF in most instances.
[35] Since w1 does not directly influence w2 in ISBA,

the analysis of w2 from w1 observations must utilize the
sensitivity of w1 to changes in w2. The effectiveness of the
assimilation is then limited by the strength of @w1(t + 24)/
@w2(t). Over the diurnal cycle @w1(t + 24)/@w2(t) is domi-
nated by daytime radiative forcing and the influence of
w2 on w1 is principally determined by the transpiration
physics (enhanced w2 causes enhanced transpiration, causing
decreased superficial soil temperature, giving decreased bare
soil evaporation, and a relative increase in w1). The greatest
sensitivity, and hence most effective analysis of w2, occurs
where transpiration is most sensitive to w2: in reasonably
vegetated regions when w2 is close to, but above, wwilt.
Conversely, where w2 is less than wwilt, or is very high (so
that transpiration is not moisture limited), or where there is
little vegetation, w2 does not substantially influence w1, and
so cannot be effectively analyzed from w1 observations.
[36] A major motivation for using remotely sensed near-

surface soil moisture in NWP is the expectation that it will
provide a more direct observation of total soil moisture than
screen-level observations do, since the latter rely on the
model flux parameterizations to link the surface state to the
screen-level atmosphere. However it has been shown here
that for ISBA the link between the near-surface soil moisture
observations and the deeper soil moisture is still provided by
transpiration. This result is derived from the model physics,
and it is expected that many other models, such as multilayer
models with more substantial surface layers andmore explicit
drainage, will provide a more direct relationship between the
near-surface and deeper soil moisture.
[37] During the nighttime, when the surface forcing is

weak, the sensitivity of w1 to w2 in ISBA is determined by
the model restore term, representing the balance between
capillary rise and gravitational drainage. Since the descend-
ing AMSR-E data used here are observed at night, the gain
terms are influenced by the nighttime dynamics through the
observation operator (this also occurs for the alternate EKF
formulation discussed in Appendix A, due to a diurnal cycle
in B). While a nighttime assimilation has the theoretical
advantage of utilizing a more direct physical link between
w2 and w1, it leads to problems where the nighttime model
Jacobians differ from those across the full diurnal cycle. For
example, due to the absence of transpiring vegetation in
Spain and Algeria in Figure 7, w1 is only very weakly

influenced by w2 over the full diurnal cycle, however, there
is a short-lived stronger sensitivity at night, which generates
w2 analysis increments from the w1 observations. These w2

increments do not influence the w1 forecast for the next day
(this suggests that the w1 observation increments were not
caused by w2 errors), and since the w1 observation incre-
ments are mostly monotonic, a large and likely erroneous
net w2 increment is generated over time. For the EKF this
situation was exacerbated in this study by the inflation of B
in these areas, and the (simplistic) error correlations used
here will be refined in the future.
[38] It was assumed here that the background error

standard deviations for w1 and w2 were both equal to the
observation error standard deviation. However, in reality
b22 will be lower than b11, since w1 has more rapid
dynamics and is more susceptible to forcing errors. Muñoz
Sabater et al. [2007] compared soil moisture from ISBA
forced with observations to in situ data from 2001 to 2004,
and obtained a RMS error of 0.07 v/v for w1 and 0.03 for w2

(the contrast in the errors would likely be enhanced by the
use of NWP forcing). The use of a smaller background error
for w2 would reduce some of the excessive model increments
obtained in this study. Additionally,Q was chosen here in an
attempt to generate stationary B (within the assumed struc-
ture ofQ, proportional to (wfc�wwilt)), however such a value
could not be found across the entire European domain. With
the chosen Q, the background error grew rapidly in dry
and sparsely vegetated regions, including much of North
Africa and Spain (resulting in large increments after several
weeks in Figure 7). This suggests that Q should be lower
in these regions. Intuitively, this is sensible: since there is
little transpiration, w2 does not vary greatly, and excepting
a precipitation forcing error, the additive forecast error (Q)
should be low compared to locations with substantial
transpiration.

5. Conclusion

[39] This work is the first continental scale study to
assimilate remotely sensed near-surface soil moisture into
the ISBA model, and it is also the first study to contrast the
assimilation of remotely sensed soil moisture using dynamic
and static model error covariances. It is demonstrated that
useful increments to the total soil layer in ISBA can be
generated from near-surface soil moisture observations, in
this case derived from AMSR-E. The spatially averaged net
monthly increment for the EKF over ALADIN’s European
domain was 0.025m3m�3, using approximately equal model
and observation soil moisture errors. The assimilation was
performed over July 2006, using both an EKF and a SEKF
(in which the background error at the time of each analysis
was assumed constant). While the Kalman gain terms for
the SEKF and the EKF are determined by different physical
processes, their resultant soil moisture analyses are similar
(recall that horizontal error correlations were neglected in this
study). Since performing the analysis in an off-line environ-
ment makes it computationally feasible, the EKF is suggested
for future work with ISBA, although this study suggests that
the SEKF provides an acceptable approximation (which is
cheaper to compute and easier to implement). The difference
between the two may well increase over a longer time period,
particularly since the one-month period used in this experi-
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ment is only three times the 10-day timescale of w2, and
subsequently b22. The model itself is used as the obser-
vation operator, which in combination with the increased
height of the atmospheric forcing in SURFEX enables the
assimilation of screen-level observations, as demonstrated by
Mahfouf et al. [2009]. The next stage of this work will be to
investigate whether the EKF assimilation of remotely
sensed soil moisture can be usefully combined with that
of screen-level observations.
[40] While the focus here is on the design of the assimila-

tion, the analyses are ultimately limited by the quality of the
ingested data. In this experiment it was necessary to remove
the seasonal bias between the AMSR-E and ALADIN soil
moisture before using CDF-matching to rescale the AMSR-E
data to the model’s climatology. The profound difference in
the soil analyses generated by including and excluding this
seasonal correction was far greater than the difference be-
tween the EKF and the SEKF. This highlights the importance
of the observation rescaling technique to soil moisture data
assimilation. The relatively short period of available data
(1 year), combined with the nonstationarity of the model-
observation bias presented particular difficulties in rescaling
the observations in this study. The issue of obtaining suffi-
cient data to sample the model-observation climatology for
rescaling presents a serious challenge for land-surface assim-
ilation, particularly within NWP modeling, where frequent
model changes are made, but also for the broader land surface
community when using data form the early years of satellite
missions.

Appendix A: Forecast Model as the Observation
Operator

[41] The classic formulation for the EKF assimilation of
near-surface soil moisture is to make the model update at
the observation time, and use an observation operator of
H = (1 0) (for the state vector, x = (w1 w2)

T, used
here). To allow for the eventual assimilation of both near-
surface soil moisture and screen-level atmospheric obser-
vations, a 6-h model forecast of the observation equivalent
has been used for the observation operator in this study,
with the analysis made 6 h before the observation time. It
is shown below that for the assimilation of near-surface
soil moisture this approach differs from the classic EKF
only in the timing of the addition of Q.
[42] For an observation at t = 24, the classic observation

operator is written Ĥ(x24b ) = (1 0) (x24
b ), while the present

version is H(x18b ) = (1 0) M18!24(x18
b ). In both cases the

result is the forecast w1 at t = 24, w1,24. Q is neglected for
the time being, and B is expressed as a function of its
value at time 0. This gives equations (A1) and (A2) for the
classic and current EKF, respectively:

xa24 � xb24 ¼M0!24B0M
T
0!24Ĥ

T

� ĤM0!24B0M
T
0!24Ĥ

T þ R
� ��1

yo24 � w1;24

� � ðA1Þ

xa18 � xb18 ¼M0!18B0M
T
0!18H

T

� HM0!18B0M
T
0!18H

T þ R
� ��1

yo24 � w1;24

� � ðA2Þ

Applying M18!24 to equation (A2) carries it forward 6 h,
giving:

M18!24 xa18 � xb18
� � ’ xa24 � xb24

¼M0!24B0M
T
0!18H

T HM0!18B0M
T
0!18H

T þ R
� ��1

yo24 � w1;24

� �
ðA3Þ

Substituting H = ĤM18!24 into equation (A3) produces
equation (A1), hence the two forms of the EKF are
equivalent if Q is neglected.
[43] If Q is included, equations (A1) and (A3) become,

respectively:

xa24 � xb24 ¼ M0!24B0M
T
0!24Ĥ

T þQĤ
T

� �

� ĤM0!24B0M
T
0!24Ĥ

T þ ĤQĤ
T þ R

� ��1
� yo24 � w1;24

� � ðA4Þ

and

xa24 � xb24 ¼ M0!24B0M
T
0!18H

T þM18!24QHT
� �

� HM0!18B0M
T
0!18H

T þHQHT þ R
� ��1

yo24 � w1;24

� �
¼ M0!24B0M

T
0!24Ĥ

T þM18!24QMT
18!24Ĥ

T
� �

� ĤM0!24B0M
T
0!24Ĥ

T þ ĤM18!24QMT
18!24Ĥ

T þ R
� ��1
� yo24 � w1;24

� �
ðA5Þ

[44] The difference between equations (A4) and (A5) is in
the timing of the addition of Q. In the latter Q is added to B
at t = 18, and B is evolved forward 6 h before the Kalman
gain is calculated. This result has been confirmed by
comparing the analyses generated by the two methods
(using the same Q s, R, and initial B). The differences are
limited to the magnitude of the analysis increments, with the
increments being larger (yet showing the same spatial
pattern) when the model is used as the observation operator.
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One of the applications of crop simulation models is to estimate crop yield during

the current growing season. Several studies have tried to integrate crop

simulation models with remotely sensed data through data-assimilation methods.

This approach has the advantage of allowing reinitialization of model parameters

with remotely sensed observations to improve model performance. In this study,

the Cropping System Model-CERES-Maize was integrated with the Moderate

Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products

for estimating corn yield in the state of Indiana, USA. This procedure, inversion

of crop simulation model, facilitates several different user input modes and

outputs a series of agronomic and biophysical parameters, including crop yield.

The estimated corn yield in 2000 compared reasonably well with the US

Department of Agriculture National Agricultural Statistics Service statistics for

most counties. Using the seasonal LAI in the optimization procedure produced

the best results compared with only the green-up LAIs or the highest LAI values.

Planting, emergence and maturation dates, and N fertilizer application rates were

also estimated at a regional level. Further studies will include investigating model

uncertainties and using other MODIS products, such as the enhanced vegetation

index.

1. Introduction

Advance information on crop yield during the crop growing season is vital for

effective crop management and for national food security policy. Agricultural
survey is a reliable way to estimate regional crop yields by sampling field

measurements of standing crops. However, this method is time-consuming and

costly, and the results are not available until after harvest. In the last three decades,

satellite remote sensing data have been used to estimate crop yields over large areas,

as these methods are more cost-effective and more timely than traditional survey

procedures (e.g. LACIE, MacDonald and Hall 1980).

Earlier studies were mostly based on empirical regression methods that relate crop

yield to remotely sensed surface reflectance and their combinations (i.e. vegetation

indices). These relationships could be described with linear, cubic polynomial, or

exponential regression (Jiang et al. 2003). For example, the Normalized Difference
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8 Vegetation Index (NDVI) is strongly linked to vegetation condition and plant

biomass, and thus has been used to estimate wheat yield during the growing season

(Tucker et al. 1980). This method is essentially a statistical model and cannot predict

the time-dependent processes of crop growth. Besides, the relationship between yield

and NDVI may not be adequate under extreme weather conditions.

Mathematical crop growth models simulate fundamental processes such as

photosynthesis, respiration, biomass partitioning, and water and nitrogen transfers

(Baret et al. 2000). They have the advantage of enabling researchers to evaluate a

wide array of alternatives and to assemble processes in an integrated package. They

can help farmers make crop-management decisions (Tsuji et al. 1998). The

mechanical crop growth models can simulate the dynamics of Leaf Area Index

(LAI) and other structural properties of the crop fields (e.g. height and biomass).

The combination of remote sensing and crop growth simulation models has become

increasingly recognized as a promising approach for monitoring growth and

estimating yield (Bouman 1992, Moulin et al. 1998, Baret et al. 2000, Plummer 2000,

Doraiswamy et al. 2003).

The use of crop models is often limited by uncertainties in their input parameters

such as soil conditions, sowing date, planting density and initial field conditions.

Except in some controlled experimental fields, many of these parameters are poorly

known. Remote sensing can play a critical role in helping identify the field and crop

status from estimated biophysical parameters (Clevers and Leeuwen 1996). Remote

sensing data, therefore, can be assimilated with crop growth models to improve their

overall performance (Maas 1988a, Delécolle et al. 1992, Moulin et al. 1998, Baret

et al. 2000, Plummer 2000, Doraiswamy et al. 2004).

In this study, we developed a practical procedure using the data assimilation

method to predict crop yield at the regional scale from Moderate Resolution

Imaging Spectroradiometer (MODIS) data. This method, Inversion of Crop

Simulation Model (ICSM), contains several different user input modes that allow

different input choices. ICSM outputs include agronomic variables (yield, planting,

emergence, and maturation dates) and biophysical parameters (e.g. LAI). It also

provides the flexibility to incorporate different Earth Observing System (EOS) data

products and is capable of producing other diagnostic variables if necessary.

2. Existing studies and our new data assimilation schemes

2.1 Existing studies

Crop simulation models (CSMs) directly estimate biomass products, water and

nitrogen balances, and crop yield through a deterministic scheme using ancillary

data such as soil characteristics and climate variables (Williams et al. 1984, Tsuji

et al. 1998, Engel et al. 1997, Baret et al. 2000). However, CSMs require many

parameters and variables as inputs. Some of these factors are poorly known, and the

model must be calibrated for particular crop conditions. Nevertheless, CSMs are

also able to describe the dynamics of LAI and may be adapted to describe other

structural and optical properties. They can thus be coupled with radiative transfer

models (RTM) to simulate the radiometric field response. A comparison between

simulated and observed radiometric data can be applied to correct CSM variables

and parameters and force the CSM to run in a more realistic way.

Several assimilation schemes, of various degrees of complexity and integration,

have been developed during the last 10 years (Moulin et al. 1998, Baret et al. 2000,

3012 H. Fang et al.
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8 Plummer 2000, Doraiswamy et al. 2004). Various methods for integrating a crop

growth model with remote sensing data were described by Maas (1988a, b) and were

also reviewed by (Fischer et al. 1997, Moulin et al. 1998). Maas (1993) conducted a

study to compare the results of calibrating a crop simulation model using LAI

observations obtained from either field sampling or remote sensing. Winter wheat

yield was more accurately predicted using remotely sensed LAI observations than

using field-sampled LAI observations (Maas 1993). This difference appeared to

result from the apparent ability of the remotely sensed LAI observations to better

represent the photosynthetically active plant area in the crop canopy.

Bach et al. (2003) experimented with the coupling of a raster-based PROMET-V

model with the radiative transfer model GeoSAIL to predict biomass and yield. In

their study, LAI, fraction of brown leaves, and surface soil moisture were used as

free variables; surface reflectance was used as the control variable. Their

assimilation procedure produced improved biomass and yield results. Guérif and

Duke (2000) combined the SUCROS crop model with the SAIL canopy

reflectance model to obtain a more accurate estimation of sugar-beet yield.

Ground measured reflectance was used to match the predicted reflectance. One

limitation of their study was that many crop and soil parameters had to be

obtained from field measurements. The SAIL model has also been integrated with

the EPIC crop model to estimate the yield of spring wheat in North Dakota

(Doraiswamy et al. 2003). Planting date is the only adjustable variable in their

model. The estimated yields with the combined EPIC and SAIL models were

mostly within 10% of the National Agricultural Statistical Service (NASS) reports.

In their study, climate data were based on interpolation of weather station

measurements, while the crop area mask was based on the 1-km AVHRR

classification (Doraiswamy et al. 2003). NDVI was also calculated from AVHRR.

Although the AVHRR data set is easily accessible, use of the set will compromise

the precision of analyses owing to their outdated calibrations and the application

of partial atmospheric corrections. This is one of the reasons why the latest

MODIS products were used in our study.

In a more recent study, Doraiswamy et al. (2004) used a look-up table (LUT)

method to estimate LAI from 250-m MODIS reflectance data. The crop-modelled

LAI was adjusted to fit the MODIS simulated LAI by changing the data of planting,

the time when maximum LAI was attained, and the beginning of leaf senescence. If

MODIS LAI is used, this step, which involves intensive fieldwork and indoor

retrieval, can be avoided.

Doraiswamy et al. (2004) used weather-station data, which are accurate and easily

available. However, these data are spatially discrete, and spatial interpolation is

indispensable for regional application. This motivates us to look into alternative

weather data sources, such as the land data assimilation systems (LDAS) data

(Mitchell et al. 2004). One of the primary goals of LDAS is to provide optimal

estimates of land surface state initial conditions such as soil moisture and

temperature at spatial resolutions down to 1 km. Therefore, LDAS data can be

incorporated into our assimilation strategy.

In general, two main approaches have been used to couple or integrate satellite

data with a crop model (Guérif and Duke 1998). The first approach uses remotely

sensed estimates such as LAI, FPAR, surface soil moisture, or evapotranspiration to

force or recalibrate parameters of the CSM using optimization techniques. The

second approach couples CSM and RTM to simulate whole processes from canopy

Corn-yield estimation by assimilation of remotely sensed data 3013
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8 functioning to above-canopy radiometric data. Some parameters of the coupled

model are then directly recalibrated by finding the best agreement between

simulated and observed remote sensing data. Our ICSM provides the option to

trigger either approach. This study will mainly focus on the first approach. Details

about the second approach are the focus of another study.

2.2 Our data-assimilation schemes

A general outline of our data assimilation strategy is given in figure 1. LAI simulated

by the crop model is compared with MODIS LAI products in the optimization

process. The ICSM reinitiates the input parameters based on the root-mean-square-

error (RMSE) of the LAIs. The model produces crop yield and other parameters

when a minimization threshold is satisfied. Several crop growth models (e.g.

DSSAT, WOFOST, and EPIC) were examined for their ability to predict yields for

regional assessments. The Decision Support System for Agrotechnology Transfer

(DSSAT) model was selected because of its easiness for adaptation and reliable

support. DSSAT consists of three components (Hoogenboom et al. 1999,

Hoogenboom et al. 2004): (1) a Data Base Management System (DBMS) to enter,

store, and retrieve the ‘minimum data set’ needed to calibrate, evaluate and use the

crop models for solving problems; (2) a set of evaluated crop models for simulating

processes and outcomes of genotype by environment interactions; and (3) an

application program for analysing and displaying outcomes of long-term simulated

agronomic experiments.

The Cropping System Model (CSM)-CERES (Crop-Environment Resource

Synthesis)-Maize is one set of modes under the DSSAT shell that has different

modules for different kinds of crops (Jones et al. 2003). The CSM-CERES-Maize

model simulates growth, development, and yield of corns, taking into account the

effects of genetics, weather, and soil conditions and crop management. The model

offers the ability to evaluate options for increasing yield and water and nitrogen-use

efficiency. This model enables users to input the biological and physical parameters

Figure 1. Flow chart of the inversion of crop-simulation models (ICSM) using MODIS LAI
data.

3014 H. Fang et al.
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8 and obtain user-specified objectives (Tsuji et al. 1994, Tsuji et al. 1998). The CSM-

CERES-Maize model was modified in an inversion looping structure in ICSM to

dynamically use both remotely sensed and simulated LAI data. ICSM evaluates the

modelled LAI dynamics and recalibrates the crop model input parameters with the

remotely sensed LAI. Besides the LAI dynamics, the CSM-CERES-Maize model

also simulates the growth and development for a maize canopy as well as the water

and nitrogen balances of the soil–vegetation–atmosphere system using a daily step.

The inversion models (ICSM) were first run with management records and

treatments obtained from either agricultural statistics or local agronomists. Upon

completion of the run, these dates when both simulated LAI and MODIS LAI were

collected were identified. The simulated and MODIS LAI values were fitted to the

model outputs. The residuals were analysed to determine certain input values

(weather, genetics, soil, etc.) that were traced back to the input files. After removing

‘error’ input values and adjusting the parameters (determined through sensitivity

studies), the final set of model input parameters was derived. The model was tuned

again and was run to determine the final LAI and grain yield.

3. Data preparation

Our study area was the state of Indiana, USA (figure 2). The topography of Indiana

is characterized by vast flat plains in the northern two-thirds of the state. In the

Figure 2. Administrative counties for Indiana (92 in total). The county number is created
automatically from approximately north to south. The shaded counties (43 in total) are used
in a corn-yield comparison with statistical data.

Corn-yield estimation by assimilation of remotely sensed data 3015
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8 south, hills, ridges, and knolls abound. Land elevations range from 100 m above sea

level in the south-west corner of the state to 382 m in east central Indiana (Indiana

Office of the Commissioner of Agriculture 2003). Corn and soybean are the two

dominant crops.

Crop-growth models need many ancillary inputs such as daily weather variables

and soil characteristics in addition to crop genetics and management conditions. To

run ICSM, a set of data was prepared in standard input files with specific data

formats and conventions. Some are free variables, such as the planting date and

nutrient applied. Their initial values were pre-determined but were optimized in the

program. The environmental parameters, such as geographic positions, crop type,

soil and weather conditions discussed below, are critical for obtaining accurate

outputs and were determined before running the program.

3.1 Crop-management variables

Spatial information about the specific corn cultivar types was not obtained for the

entire state, but Pioneer cultivars represent the overwhelming majority of corn

cultivars planted in Indiana (personal communication with Dr WD Batchelor). In

the CSM-CERES-Maize corn cultivar files (DSSAT 4.0), there are several generic

corn hybrids labelled by growing degree days to maturity (PC0001, PC0002,

PC0003, and PC0004). In the a priori sensitivity test (see §4.2), PC0003 was found to

work well in Indiana.

Some variables are more critical for effective use of CSM than others, such as the

initial conditions, planting date, and planting population and row spacing. They are

treated as free variables that can be estimated during the data-assimilation process.

They cover the likely variation over corn-fields in the study area. In practice, the

number of free variables to be estimated is adjustable in ICSM. More experiments

can be conducted to decide the best set of free variables. For corn, both plant

population and row spacing may vary considerably (and be intercorrelated) over a

large spatial domain, depending on the field conditions. Moreover, sowing dates

may also vary greatly according to weather and farmer decisions. These variations

have major effects on subsequent growth, as was shown by a CSM-CERES-Maize

sensitivity analysis.

USDA NASS reports provide the average crop planting dates at the state level,

but not specific to a county. Crop calendar models simulate crop growth

incrementally, based on growing degree-days (or thermal units) for different types

of crops and crop varieties. The current crop calendar models are initialized by

the average start of season data derived from national crop reports (http://

www.pecad.fas.usda.gov/cropexplorer/datasources.cfm). However, determining the

start of the cropping season is still very empirical at the regional level. A more

practical way is to initialize the crop models from start-of-season data derived from

agrometeorological data or vegetation index (VI) data (Bethel and Doorn 1998). In

this study, the initial planting date was set to the 7 May, DOY 128 when half of the

corn has been planted over the state (1998–2002 average) (http://www.nass.usda.

gov/in/annbul/0304/04weather.html), with one month variation. The crop emergence

date was computed from the crop growth model. Due to spatial variability in the

soil surface characteristics, the duration between planting and emergence was

adjustable.

The appropriate supply of nutrients is essential for modern crop production.

However, it is very difficult to generalize on fertilizers because of the diversity of

3016 H. Fang et al.
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8 fertilizer sources used, the exact amount of nutrients that are applied, and the dates

of application. The simplest nutrient to generalize would be nitrogen (N) because it

is used by nearly all growers. Some growers apply fertilizers only prior to planting.

Some farmers apply split applications with some prior to planting and some after

initial crop establishment or after the crop has emerged. At the regional level, it is

impossible to find a typical time of nitrogen application. In this study, the date of N

application was set to the same date as the planting date, and hence had the same

variation range. The amount of N applied varies for each individual field, and there

is no information about how it is distributed across the state. Some of our initial

experiments displayed a fertilization median at 170–185 kg ha21, which provides

some basic information about fertilization practices in the area. We have also

referred to the CERES default values for the initial nitrogen amount. In the

automatic management situation, DSSAT uses a default value of 25 kg ha21 in 50%

N deficit. The actual amounts applied by growers could be higher (Dr R. L. Nielsen,

personal communication).

3.2 Environmental variables

3.2.1 Soil characteristics. Surface soil texture is one of the principal characteristics

affecting the soil spectral reflectance (Guérif and Duke 2000). DSSAT soil input is

mainly based on soil texture and soil depth. The information on soil texture spatial

distribution is available from USDA Soil Geographic Database (STATSGO) (http://

www.ncgc.nrcs.usda.gov/branch/ssb/products/statsgo/index.html). The spatial reso-

lution was reprojected to 1 km. The STATSGO data were recoded based on soil

texture and the depth of the main soil component. The predominant soil texture in

the region is silt loam, with zones of sandy loam and sand in the northern region.

Soil moisture in the surface fluctuates extensively, depending on soil texture,

rainfall, runoff and soil evaporation. The soil moisture provided by STATSGO

was used, since it is quite difficult to obtain the moisture information at a regional

level.

3.2.2 Regional weather data. Daily weather data are required and must be

available for the duration of the growing season. Three weather data sources were

examined: the National Weather Service (NWS) station data (http://lwf.ncdc.noaa.

gov/oa/climate/stationlocator.html), the National Centers for Environmental

Prediction (NCEP) North American Regional Reanalysis (NARR) data (http://

wwwt.emc.ncep.noaa.gov/mmb/rreanl/index.html), and the North America Land

Data Assimilation Systems (NLDAS) data (http://ldas.gsfc.nasa.gov). For the

regional application of ICSM, weather data have to be in a spatially continuous grid

format. More importantly, their spatial resolution must be sufficient to be able to

simulate crop growth, development, and predict yield for the entire growing season.

The NLDAS data were used in this study because they are spatially continuous, and

their resolution is relatively higher (1/8 degree). NLDAS uses 3-hourly Eta data

(Eta: North America Mesoscale model, from 1996 to the present), hourly GOES

solar shortwave data, Stage II Doppler precipitation data, and daily rainfall gauge

data. These data sets are combined to form hourly NLDAS forcing files. NLDAS

data contain surface temperature, wind speed, downward shortwave flux, and

precipitation that are required by DSSAT. They were aggregated into daily

parameters for crop model inputs. An example of the NLDAS data is plotted in

Corn-yield estimation by assimilation of remotely sensed data 3017
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figure 3. Normally, January is the coldest month, and July is the warmest month of

the year. The daily precipitation varies widely over the year.

3.3 Remotely sensed data (LAI)

LAI is the key variable in the data-assimilation scheme. The comparison between

simulated and observed LAI is applied to correct the parameters of the CSM-

CERES-Maize in order to improve the performance of the model. The MODIS

science team is producing LAI products globally every 8 days at a spatial resolution

of 1 km (Justice et al. 1998, Myneni et al. 2002). The collection 4 MODIS LAI

products are available for the general user community through the Earth Resources

Observation System (EROS) Data Active Archive Center (DAAC) (http://

edcimswww.cr.usgs.gov/pub/imswelcome/). The state of Indiana is covered by two

tiles, h11v04 and h12v04.

Determination of the number of LAIs used in the optimization scheme needs to

consider the LAI acquisition and data quality, the crop growth cycle, and

computational demands. Guérif and Duke (2000) found that the best situation

was when the data covered the whole period of LAI growth (including the highest

values). Due to cloud contamination, spatially and temporally complete LAI is not

available at the current stage. The retrieval index, which indicates the number of

good retrievals relative to the total number of attempted pixels (Wang et al. 2001),

was very low in the study area during the growing season due to clouds. For

Figure 3. Example of the NLDAS daily precipitation (bars, left axis) and air temperature
(lines, right axis) for Indiana in 2000. The solid and dashed lines show the maximum and
minimum air temperatures, respectively.

3018 H. Fang et al.
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example, the retrieval indices for 4 August (DOY 217) and 12 August (DOY 225)

are only 1.73% and 9.5%, respectively (figure 4). Non-vegetation and fill value pixels

were excluded based on the QC (quality control) layer. LAI values derived from

both the main radiative transfer method and empirical methods were used,

excluding the pixels with geometry problems. The Savitzky–Golay (SG) filter
(Savitzky and Golay 1964) was applied to smooth the annual LAI profile (figure 4).

Figure 5 shows an example of LAI images before and after temporal filtering.

Clearly, the filtered data (figure 5(b)) improved the pixels with poor retrievals and

provided value-added information for crop simulation for some LAI gaps. Note

that there are some forests in southern Indiana where the values for LAI are as high

as 6.

MODIS LAI products contain data from before planting to after maturity.

Technically, this data continuity allows a simulation to be started before planting.
Nevertheless, only LAI for the growing season were used to accommodate the cyclic

nature of ICSM and to avoid possible noises. The LAI series were selected according

to the crop calendar (http://www.nass.usda.gov/in/annbul/0304/04weather.html),

beginning on the date when only 5% of the crop had been planted until the date

when 95% of the crop had been harvested (1998–2002 average) across the state.

LAIs after maturity were not used due to the MODIS LAI uncertainties and the

sensitivity of DSSAT models to LAIs of this period. For this study, three scenarios

were evaluated: (1) S1, using 13 LAIs during the growing season (day 137, 145, . . .,
233); (2) S2, using 4 LAIs located at the plateau of the profile (day 185, 193, 201, and

209); and (3) S3, using three LAIs at the time when the crop was rapidly growing,

Figure 4. Mean LAI profile (solid) and curve after Savitzky–Golay filtering (dotted line) for
corn grown in Indiana in 2000. The three segments show the period when LAI changes
quickly (days 153, 169, and 193, respectively).

Corn-yield estimation by assimilation of remotely sensed data 3019
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and the LAI was increasing (days 153, 169, and 193). The latter two scenarios are to

test the sensitivity of different LAI selections.

In addition to the above inputs, other field characteristics such as soil-analysis

data, organic residue applications, environmental modifications, and harvest

management were also necessary. These were determined through a series of

sensitivity analyses done a priori. It is equally important to consult local practising

agronomists. Some laboratory and field observational data obtained in similar

studies (O’Neal et al. 2002), grown under similar conditions, were used as the initial

values in a previous phase to adapt some model coefficients to the regional context.

All data were transformed and reprojected to a 1-km resolution with a Universal

Transverse Mercator (UTM) projection.

3.4 Pure corn pixels

The DSSAT family of models simulates grain cereal, legumes, root crops, and other

crops separately. This poses a challenging task to separate different types of crops

within a mixed pixel. High-spatial-resolution data (e.g. IKONOS, SPOT, and

ETM + ) are optimal for deriving inputs for crop growth models, but impractical for

large-scale application. The USDA is producing cropland data layer (CDL) using

Landsat TM and ETM + imagery (http://www.nass.usda.gov/research/Cropland/

SARS1a.htm) for some Mid-western states. The 30-m-resolution CDL data were

upscaled to the MODIS LAI resolution (1 km). Figure 6 shows the percentage of

corn in the 1-km resolution upscaled from CDL. Only pixels having more than 80%

corn were processed using the CSM-CERES-Maize model. Overall, there are 871

‘pure’ corn pixels in 2000. If the corn percentage were lower than 80%, the results

would be unacceptable due to the mixed pixels.

Figure 5. Image of MODIS LAI data (a) before and (b) after temporal filtering. Cloud
contaminated areas in (a) have been filled in (b). Date: day 217, 2000.
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4. Inversion of the Crop Simulation Model (ICSM)

4.1 Merit function and optimization scheme

The inversion procedure of the data assimilation is similar to the 4D variational

analysis in (Liang 2004). A general merit function J is constructed as:

J X t0ð Þð Þ~ X t0ð Þ{Xb½ �T B{1 X t0ð Þ{Xb½ �z
Xn

i~1

Hi X tið Þð Þ{YiÞ½ �T R{1
i Hi X tið Þð Þ{Yi½ �, ð1Þ

where X and Y are the input and output variables, respectively. Xb is the background

value (or first guess), X(t0) is the observed value at time t0, H is the CSM model

operator, and R and B are the observation and background error covariance matrices,

respectively. The first term on the right of equation (1) is to force the optimal

parameters as close as possible to input fields, and the second term is to adjust

variables so that model outputs will be as close to the observations as possible.

Figure 6. Corn-sowing percentage in Indiana at 1 km2 resolution. Percentage values are
calculated from the USDA NASS (2000) cropland data layer.

Corn-yield estimation by assimilation of remotely sensed data 3021
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input variables and output yield must be quantified. At the current stage, our

objective was to minimize the difference between the measured and simulated LAI,

and thus only the second term on the right of equation (1) was considered. Equation

(1) takes a simplified form for this purpose:

J~
Xn

i~1

abs LAIS tið Þ{LAIM tið Þð Þ, ð2Þ

where LAIS(ti), LAIM(ti) are the simulated and measured LAI at time ti,

respectively. As stated previously, the pre-season and post-season values were

excluded. Thus, the 8-day MODIS LAI was of major importance for this

optimization process. Equation (2) was used to calculate the residual between the

simulated and measured LAI. We tried to use the measured LAI as weights in a

weighted difference equation. However, it brought some biases for lower MODIS

LAI and caused higher yield deviations.

Many different types of optimization methods are available (Press et al. 1992). A

multidimensional optimization algorithm adjusts free parameters until the merit

function is minimized. In this study, the conjugate direction method (e.g. POWELL

from Press et al. 1992) was used to force the four model parameters, planting date,

planting population, row spacing, and amount of nitrogen applied. The conjugate

direction method starts from a single initial position and conducts single line

minimizations in each of the current p conjugate directions in order to arrive at the

minimum for a given iteration. If the difference between the current and previous

iterations minimum is below a user-defined tolerance, the program terminates. If the

difference is greater than the tolerance, the conjugate directions are adjusted

according to the vector between the two minima, and another iteration begins.

Table 1 shows an example of a typical optimization process for one pixel. Column J

is the merit variable calculated with different values at different iteration. The last

row shows the final optimized values for that pixel when the maximum number of

iteration or the minimum J is achieved.

4.2 Sensitivity studies

The current DSSAT model allows users to input different combinations of

environmental variables and management practices. Thus, the sensitivity of the

input parameters can be tested (Prévot et al. 2001). By doing this, users can

determine the impact of not only crop types and management practice, but also soil

quality and other environmental factors (O’Neal et al. 2002, Heinemann et al. 2002).

A series of tests were designed and performed in the initial experiments of this study:

(1) the number and values of initial parameters (vector X in equation (1)); (2) the

number of the measured LAI values used (n in equations (1) and (2)); (3) the effect of

uncertainties in the control variable (R in equation (1)); and (4) the issue of mixed

pixels (analogous to R in equation (1)).

Among the many input variables, weather conditions, soil properties, crop and

cultivar selection, planting date, plant spacing, and application of irrigation and

fertilizer were found to be very important in determining final crop yield. Table 2

shows a sensitivity experiment for Jasper County, Indiana (No. 15 in figure 2). The

initial planting date was set on 7 May (DOY 128). The plant density and row

spacing were 6.5 plants m22 and 80 cm, respectively. Other initial variables for the

3022 H. Fang et al.
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county were set with the data discussed in §3. All 13 MODIS LAI observations over

the growing season were used (scenario 1). The simulated yield (9723 kg ha21) was

slightly higher than the USDA NASS data (9172 kg ha21). Various input values

were changed to determine the impact on the simulated yield from the assimilated

model. Changes in planting date, planting density, and MODIS LAI will all impact

the final simulated yield. For example, with the same parameter setting, moving the

planting date 5 days earlier caused a yield decrease of up to 57.1%. On the other

hand, yield was relatively stable for different row spacings. We also experimented

with some alternative management scenarios, such as cultivar selections and crop

rotation. Management measures are important for crop growth, but they were kept

constant and were not adjusted in the data assimilation process. It is rather difficult

to select the planting date and density for crop models without knowledge of field

crop type. By running the coupled inversion model, the range and uncertainties of

the sowing date and density can be evaluated by choosing different input options.

The influence of MODIS LAI data was also tested. Decreasing the MODIS LAI

will also lower the simulated yield, indicating that the MODIS LAI is another

important parameter in this study. In this study, the number of input LAI values can

Table 1. Example of the optimization process.

No. of
iterations

Planting
date

Planting
population Row spacing

Nitrogen
amount J

7 129 6.5 80 44 16.1331
8 129.2 6.5 80 44 16.4054
9 128.8 6.5 80 44 16.1331
23 128.6 6.5 80 44 15.9872
24 128.6 7.5 80 44 9 242 283
25 128.6 6.5 80 44 15.9872
43 128.6 7.5 80.8 44 12.5159
44 128.6 7.5 90 44 12 242 396
45 128.6 7.5 80.8 44 12.5159
63 128.6 7.5 90 48.1 12.2210
64 128.6 7.5 90 64.9 11.2910
65 128.6 7.5 90 92.1 10.4034
66 128.6 7.5 90 110.1 10.1295
67 128.6 7.5 90 139.3 9.9472
68 128.6 7.5 90 141.3 9.9410
69 128.6 7.5 90 144.4 9.9327
Optimized
values

127.5 7.5 81.6 176.4 9.6731

The planting date, planting population, row spacing, and amount of nitrogen are optimized
consequently based on the J value in equation (2). The last row shows the final optimized
values.

Table 2. Impact of input variables on the simulated yield in Jasper county, Indiana, 2000.

Simulated
values

Planting date
(DOY 128)

Plant density (6.5
plants m22)

Row spacing
(80 cm) MODIS LAI

Cases 25 + 5 20.5 + 0.5 210 + 10 210% + 10%
Yield (kg ha21) 9723 4173 11 926 10 046 9250 9745 9717 8301 10 495
Difference (%) 257.1 22.7 3.3 24.9 0.2 20.1 214.6 7.9

The first row lists parameters tested and their initial values. The last row shows the difference
with the simulated yield.

Corn-yield estimation by assimilation of remotely sensed data 3023
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8 be modified in the inversion. As described above, we designed three scenarios to test

the effect of using all LAIs over the whole season, the highest LAIs, and the LAIs

during the fastest growth period. Sensitivity studies showed that the nitrogen

application, followed by the planting date, row spacing, and planting population

were some of the variables that were mostly affected by the variation of the state

variable (i.e. LAI). For example, a 10% LAI decrease can lower the retrieved

nitrogen by up to 30%. It is acknowledged that these variables are interrelated, and

compensations occur between various parameters. For example, a lower nitrogen

application could be counterbalanced by an earlier sowing date, leading to a similar

LAI profile.

A careful review of similar studies was conducted to identify the parameters that

are critical for the ICSM tune-up process. For example, O’Neal et al. (2002)

simulated the impact of precipitation on yield with CERES in an Indiana field.

Kravchenko et al. (2000) used a multifractal analysis to study the relationship

between topography and yield. Further, Kravchenko and Bullock (2000) analysed

the yield–topography–soil relationships and found that soil properties and

topography explained about 40% of yield variability. These works confirmed the

importance of counting the soil and weather conditions in the ICSM model.

4.3 Various ICSM modes

In practice, ICSM was designed to cope with different input data availabilities, and

thus has different running modes. The forward simulations were inherited from

DSSAT and work for a single or multiple points simulations (modes 1 and 2,

respectively). To run the forward simulation, the DSSAT ‘minimum data set

(MDS)’ is required (http://www.icasa.net/dssat/minimum.html). To run the inver-

sion model (ICSM) at a point level (mode 3), some observational LAI data are

necessary in addition to the DSSAT MDS. With additional information available,

such as the regional LDAS weather data in this study, another mode could be

initiated to run ICSM at a regional level (mode 4). The ICSM has an additional

option to integrate crop models with a canopy radiative transfer model (mode 5).

5. Results

In ICSM, corn LAI was used to adjust crop model input parameters by minimizing

the difference between MODIS derived LAI and crop model simulated LAI. The

model simulates the corn yield, assuming that the crop has no water stress and is free

from any insect, pest, and disease effects.

Figure 7 compares the simulated corn yield and NASS yield data for selected

counties in Indiana, 2000. Each of the 43 counties had at least 5 km2 planted to corn

(>5 pixels) based on figure 2. Three different scenarios were compared. Within the

state, the measured corn yields ranged from 7533 kg ha21 to 10 365 kg ha21. The best

results were obtained from the first scenario (using 13 LAIs), when the simulated

yield was about 7.9% higher than the NASS data (table 3). This phenomenon

demonstrates that if more LAIs were used in the ICSM (higher n in equations (1)

and (2)), the simulated LAIs could better capture the seasonal variation than if fewer

LAIs were used. This finding is consistent with Guérif and Duke (2000). Therefore,

the results from the first scenario (13 LAIs) were mainly discussed in the following

parts. Results from the other two scenarios using four and three LAIs were 16.6%

and 17.9% higher than the NASS yield, respectively (table 3). The standard

3024 H. Fang et al.
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deviations of the simulated results from these two scenarios were also higher than

the NASS data. This was not unexpected considering the variation of the input data

used in this study (see LAI example in figure 10).

Figure 8 shows the spatial distribution of corn yield for all corn pixels (total of 871

in 67 counties) for the first scenario (S1: 13 LAIs). For all the 871 pixels, the

Figure 7. Comparison of simulated corn yield (lines) and NASS data (bars) for Indiana
counties with >5 pixels planted to corn in 2000. Simulated results are from three different
scenarios, using 13 LAIs (S1), the four highest LAIs (S2), and three LAIs during the
maximum growth phase (S3). See figure 2 for the county numbers.

Table 3. Comparison of the estimated corn yield and NASS data for Indiana in 2000
(kg ha21).

NASS
data

Simulated yield

S1
Difference

(%) S2
Difference

(%) S3
Difference

(%)

Selected counties (43)
Mean 9080 9765 7.9 10 540 16.6 10 660 17.9
Standard
deviation

700 1107 1186 1041

All 871 pixels in 67 counties
Mean 9189 9477 3.1 10 264 11.7 10 340 12.5
Standard
deviation

644 1669 1878 1933

The simulated mean values and standard deviations are calculated for the selected 43 counties
(figure 2) and all 871 pixels (figure 8), respectively. Simulated yields are from three different
schemes: S1, 13 LAIs; S2, the four highest LAIs; and S3: three LAIs during the maximum
growth phase. Their differences from the NASS yield are also shown.

Corn-yield estimation by assimilation of remotely sensed data 3025
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simulated mean corn potential yields ranged from 6705 to 15 525 kg ha21, while the

average yield was 9477 kg ha21 (table 3). Results from the other two scenarios (S2:

four LAIs and S3: three LAIs) were more than 11% higher than the NASS data.

However, the standard deviations from all three scenarios were much higher than

the NASS data. This was attributed to the fact that some counties that had only a

few scattered corn pixels and yields.

The NASS data showed a gradient of increasing yields from north to south in

Indiana. However, this pattern was not so obvious for the simulated corn yields

(figures 7 and 8). The weakness of spatial gradient was attributed to the

uncertainties in MODIS products and the small number of ‘pure’ corn pixels used

in the study. The overestimation in figure 7 may be caused by several factors. For

example, drought stress, pests, diseases, and harvest loss were not accounted for in

our simulation. In addition, it was also very difficult to determine the exact

management practices that farmers use. A few underestimations happened for some

north and south counties. This was mainly due to the inadequacy of soil and

topography information described in the previous section.

In addition to the yield, the ICSM also simulated LAI itself, which can be

compared with the raw MODIS LAI products. Figure 9 shows the spatial

distribution of simulated LAI for day 217, 2000. Figure 10 compares the MODIS

Figure 8. Simulated corn yield (871 pixels in total) with S1 (13 LAIs) in 2000 (unit: kg ha21).

3026 H. Fang et al.
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LAI and the simulated LAI for day 217 of 2000. The ordinate shows the probability

density of the data. For comparison, the temporally filtered LAI (LAI-SG) is also

displayed for this specific day. Obviously, most of the MODIS LAI, located between

1.0 and 2.0, is underestimated due to the cloud effect (figure 10). After the SG

filtering, the LAI is more evenly distributed between 0.5 and 4.0, while there is a

density peak around 2.9. The peak of the simulated LAI (3.1) is very close to LAI-

SG. There is another peak (4.2) for the simulated LAI. The range of simulated LAI

is within those of the MODIS LAI and LAI-SG, but more pixels are located at the

higher end of the histogram compared with the LAI-SG (figure 10). Therefore, the

mean of the simulated LAI (3.5) was larger than the LAI-SG (2.3). Their different

distributions are attributed to the mixed pixels.

This method has one significant merit to generate important agronomic para-

meters through inversion. The estimated dates of planting, emergence, and matu-

ration are shown in figure 11. In 2000, 90% of corn was planted between 19 April

(DOY 110) and 19 May (DOY 140) (figure 11). In general, this was very similar to

the field observations (http://www.nass.usda.gov/in/annbul/0304/04weather.html).

Corn emerges around 10 days after planting. The distribution profile of the planting

date and emergence date were very similar (figure 11). Most corn (.92%) matured

between 27 August (DOY 240) and 26 September (DOY 270).

Figure 9. Simulated LAI for day 217, 2000 for the same pixels in figure 8.

Corn-yield estimation by assimilation of remotely sensed data 3027
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6. Discussion and summary

Crop simulation models simulate crop growth status and predict crop yield and its

associated uncertainties at harvest maturity. Remote sensing is a powerful tool for

estimating crop biophysical parameters. Based on the comparison between modelled
and estimated LAI, the input variables, such as the planting date, planting

population, row spacing and the nitrogen amount, were adjusted. Quality LAI

products are critical in such data assimilation studies. MODIS LAI data for crops

have been shown to agree well with field measurements by several validation studies

(Cohen et al. 2003, Fang and Liang 2005). Nevertheless, continuous measurements

of LAI and other biophysical parameters are needed to fulfil the reparameterization

needs. This study applied the 8-day MODIS LAI product; however, a higher revisit

frequency (e.g. daily) would be better for the simulation and inversion process in
ICSM. Field LAI measurements could also be used as a supplement to the remotely

sensed data during the reparameterization process.

This study focused on using the 1-km MODIS data for regional application.

Crop-type information derived from 250-m MODIS data (Lobell and Asner 2004)

may reduce biases brought in by mixed pixels. Moreover, other satellite products

such as the vegetation indices can be used. The current ICSM has included the

function to integrate remotely sensed vegetation indices with a crop-growth model.

If the model were run at a local field, higher-spatial-resolution sensors like ETM +
would be advantageous. Application of the methodology from this study to

precision farming is therefore very attractive. Given the relatively coarse resolution

Figure 10. Comparison of simulated LAI from ICSM with raw MODIS LAI data for day
217, 2000. The intermediate LAI after Savitzky–Golay filtering is also shown. The ordinate
shows the probability density of the data.
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of the MODIS data, we suggest that field campaigns be conducted and ETM + data

be used to develop regional calibrations.

Soil and weather data are two crucial environmental parameters. A general

conclusion cannot be made without considering the soil and weather data used in

the study. The inversion in this study was based on the STATSGO soils database.

The inversion approach presented in this paper could certainly benefit from

collecting higher-quality soil data such as the soil survey geographic database

(SSURGO) (http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/index.html).

With respect to the weather data, discrepancies probably arose due to

uncertainties in both downward solar radiation and precipitation (Luo et al.

2003). Since we focused on the application of the LDAS data, we did not attempt

to resolve these discrepancies, but it leaves some uncertainties in the results.

However, the temporal dimension of the LDAS has not been fully explored. More

follow-up studies are necessary, involving the use of improved forcing data and

incorporating the hourly data into ICSM.

Currently, the reparameterization was performed on a pixel basis because almost

all crop models are developed for point-based simulations. On a larger scale, for the

real-world applications, this method will inevitably require considerable computa-

tion resources. Similarly, the remote-sensing inversion model (equation (2)) must

also be executed pixel by pixel, and so it is very time- and computer-intensive when

applied to a large area. An alternative is to use the look-up table method (Kimes

et al. 2000). The look-up table method may be applied in the data assimilation and

reparameterization process to increase computing efficiency. This approach will be

very useful when a new generation of crop growth models for the regional scale

becomes available (Hansen and Jones 2000).

Figure 11. Histogram distribution of planting, emergence, and maturation dates retrieved
for year 2000. The ordinate shows the probability density of the data.

Corn-yield estimation by assimilation of remotely sensed data 3029
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8 This paper discusses the application of MODIS LAI data to predict crop yield

through the inversion of a crop simulation model. The agreement between the

estimated yield and NASS is fairly good. STATSGO soil parameters and NLDAS

weather data offer reasonable inputs for simulating crop yield over a regional scale.

Simulated corn yields were compared with yields reported by the National

Agricultural Statistical Service (NASS). The simulated corn-yield at the 1 km2

resolution captured the yield variability within the state and showed a reasonable

agreement with the NASS yield reports. There is some room for future

improvement, such as the selection of free variables and their initialization, and

alternative optimization algorithms. This method can be used to predict regional or

national crop-yield data before harvest. The outputs from ICSM are worthy of

further investigation, for example, for studying regional or continental water and

energy dynamics.
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DELÉCOLLE, R., MAAS, S.J., GUÉRIF, M. and BARET, F., 1992, Remote sensing and crop

production models: present trends. ISPRS Journal of Photogrammetry and Remote

Sensing, 47, pp. 145–161.

DORAISWAMY, P.C., HATFIELD, J.L., JACKSON, T.J., AKHMEDOV, B., PRUEGER, J. and

STERN, A., 2004, Crop condition and yield simulation using Landsat and MODIS.

Remote Sensing of Environment, 92, pp. 548–559.

3030 H. Fang et al.



D
ow

nl
oa

de
d 

B
y:

 [N
as

a 
G

od
da

rd
 S

pa
ce

 F
lig

ht
 C

en
te

r] 
A

t: 
16

:5
3 

5 
M

ay
 2

00
8 DORAISWAMY, P.C., MOULIN, S., COOK, P.W. and STERN, A., 2003, Crop yield assessment

from remote sensing. Photogrammetric Engineering and Remote Sensing, 69, pp.

665–674.

ENGEL, T., HOOGENBOOM, G., JONES, J.W. and WILKENS, P.W., 1997, AEGIS/WIN: A

computer program for the application of crop simulation models across geographical

areas. Agronomy Journal, 89, pp. 919–928.

FANG, H. and LIANG, S., 2005, A hybrid inversion method for mapping leaf area index from

MODIS data: Experiments and application to broadleaf and needleleaf canopies.

Remote Sensing of Environment, 94, pp. 405–424.

FISCHER, A., KERGOAT, L. and DEDIEU, G., 1997, Coupling satellite data with vegetation

functional models: review of different approaches and perspectives suggested by the

assimilation strategy. Remote Sensing Reviews, 15, pp. 283–303.
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1. Introduction

[2] Improving weather and seasonal climate prediction by
dynamical models requires multidisciplinary advances in
providing reliable initial states for the atmosphere, ocean
and land components of the Earth system. For two decades,
advances in providing atmospheric initial states via four-
dimensional data assimilation (4DDA) have paved the way
for emerging 4DDA systems for the ocean and land. The
backbone of any 4DDA system is the geophysical model
whose execution provides temporally and spatially contin-
uous background states, into which generally discontinuous
observations are assimilated from various observing plat-
forms (in situ, satellite, radar). For example, present space-
based microwave estimates of soil moisture sense only the
top 1–5 cm of soil, far short of the root-zone depths needed
for land-state initialization.
[3] Thus a land data assimilation system (LDAS) is

needed to blend sparse land observations with the back-
ground fields of a land surface model (LSM). The accuracy
of the LSM background field (and companion surface and
subsurface water/energy fluxes) is crucial to LDAS viabil-
ity. The chief objective of the North American Land Data
Assimilation System (NLDAS) study here is to generate and
validate, over a 3-year period over the continental U.S.
(CONUS) domain, the background land states and surface
fluxes of four LSMs: Noah, Mosaic, VIC, and Sacramento
(denoted SAC) (hereinafter, all acronyms are defined in the
Notation). Future NLDAS papers will address actual data
assimilation experiments using such methods as adjoint
models and Kalman filtering. As one step to assimilation
of satellite land surface skin temperature (LST), this paper
assesses geostationary-satellite-derived LST and uses it to
validate NLDAS LST.
[4] It is instructive to consider the infancy of real-time

large-scale land 4DDA. Global atmospheric 4DDA has
been a mainstay of operational NWP centers since the
late 1970s. Real-time ocean 4DDA on large-scale ocean
basins followed in the middle to late 1980s [Ji et al.,
1994] on the heels of the TOGA program. Yet until the
mid-1990s, initiatives in real-time continental or global
land 4DDA were virtually nonexistent. The first viable
examples of real-time land 4DDA on continental or
global scales were the coupled land-atmosphere 4DDA
systems at major NWP centers such as NCEP [Kalnay et
al., 1996] and the European Centre for Medium-Range
Weather Forecasts [Gibson et al., 1997]. Such coupled
land-atmosphere 4DDA systems (including global reanal-
ysis) often yield significant errors and drift in soil
moisture/temperature and surface energy/water fluxes,
owing to substantial biases in the surface forcing from
the parent atmospheric models. To constrain such errors
and drift, coupled land-atmosphere 4DDA systems tem-
porally nudge the soil moisture by such means as (1) a
climatology of soil moisture [Kalnay et al., 1996], (2)
differences between the observed and 4DDA background
fields of precipitation [Kanamitsu et al., 2002], or (3)
screen-level air temperature and dew point [Douville et
al., 2000]. Such nudging methods, however, do not
reduce the main error source, namely, large bias in the
land surface forcing (especially precipitation and solar
insolation) of the parent atmospheric model.

[5] Substantial biases in atmospheric model surface
forcing also plague ocean 4DDA. To improve these
surface fluxes, ‘‘flux corrections’’ are applied in ocean
4DDA [Ji et al., 1994]. NLDAS here also applies surface
flux corrections. As a pathfinder for this, the GEWEX
Global Soil Wetness Project (GSWP) [Dirmeyer et al.,
1999] retrospectively demonstrated the viability of using
nonmodel, observation-based precipitation analyses and
nonmodel, satellite-based surface insolation fields (with
all other surface forcing from atmospheric 4DDA) to drive
uncoupled, land surface models over a global domain.
However, the monthly satellite retrievals of precipitation
and insolation used in GSWP are not conducive to the
daily/weekly updates of land states needed to initialize
operational prediction models. Hence the NLDAS project
set and achieved the following key objectives: (1) develop
and execute the first real-time operational prototype of a
continental-scale uncoupled land 4DDA backbone (contin-
uously cycled land-model states) executed daily at NCEP
using real-time streams of hourly to daily data and (2) a
companion retrospective mode for research. The NLDAS
generates hourly surface forcing (using model-indepen-
dent, observation-based precipitation and insolation fields)
that drives four LSMs running in parallel to produce
hourly output on a 1/8� grid over a CONUS domain.
[6] The retrospective NLDAS spans October 1996 to

September 1999 and uses GCIP-supported archives of
NOAA operational data streams. NLDAS thus provides a
land 4DDA counterpart from the GEWEX community to
complement the ocean 4DDA thrusts that followed TOGA.
Moreover, a core objective of GCIP is the infusion of GCIP
research into NOAA operational practice. The NLDAS
partnership of operational and research investigators in both
meteorology and hydrology is a flagship of GCIP success in
such infusion. This paper gives an overview of the meth-
odology and results of the initial development and evalua-
tion of NLDAS, providing an overview of the nine papers
by NLDAS partners given in Table 1 (hereinafter, each
paper is cited with the label given in Table 1, denoting the
last initials of first two authors and N for NLDAS).
[7] These papers and the sections that follow illustrate

that a pillar feature of NLDAS is the integrated application
of a multitude of GCIP-sponsored products, as listed in
Table 2. Section 2 describes the NLDAS configuration,
surface forcing, land models, and streamflow routing.
Sections 3 and 4 evaluate the NLDAS surface water budget
and surface energy budget, respectively. Section 5 presents
conclusions and future plans.

2. NLDAS Configuration

2.1. General Configuration

[8] Pilot studies of ocean 4DDA began on relatively data-
rich subglobal domains [Ji et al., 1994], i.e., the tropical
Pacific Ocean, which included the TOGA observing net-
work. For the NLDAS domain, we also chose a relatively
data-rich subglobal domain, thereby heeding a lesson from
GSWP, namely that uncoupled land surface simulation is
notably less viable over regions lacking moderately dense
precipitation gages to anchor the precipitation forcing [Oki
et al., 1999]. Outside such regions, global precipitation
analyses are dominated by satellite-based precipitation,
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which may be only marginally better (or even worse) then
model-based precipitation, especially in the extratropics and
in winter. Hence we limit the NLDAS domain (shown in
Figure 1) essentially to the CONUS, thereby benefiting
from relatively dense precipitation gages and the CONUS-
oriented GCIP-supported products in Table 2.
[9] On this domain, NLDAS applies the following in

common across the four LSMs: a 1/8� regular latitude/
longitude grid, land mask and terrain elevation, hourly input
surface forcing, soil texture and vegetation classes, stream-
flow network and routing model, and content, frequency
(hourly) and format (GRIB) of model input and output. The
elevation was derived by averaging, in each 1/8� grid cell, the
30 arc-second (�1 km) digital elevation of the GTOPO30
database of Verdin and Greenlee [1996]. Of the four LSMs,
VIC alone also employs subgrid elevation tiles (see
section 3.4). The vegetation classification was derived from
the global, 1-km, AVHRR-based, 13-class vegetation data-
base of UMD [Hansen et al., 2000]. For each 1/8� cell, the
vegetation field includes the percent of each class based on its
1-km frequency. Mosaic and VIC use subgrid vegetation
tiles, whose weights correspond to the percent of the classes.
Noah uses the most predominant vegetation class. SAC omits
explicit treatment of vegetation.
[10] The soil texture database over CONUS was derived

from the 1-km STATSGO database of Miller and White
[1998], which carries 16 texture classes by layer over
11 layers to 2-m depth. For each 1/8� grid cell, the NLDAS
soil database carries the percent of each class by layer,
based on the original 1-km frequency. Noah, Mosaic, and
VIC assume a vertically uniform soil class based on the
predominant soil texture of the top 5-cm layer. The excep-
tion is Mosaic’s soil porosity, derived for each Mosaic soil
layer based on weighted averages from the 11-layer soil
textures. Though SAC uses conceptual soil-water storage
reservoirs rather than explicit soil parameters of an explicit
soil column, many a priori parameters for the NLDAS SAC
were derived using all 11-layer soil types. Outside the
CONUS, the NLDAS soil database applies the same 16 tex-
ture classes, but carries only a single, vertically uniform
class at each cell, derived from the 5-min ARS FAO global
data of Reynolds et al. [2000]. Spatial maps depicting the
NLDAS vegetation and soils databases, as well as tables
defining NLDAS vegetation and soil classes, may be
viewed under the NLDAS tab at http://ldas.gsfc.nasa.gov,
maintained by NASA.
[11] Although NLDAS control runs employ common

fields of vegetation and soil class, the NLDAS partners
chose NOT to impose additional commonality in the veg-
etation and soil properties, such as (1) parameter values,

(2) configuration of a vegetation class (root depth and
density) or the soil column (number and thickness of layers)
and (3) seasonal cycle of vegetation. The desire was to
avoid negating the legacy of calibration or tuning invested
over the past decade in the LSMs. No extra calibration of
LSMs was carried out for the control runs. (Additionally,
the NLDAS project conducted various sensitivity tests,
discussed throughout this overview.)

Table 1. List and Topics of the Nine Companion Papers by NLDAS Partners in the GCIP-3 Special Issue

Label Subject

Cosgrove et al. [2003a] CL-N generation of land surface forcing
Luo et al. [2003] LR-N validation of land surface forcing
Pinker et al. [2003] PT-N production/validation of GOES-based solar insolation
Lohmann et al. [2004] LM-N production/validation of streamflow and water budget
Robock et al. [2003] RL-N validation of energy budget, soil moisture/temperature
Schaake et al. [2004] SD-N evaluation of soil moisture storage and range
Sheffield et al. [2003] SP-N validation of simulated snow cover
Pan et al. [2003] PS-N validation of simulated snowpack content
Cosgrove et al. [2003b] CM-N evaluation and testing of spin-up

Table 2. GCIP-Supported Products Applied by the NLDAS

Project

Product

A: For Producing NLDAS Surface Forcing
1 daily 1/8� gage-only CONUS precipitation analysis by NCEP
2 hourly 4-km radar-dominated (WSR-88D) CONUS

precipitation analysis by NCEP and OHD
3 hourly 1/2� GOES-based CONUS surface insolation

by NESDIS and UMD
4 3-hourly 40-km Eta-based 4DDA analyses of

near-surface meteorology by NCEP

B: For Validating NLDAS Surface Forcing
5 OU Mesonet surface meteorology observations
6 SURFRAD network of surface solar

insolation observations (receives
support from GCIP sister program
in NOAA/OGP)

C: For Validating NLDAS Land Model Output (States/Fluxes)
7 Oklahoma/Kansas ARM/CART surface flux stations (DOE)
8 Oklahoma Mesonet soil moisture/temperature

observations (OU Climate Survey)
9 CONUS-wide GOES-based satellite LST (NESDIS and UMD)
10 Northern Hemisphere 23-km IMS

daily snow cover analysis by NESDIS
11 Illinois Water Survey network of 18 soil

moisture measuring stations
12 western U.S. network of SNOTEL

observations (not GCIP supported)
13 USGS streamflow observations (not GCIP supported)

D: For NLDAS Land Surface Characteristics
14 1-km CONUS soil texture database by

Pennsylvania State University
15 NESDIS 0.144� global monthly NDVI-based

vegetation greenness by NESDIS

E: Improved Land/Hydrology Models (LSMs)
16 Noah LSM improvements (including in coupled EDAS)

by NCEP, OHD and collaborators
17 VIC LSM improvements (Princeton University,

University of Washington and collaborators)
18 SAC LSM improvements by OHD, NCEP and collaborators
19 Mosaic LSM improvements by NASA GSFC and collaborators
20 streamflow connectivity network and routing model by NCEP,

University of Washington, Princeton University and OHD

D07S90 MITCHELL ET AL.: NORTH AMERICAN LAND DATA ASSIMILATION SYSTEM

3 of 32

D07S90



[12] For example, NLDAS does not impose a common
treatment for the seasonality of vegetation, as the latter is
central to a given model’s canopy resistance formulation. In
broad terms, Noah, VIC, and Mosaic runs here all use a
satellite-derived, AVHRR-based, monthly seasonality of
vegetation and all interpolate their respective monthly
values to daily. Yet significant nuances exist between LSMs
regarding whether the monthly values are for the given year
(Mosaic) or from a multiyear climatology (Noah and VIC)
and whether the seasonality is carried in LAI (VIC), or in
vegetation fraction (Noah), or both (Mosaic). Noah uses the
global, 0.144� (�15-km), monthly 5-year climatology of the
green vegetation fraction (GVF) derived by Gutman and
Ignatov [1998] of NESDIS from AVHRR-based NDVI.
Figure 1a depicts this GVF climatology for the NLDAS
domain for July, as a reference for later sections. For
Mosaic, NASA obtained monthly 16-km AVHRR-based
green LAI fields from Boston University for each month
of each year (not climatology). NASA then first derived
dead LAI (estimated from the difference in green LAI
between consecutive months, along with vegetation-class-
dependent values of minimum dead LAI) and then derived
monthly total LAI (sum of green and dead LAI), from
which GVF was computed (as green LAI divided by total
LAI). VIC applies a global, AVHRR-based, multiyear
monthly climatology of total LAI, used in conjunction with
a vegetation-class-dependent look-up table of fixed annual-
maximum vegetation fraction (dead and green).
[13] The LSMs of NLDAS provide common hourly

output of about 50 required fields, including all terms
of the surface energy and water budgets, all soil and
snowpack moisture and temperature states, and ancillary
fields. For a given LSM, some outputs are omitted if its
physics omit the relevant process. NLDAS input/output
fields are viewable at the NLDAS tab of http://ldas.gsfc.
nasa.gov. For utility in NCEP operations, the input-output
format of NLDAS is GRIB: a WMO standard at NWP
centers. The NLDAS may be run in a ‘‘reduced-domain’’
mode by reducing the land mask, say to a single or
handful of points (e.g., near flux stations), for purposes of
lower output volume, faster execution, and locally fo-
cused sensitivity studies.

[14] The NLDAS requires initial values of all LSM state
variables for the NLDAS start time of 00 UTC on 1 October
1996. Initial snowpack was set to zero (reasonable for
1 October over the NLDAS domain at 1/8� resolution), as
was canopy interception storage. Initial states of soil mois-
ture and temperature were derived from the soil states of the
NCEP/DOE Global Reanalysis 2 [Kanamitsu et al., 2002]
valid at the start time. The soil moisture was provided to
each LSM as a vertically uniform percent of saturation,
which each LSM converted to its own absolute moisture
state compatible with its parameters. The spin-up from this
cold start was examined in all four LSMs by CM-N, who
concluded that the practical drift in NLDAS land stores
ceased within about one year. CM-N also conducted spin-up
experiments in Mosaic, in which spin-up from the above
initial states was found to be shorter than using saturated or
dry initial states.

2.2. Surface Forcing

[15] The studies by Cosgrove et al. [2003a] (CL-N),
Pinker et al. [2003] (PT-N), and Luo et al. [2003] (LR-N)
summarized below describe the data sources, generation and
validation of NLDAS forcing, produced in real-time and
retrospectively on the NLDAS grid. Of the 16 fields in each
forcing file (Table 3), nine fields required by Noah, Mosaic,
and VIC are primary: U/V 10-m wind components, 2-m air
temperature and specific humidity, surface pressure, down-
ward longwave and shortwave radiation, and convective
and total precipitation. SAC requires only total precipitation
(P), air temperature and potential evaporation (PE). In
NLDAS, SAC uses the PE computed in the Noah LSM.
Mosaic alone requires convective precipitation.
[16] The chief source of NLDAS forcing is NCEP’s Eta-

model-based Data Assimilation System (EDAS) [Rogers et
al., 1995], a continuously cycled North American 4DDA
system. It utilizes 3-hourly analysis-forecast cycles to derive
atmospheric states by assimilating many types of observa-
tions, including station observations of surface pressure and
screen-level atmospheric temperature, humidity and U and
V wind components. EDAS 3-hourly fields of the latter five
variables plus surface downward shortwave and longwave
radiation and total and convective precipitation are provided

Figure 1. Depiction of NLDAS domain, showing (a) July mean green vegetation fraction from Gutman
and Ignatov [1998] and (b) mean annual NLDAS precipitation (mm) for 1 October 1997 to 30 September
1999.
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on a 40-km grid to NLDAS forcing software, which
interpolates the fields spatially to the NLDAS grid and
temporally to one hour. Last, to account for NLDAS versus
EDAS surface-elevation differences, a terrain-height adjust-
ment is applied to the air temperature and surface pressure
using a standard lapse rate (6.5 K km�1), then to specific
humidity (keeping original relative humidity) and down-
ward longwave radiation (for new air temperature, specific
humidity). CL-N details the spatial/temporal interpolations
and terrain-height adjustment.
[17] EDAS precipitation and shortwave radiation serve

only as backup (Table 3). Though Roads et al. [2003] found
EDAS monthly precipitation to have rather smaller errors
than other 4DDA systems, EDAS precipitation errors can be
significant for daily events, as in summer convection
(Figure 4 of CL-N). Thus NLDAS precipitation forcing
over CONUS is anchored instead to NCEP’s 1/4� gage-only
daily precipitation analyses of Higgins et al. [2000] (avail-
able at http://www.cpc.ncep.noaa.gov/research_papers/
ncep_cpc_atlas/7/index.html), which utilize about 6500
(real-time) or 13000 (retrospectively) gage observations of
daily precipitation. In NLDAS, this daily analysis is inter-
polated to 1/8�, then temporally disaggregated to hourly
(details given by CL-N) by applying hourly weights derived
from hourly, 4-km, radar-based (WSR-88D) precipitation
fields. The latter radar-based fields (saved as auxiliary field
in Table 3) are used only to derive disaggregation weights
and do not change the daily total precipitation. Last,
convective precipitation is estimated by multiplying
NLDAS total precipitation by the ratio of EDAS convective
to EDAS total precipitation. Figure 1b shows the annual
mean NLDAS precipitation for the two years of the water
budget analysis done later in section 3.1. CL-N shows
examples of hourly and daily NLDAS precipitation fields,
as well as EDAS and radar-based counterparts.

[18] Downward shortwave radiation (solar insolation) in
the EDAS and Eta model typically show high bias of 10–
20% [Betts et al., 1997], even higher in cloudy winter
conditions. At two SURFRAD sites, Figure 7 of CL-N
illustrates the high bias in EDAS insolation and the far less
bias in GOES-based solar insolation, which provides the
primary insolation forcing for NLDAS. PT-N describes the
retrieval of this 1/2� surface insolation from GOES since
January 1996, via collaboration of UMD, NESDIS/ORA
and NCEP, and its hourly to monthly validation against fifty
CONUS stations over a 1–2 year period. GOES insolation
is not retrieved for zenith angles below 75� and so is
supplemented with EDAS insolation near the day/night
terminator (Figure 5 of CL-N). In validations by PT-N
and LR-N, GOES insolation verifies well against flux
stations, with some deterioration toward high bias at low
sun angles and over snow cover (when cloud detection is
difficult). CL-N shows that even in winter, the high bias of
the GOES insolation is about half that of EDAS. Last from
the GOES-based product suite, downward diffuse radiation,
PAR and LST fields are included in the NLDAS forcing
files (Table 3).
[19] NCEP originally selected the viable real-time NOAA

data sources (Table 2, part A) on which to base NLDAS
surface forcing fields and then developed the algorithms for
their real-time production, which NCEP has sustained since
April 1999. GCIP has supported the archiving back to 1996
of all NOAA data streams needed for this forcing. NASA
GSFC acquired these archives and adapted NCEP software
to produce retrospective forcing for October 1996 through
2002, the first 3 years of which force the NLDAS execu-
tions evaluated here and in the NLDAS papers. The
retrospective forcing was created for purposes of (1) exe-
cuting NLDAS over longer periods, especially those over-
lapping special validating observations (Table 2), such as

Table 3. Content and Data Sources of the Fields in the Hourly Surface Forcing Files of NLDASa

Content EDAS GOES Gage Radar Real-Time Retrospective

Primary forcing
2-m temperature, K X X X
2-m specific humidity, kg/kg X X X
10-m U-wind component, m/s X X X
10-m V-wind component, m/s X X X
Surface pressure, mb X X X
Downward longwave radiation, W/m2 X X X
Downward shortwave radiation, W/m2 X X X
Convective precipitation, kg/m2 X X X
Total precipitation, kg/m2 Xb Xb X X

Backup forcing
Downward shortwave radiation, W/m2 X X X
Total precipitation. kg/m2 X X X

Auxiliary forcing
WSR-88D precipitation, kg/m2 Xc Xc

PAR, W/m2 X X X
Downward diffuse radiation,d W/m2 X X
CAPE X X X

For validation (plus future assimilation)
Land surface temperature (LST),e K X X X
aTo date, retrospective forcing is available from 1 October 1996 through 2002. Real-time forcing is available from 16 April 1999 to present.
bDaily total is gage-only. Radar estimate is used only to temporally partition gage-based daily into hourly.
cWSR-88D precipitation estimate is radar dominated, but some gage data are used.
dDiffuse radiation is present in forcing files since 15 November 1999.
eLST is present in forcing files since 1 May 1997 (LST derivation and application in section 4.3).
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the soil moisture used in RL-N, (2) leveraging the near
doubling of gage observations (about 13000 versus 6500) of
daily precipitation applied in the retrospective versus real-
time CONUS precipitation analyses of Higgins et al.
[2000], and (3) applying added quality control checks to
and (when such checks warrant) reprocessing of the forcing
that is not feasible in real time.
[20] The LR-N study assesses NLDAS retrospective

forcing of January 1998 to September 1999 against hourly
ARM/CART and OU Mesonet stations (yielding indepen-
dent observations, not assimilated in EDAS). Except for
precipitation, differences between NLDAS forcing and
these observations were small at hourly to monthly time-
scales. For precipitation the agreement was marginal at
hourly periods, but better at daily and rather good at 5-day
and monthly periods. In net radiation, a small low bias in
downward longwave partially offset the modest high bias
in solar insolation. To investigate how these differences
impacted NLDAS simulations, LR-N compared control
simulations using standard NLDAS forcing with test
simulations using site-specific, station-observed forcing.
Simulation differences in soil moisture and temperature
for each LSM were small: much smaller than differences
between the LSMs and between LSMs and observations.
Thus NLDAS provides quality forcing for land modeling,
at least over the nonwestern CONUS. In section 3.4, the
study by PS-N uncovers a 50% low bias in NLDAS
precipitation at mountain SNOTEL sites at high elevations
in western CONUS. In the final section, we discuss future
remedies that will apply an adjustment to PRISM [Daly et
al., 1994].

2.3. Land Models

[21] Table 4 compares the attributes of the LSMs in
NLDAS. Of the many LSMs, these four give a good

cross-section of different early legacies, including small
scale versus large scale, coupled versus uncoupled, distrib-
uted versus lumped, with and without explicit vegetation,
tiled and nontiled, and significant versus minimal calibra-
tion. Mosaic and Noah emerged from the surface-vegeta-
tion-atmosphere transfer (SVAT) setting of coupled
atmospheric modeling with little calibration. VIC and
SAC grew from the hydrology community as uncoupled
hydrology models with considerable calibration. Mosaic
was developed for use in the NASA global climate model
[Koster and Suarez, 1994, 1996; Koster et al., 2000]. Noah
was developed for use in the NCEP mesoscale Eta model
[F. Chen et al., 1997; Betts et al., 1997; Ek et al., 2003].
VIC was developed as a macroscale semi-distributed model
[Liang et al., 1994; Wood et al., 1997]. SAC was developed
as a lumped conceptual hydrology model [Burnash et al.,
1973], calibrated for small catchments and used operation-
ally in NWS RFCs.
[22] Subsequent to their early heritage, Mosaic, Noah,

and VIC have been widely executed coupled and uncoupled
from small to large scales. Now all three models can be
considered as both SVATs and semi-distributed hydrological
models. All three have undergone testing on local and
regional scales in the PILPS project [T. H. Chen et al.,
1997; Wood et al., 1998; Schlosser et al., 2000; Bowling et
al., 2003] and on the global scale in GSWP [Dirmeyer et al.,
1999]. We use ‘‘semi’’-distributed to mean applied on a
gridded basis with gridded state variables and gridded
parameters, but no horizontal interaction between model
grid cells, except for routing of gridded runoff into stream-
flow. Seeking SAC suitability over a broad range of scales,
OHD of NWS recently developed a semi-distributed (non-
lumped) version of SAC [Koren et al., 2000] with a priori
uncalibrated parameters. This SAC version is intended for
testing from small basins to entire continents. NLDAS

Table 4. Primary Attributes of the Four NLDAS Land Surface Models (LSMs)

Mosaic Noah VIC SAC

Full domain runs yes yes yes yes
Limited domain runs yes yes yes yes
Input surface forcing seven forcing fieldsa seven forcing fieldsa seven forcing fieldsa precipitation, Noah PE,

2-m air temperature
Energy balance yes yes yes n/a
Water balance yes yes yes yes
Model time step 15 min 15 min 1 hour 1 hour
Model soil layers 3 4 3 2 storages
Model soil layer depths 10, 30, 160 cm 10, 30, 60, 100 cm 10 cm, variable variable
Tiling: Vegetation yes no yes no
Tiling: Elevation no no yes no
Snow model layers 1 1 2 1
Frozen soil: thermal no yes disabled n/a
Frozen soil: hydraulics partial yes disabled n/a
Soil thermodynamics force-restore heat conduction equation heat conduction

equation modified
no

Soil temperature profile no yes yes no
Soil water: drainage yes yes yes yes
Soil water: vertical diffusion yes yes no no
Snow-free albedo vary wrt LAI,

GVF, biome
monthly input

background field
vary wrt LAI and biome n/a

Diurnal albedo yes no no n/a
Explicit vegetation yes yes yes no
Canopy resistance Sellers et al. [1986] Jarvis [1976] Jarvis [1976] n/a
Rooting depth 0.4 m variable (1 or 2 m) variable (1.35–3 m) n/a
Root density profile constant constant exponential n/a
Canopy capacity 0–1.6 mm 0.5 mm 0.1–1.0 mm n/a

aSeven forcing fields: precipitation, downward solar and longwave radiation, 10-m wind speed, surface pressure, 2-m air temperature, 2-m air humidity.
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provides the first tests of the semi-distributed SAC at
continental scales. These are pilot tests, as SAC lacks the
legacy of continental testing of the other LSMs.
[23] The three SVAT models simulate LST, the surface

energy and water balance, snowpack, and soil moisture in
several soil layers, though the number and thickness of the
layers differ. Only Noah simulates soil freeze-thaw and its
impact on soil heating or cooling and transpiration, after
Koren et al. [1999]. The snowpack physics in the LSMs are
described in section 3.4. In all three SVATs, the surface
infiltration schemes account for subgrid variability in soil
moisture and precipitation, but the treatments differ, as do the
drainage approaches. All three SVATs include direct evapo-
ration from soil, transpiration from vegetation, evaporation of
interception, and snow sublimation; and all explicitly model
canopy resistance, though their formulations (see Table 4)
and parameters differ, as does their vegetation phenology
(section 2.1) and root profiles. The aerodynamic conductance
in the SVATS also differs, a focus of section 4.2.
[24] SAC is a conceptual rainfall-runoff, storage-type

model [Burnash et al., 1973]. It treats only the surface
water budget, omitting the surface energy budget, and uses
the snowpack model of Anderson [1973], called SNOW-17.
Hereafter SAC means the SAC-SNOW-17 pair. SAC out-
puts evaporation E and runoff, with E being a fraction of
input PE. SAC uses a ‘‘two-reservoir’’ soil water storage
structure (a shallow upper reservoir and a deeper lower
reservoir) and utilizes 28 parameters, 16 primary and 12 in
SNOW-17. At the RFCs, the parameters are calibrated by
catchment. Calibration was omitted in NLDAS SAC runs.
Rather, the primary parameters are specified a priori, after
Koren et al. [2000], as a function of the STATSGO-based
soils of section 2.1 and other data sets. SNOW-17 param-
eters are prescribed uniformly over the domain.
[25] Mosaic was developed by Koster and Suarez

[1994, 1996] to account for subgrid vegetation variability
with a tile approach. Each vegetation tile carries its own
energy and water balance and soil moisture and temper-
ature. Each tile has three soil layers and the first two are
the root zone. In NLDAS, Mosaic is configured to
support a maximum of 10 tiles per grid cell with a 5%
cutoff that ignores vegetation classes covering less than
5% of the cell. Additionally in NLDAS, all tiles of
Mosaic in a grid cell have the predominant soil type of
section 2.1 and three soil layers with fixed thickness
values of 10, 30, and 160 cm (hence constant rooting
depth of 40 cm and constant total column depth of
200 cm). This Mosaic configuration in NLDAS departs
from the standard Mosaic configuration, for the purpose
of easier comparison in NLDAS [Robock et al., 2003]
with the soil moisture observation levels of the OU
Mesonet and the soil layers of the VIC and Noah models
(e.g., their 10 cm top layer). Although never executed
before with fixed layer thickness, Mosaic performed well
in the PILPS experiments when configured in the stan-
dard way [T. H. Chen et al., 1997; Lohmann et al., 1998;
Wood et al., 1998]. The standard Mosaic configuration
varies the soil type and layer thickness tile by tile by
vegetation type and yields top-down layer thickness
ranges of 1–2 cm, 1–150 cm, and 30–200 cm, total
column depth ranges of 32–350 cm, and root depths of
2–49 cm for nonforest and 150 cm for forests.

[26] The Noah LSM [Chen et al., 1996; Koren et al.,
1999; Ek et al., 2003] is targeted for moderate complexity
and computational efficiency for operational NWP and
climate models. Thus it omits tiling and uses a single-
layer snowpack, plus a linearized (noniterative) solution
to the surface energy balance. Originating from the LSM
of Pan and Mahrt [1987], Noah benefits from improve-
ments arising from year-round assessment in the NCEP
Eta model over North America by NCEP and collabo-
rators [Ek et al., 2003]. The Noah version here in
NLDAS is that implemented in the NCEP Eta/EDAS
suite on 19 June 2002 and includes four layers of fixed
thickness (Table 4), of which the first three (nonforest) or
four (forest) span the root zone. Virtually this same
version of Noah was executed in NCEP’s 24-year Re-
gional Reanalysis. Berbery et al. [2003] examines the
large-scale hydrology of the coupled Eta/Noah model
over the Mississippi Basin for the period June 1995 to
May 2002.
[27] The variable infiltration capacity (VIC) model was

developed at the University of Washington and Princeton
University [Liang et al., 1994, 1996a, 1996b; Cherkauer
and Lettenmaier, 1999]. In NLDAS, VIC executes with
one-hour time step and uses three soil layers, with 10 cm
top layer and varying depth for bottom two layers, partly
determined from calibration. The root zone can span all
three layers, depending on vegetation class. Like Mosaic,
the VIC model carries subgrid vegetation tiles. Addition-
ally, VIC is the only LSM of the four to apply subgrid
elevation bands or tiles (see section 3.4). VIC has been
tested over large river basins, such as the Columbia
[Nijssen et al., 1997] and Arkansas-Red [Abdulla et al.,
1996; Wood et al., 1997], and over continental scales
[Maurer et al., 2002; Roads et al., 2003] and global
scales [Nijssen et al., 2001]. Traditional executions of
VIC [e.g., Maurer et al., 2002] apply a uniform disag-
gregation of total daily precipitation to VIC time steps
(typically 3-hourly). In NLDAS, VIC is executed with
one-hour time steps and nonuniform, radar-based disag-
gregation of daily precipitation (see section 2.2). Impli-
cations of this departure from standard VIC are presented
in section 3.2.

2.4. Streamflow Simulation and Assessment

[28] Lohmann et al. [2004] (LM-N) present the formu-
lation of the streamflow modeling in NLDAS and the
assessment of the control-run simulations of daily stream-
flow by the four LSMs. The latter study assesses model
streamflow for 9 major and 1145 small to medium-sized
CONUS basins (ranging from 23 km2 to 10,000 km2)
using measured daily streamflow from the USGS. LM-N
describes the criteria for choosing the 1145 basins. One
criterion is the absence of obvious regulation signatures
in the observed streamflow record. This yields few basins
for assessment in the arid southwestern CONUS (see
Figure 4).
[29] The streamflow routing requires both a river network

(flow-direction mask) on the NLDAS grid and a routing
model. LM-N derives and displays the river network. The
chosen routing model is linear and identical to that in
PILPS 2c and 2e [Lohmann et al., 1998; Bowling et al.,
2003]. It calculates the timing of the runoff reaching the
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grid-cell outlet, as well as the transport of water through the
river network. It operates in two modes: (1) distributed,
using a-priori grid-cell specific routing parameters common
to all four models and (2) ‘‘lumped’’, in which constant
routing parameters were separately calibrated for each of the
1145 basins for each model to minimize the least squares
difference between modeled and measured daily stream-
flow. The lumped mode thus yielded a separate calibrated
unit hydrograph for each basin for each model.
[30] LM-N shows the streamflow time series of the

Nehalem River in Oregon and associates the derived
lumped routing function for each LSM with the timing of
the runoff produced by each LSM (Figures 10 and 11 of
LM-N). In turn, a major cool season impact on the modeled
runoff is the timing of snowmelt in each LSM. LM-N
quantifies the delay between modeled and measured stream-
flow by means of the maximum of the temporal cross-
correlation between measured and modeled streamflow. In
general for all the LSMs, streamflow performance was
degraded with increasing snowfall amounts (Figure 17 of
LM-N). The worst case of peak streamflow timing occurs in
the snowpack season of the mountain ranges of the north-
west CONUS. There the LSMs vary by up to four months in
the timing of peak streamflow (Figure 18 of LM-N). VIC
showed the most realistic timing in such regions. Mosaic
and SAC melted on the order of weeks too early, and Noah
on the order of months too early. The SM-N and PS-N
studies featured in section 3.4 further examine and elucidate
the snowpack and snow cover simulations and forcing.
[31] In contrast, throughout the eastern half of CONUS,

streamflow simulation skill as measured by the Nash-Sut-
cliffe efficiency (Figure 16 of LM-N) showed that Noah had
the highest scores in general; VIC had the highest scores in
the northeast, and Mosaic and SAC in the southeast Atlantic
coastal states. The higher skill for Noah streamflow reflected
Noah having the smallest bias in evaporation and runoff
when assessed against the observed annual water budget
(next in section 3.1). Finally, the validation of simulated
monthly discharge for the 9 large river basins showed
behavior and bias in each LSM consistent with that expected
from spatial integration of the behavior and effects estab-
lished in the assessment of the smaller basins.

3. Assessment of the NLDAS Water Budget

[32] Sections 3 and 4 assess the water and energy budgets
of the LSMs, respectively, in the three-year NLDAS simula-
tion with retrospective forcing for 1 October 1996 to
30 September 1999. The assessment focuses on the last two
years, termed the ‘‘control’’ simulation, since the first year is
a necessary and (mostly) sufficient spin-up year, as reported
by Cosgrove et al. [2003b] (CM-N). Additionally, compli-
mentary sensitivity tests of the LSMs in NLDAS are
assessed. Altogether, the hallmark of the assessment is its
breadth, addressing continental to local scales, all four
seasons and multiple types of validating observations
(Table 2, part C).

3.1. Annual Water Budget: Partitioning Between
Evaporation and Runoff

[33] Over one or more annual cycles, the surface water
budget is well approximated by mean annual precipitation

being equal to the sum of mean annual evaporation and
mean annual runoff, since mean annual storage change
(in soil moisture, snowpack, etc.) is negligible by com-
parison. Thus analysis of observed mean annual precip-
itation minus observed mean annual runoff (from
observed streamflow) yields crucial observation-based
estimates of mean annual evaporation, as was carried
out for NLDAS by Lohmann et al. [2004] (LM-N) and
summarized here.
[34] Figure 1b depicts the observed mean annual precip-

itation forcing common to each LSM in the NLDAS control
run. Figure 2 depicts the simulated mean annual evaporation
of each control-run LSM. (See Figure 6 of LM-N for
companion map of simulated mean annual runoff.) Last,
Figure 3a shows the partitioning of mean annual NLDAS
precipitation into mean annual evaporation and runoff by
each LSM for the four CONUS quadrants of SW, NW, NE,
and SE depicted in the figure inset. In Figure 3a, each
diagonal denotes the mean-annual area-averaged precipita-
tion of a given quadrant (given by the diagonal’s x or y axis
intercept). On each diagonal, each LSM’s symbol projected
onto the x axis (y axis) yields that LSM’s quadrant-average
mean annual runoff (evaporation). Since each LSM con-
serves water over the annual cycle, the tiny displacement in
Figure 3a of a given LSM symbol from the diagonal
represents the negligible change in that LSM’s total water
storage over the two years.
[35] The disparity in evaporation among LSMs in

Figures 2 and 3a is striking, especially over the well-
vegetated NE and SE (Figure 1a). Disparity is far less over
the arid SW and NW. Over the NE and SE, Noah and VIC
have notably lower evaporation and hence higher runoff
than Mosaic and SAC, which give high evaporation and low
runoff. Mosaic similarity to SAC in Figures 2 and 3 is
surprising, as Mosaic (like Noah and VIC) includes explicit
treatment of vegetation cover and canopy conductance,
while SAC does not. Large disparity among LSMs in
evaporation versus runoff partitioning was noted in PILPS
and GSWP [Wood et al., 1998; Dirmeyer et al., 1999].
[36] The partitioning can be validated over subregions

of the quadrants for which basin-observed streamflow is
available. Figure 3b, which uses observed streamflow
from the 1145 assessment basins of section 2.4, is the
counterpart to Figure 3a obtained by area averaging the
NLDAS observed precipitation and LSM simulated evap-
oration and runoff only over the quadrant subarea
spanned by these basins (Figure 3b inset). For each basin,
observed streamflow (m3s�1) is converted to mean-annual
total discharge (m3), in turn converted (using the basin
area) to area-average mean-annual runoff (mm) for the
basin. The plus symbol in Figure 3b depicts the area-
mean of this observed runoff over the same quadrant
subarea. Projecting the plus symbol onto the y axis yields
the budget-based estimate of the area-average mean
annual evaporation.
[37] The reliability of the observation-based evaporation

estimate depends on the reliability of both the observed
streamflow (high reliability) and the NLDAS precipitation
forcing. Over NE and SE, which manifest relatively flat
terrain and good density of precipitation gages, we trust the
precipitation analysis and the estimates of evaporation there.
For NE and SE, one sees in Figure 3b that evaporation and
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Figure 2. Mean annual evaporation (mm/year) in NLDAS from (a) Noah, (b) VIC, (c) Mosaic, and
(d) SAC for 1 October 1997 to 30 September 1999.

Figure 3. (a) Partitioning of mean annual area-mean precipitation (diagonal, mm/year) into mean
annual area-mean runoff (x axis, mm/year) and evaporation (y axis, mm/year) for the CONUS quadrants
(inset) of NW (black), NE (red), SW (blue), and SE (green) by Noah (N), VIC (V), Mosaic (M), and SAC
(S) for 1 October 1997 to 30 September 1999. Model symbols below diagonal indicate (negligible)
positive storage change. (b) As in Figure 3a, except area-mean is for subarea of basin set depicted in inset
for each quadrant (same basins as in Figure 4) and the plus symbol depicts observed mean annual area-
mean runoff for the same subarea.
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runoff of Noah are close to observed, while Mosaic and
SAC show large biases of high evaporation and low runoff,
with VIC yielding the reverse: large biases of low evapo-
ration and high runoff. Figure 4 shows the variability of
relative runoff bias [(model-observed)/observed] across the
basins. Over NE and SE, Mosaic and SAC show similar
patterns of pervasive underestimates of runoff, exceeding
60% (dark red) in the Appalachians and upper Midwest,
while VIC runoff is highly overestimated (except for a
corridor of near neutral bias west of the Appalachians),
often by more than 60% (dark green) in the southeast and
Midwest. Noah has the least runoff bias over NE and SE,
with a more balanced likelihood of positive or negative bias,
and fewer basins of (dark green) large bias.
[38] In NW, NLDAS precipitation has a large low bias

(see section 3.4), owing to mountainous terrain, sparse
precipitation gages, and lack of an adjustment to PRISM
[Daly et al., 1994] in the NLDAS precipitation analysis.
This low bias thwarts the reliability of the NW budget-based
evaporation estimate in Figure 3b and causes large low bias
in runoff in all the LSMs over NW in Figures 3b and 4. For
example, the LSMs substantially underestimate runoff in the
Northern Rockies (dark red), though VIC yields much
smaller bias there for reasons given in section 3.4. Last,
over SW, in addition to precipitation gages being sparse, the
number of assessment basins there in Figure 4 is small,

casting uncertainty on observation-based SW evaporation
estimates.

3.2. Monthly Water Budget and Soil Moisture Change

[39] In studying nonannual water budgets, storage
changes of soil moisture and snowpack are important. Thus,
on monthly scales, we apply the full surface water budget
equation given by

dS1

dt
þ dS2

dt
þ dSn

dt
¼ P � E � R1 � R2: ð1Þ

Each term is the area average, of storage change (left side)
and accumulations (right side), of water mass per unit area
(kg/m2) per month, or depth of water (mm) per month. S1
and S2 are soil moisture stores of an upper and lower zone
(defined later), respectively, and Sn is snowpack storage. P,
E, R1 and R2 are precipitation, evaporation, surface runoff,
and subsurface runoff, respectively. On monthly scales,
canopy interception storage change is negligible and
omitted in equation (1). Figure 5 gives the time series of
area-average monthly evaporation E for each CONUS
quadrant for the control runs.
[40] We focus here on the eastern quadrants, where

evaporation in section 3.1 showed the most disagreement.
During middle and late summer, Mosaic clearly has the

Figure 4. Relative bias [(model - observed)/observed] of mean annual runoff for selected basins for
1 October 1997 to 30 September 1999 from (a) Noah, (b) VIC, (c) Mosaic, and (d) SAC. Observed runoff
for a given basin is calculated from basin area and observed basin-outlet stream discharge provided by
USGS.
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highest evaporation, while SAC has the highest in winter
and spring. Noah evaporation generally falls between that of
Mosaic and VIC in the warm season. VIC has the lowest
evaporation in virtually every month in the vegetated
eastern quadrants, consistent with the earlier annual results.
Figures 5b and 5d strongly suggest that Mosaic and VIC
manifest rather different canopy conductance. This is most
evident in the SE during 1998, where VIC monthly evap-
oration tops off at 80 mm during May–August while that of
Mosaic sustains 120–150 mm. (Signatures of this middle
and late summer stress over vegetation in VIC compared to
Mosaic and Noah is evident again later in Figure 13b.)
[41] Such large differences in warm season evaporation

imply large warm season differences in soil moisture
storage change. Figure 6 shows the time series of area-
average monthly mean total column soil moisture (S1 + S2)
for all four quadrants. Figure 7 is the companion depiction
for root zone soil moisture for the vegetated eastern
quadrants. (Figure 7 excludes SAC, which has no explicit
root zone.) The emphasis below is on years 2–3 of
Figures 6 and 7, as nontrivial spin-up is evident in year
one of Figure 6, though more so in Noah and VIC. After
year one, spin-up is essentially complete (though small
spin-up may still be occurring in NW in Noah).
[42] Focusing then on years 2 – 3, inspection of

Figures 5–7 reveals the following: (1) very different levels
of time-mean total soil moisture across the models, ranging
in the SE from about 325 mm for VIC and SAC to 550 mm
for Mosaic and 650 mm for Noah; (2) more similarity, yet
important differences, in annual-cycle amplitude (seasonal
change) of total soil moisture among the models, ranging in
the SE from about 100–150 mm for Noah, VIC, and SAC
to a notable high of 230 mm for Mosaic; (3) larger differ-
ences among the models over the wetter eastern quadrants

than the drier western quadrants, in both total soil moisture
and its seasonal change or range; (4) among the three
models with a root zone, the contribution of the subroot
zone to the change in total soil moisture varies widely, e.g.
over the SE it is very large in Mosaic (about 180 of
230 mm), moderate in Noah (about 70 of 140 mm), and
small in VIC (about 10 of 100 mm); (5) the model with the
highest level of total soil moisture is not the model with the
largest seasonal change in soil moisture, nor the model with
the largest monthly/annual evaporation; (6) a model with
high annual evaporation is not necessarily a model having a
high annual range of soil moisture storage (as the counter-
part of SAC illustrates).
[43] Intriguingly in Figure 6, while VIC and Noah have

very different levels of total soil moisture in the SE and NE,
they have more similar magnitudes of soil moisture in the
root zone and seasonal change of soil moisture in the root
zone in Figure 7. Thus the moisture source for the higher
summer evaporation in Noah then VIC is Noah’s subroot
zone, consistent with Noah usually having a deeper total
soil column (maximum storage capacity) than VIC, as
shown in SD-N.
[44] Recalling that Mosaic executions apply a shallow

root depth of 0.4 m, compared to 1–2 m in Noah and
1.35–3 m in VIC, it is a paradox in Figures 5 and 6 that
Mosaic in SE and NE has the highest warm season
evaporation and highest warm season change in total soil
moisture. Comparing Mosaic’s annual cycle amplitude in
Figures 6b and 6d with Figure 7 provides the answer by
revealing that Mosaic’s subroot zone accounts for the
bulk of Mosaic’s annual storage range. Later, we show
that Mosaic develops vigorous upward diffusion of water
to its root zone from its subroot zone during the warm
season. Mosaic’s diffusion is not a dominant process in

Figure 5. Time series of area-averaged monthly evaporation (mm/month) in NLDAS for Noah
(squares), VIC (triangles) Mosaic (circles), and SAC (crosses) over the four CONUS quadrants of (a) NW,
(b) NE, (c) SW, and (d) SE for October 1996 to September 1999.
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the arid west, because root zone and subroot zone there
are both typically dry.
[45] Figure 8 shows the May through September (nominal

soil dry-down season) change in total soil moisture for 1999.
Positive values denote soil drying. As an aside, the soil
moistening (negative change: dark red) of Florida, south
Texas, and Arizona/New Mexico is out of phase with the
dry-down over the bulk of the CONUS, because their ‘‘wet
season’’ is summer. Also, the Atlantic coastal states show
moistening from two coastal hurricanes in September 1999.
The hallmark of Figure 7 is vivid model differences in total
soil moisture depletion over the southern Mississippi basin,
which experienced significantly below normal precipitation
during this period (not shown). Mosaic shows the largest
depletion there and the largest evaporation (Figure 5d),
followed by SAC and then Noah, with VIC showing the

least depletion and lowest evaporation (Figure 5d). Together,
Figures 5d, 6d, 7b, and 8 illustrate that over vegetated areas
with a warm-season precipitation shortage, Mosaic taps
notably more than the other LSMs from its deep (subroot)
soil moisture to sustain evaporation, though too much so (SE
in Figure 3b).
[46] Figure 8 shows large intermodel variation in the east-

west gradient across CONUS of seasonal range in total soil
moisture storage (S1 + S2). The study by Schaake et al.
[2004] (SD-N) depicts this intermodel difference as a
function of basin climatology, in terms of the P/PE ratio
for the 12 CONUS RFCs. As one can infer from east-west
inspection along latitude 37� N in Figure 8, SD-N finds that
VIC’s storage range is relatively invariant with respect to
east-west gradient in P/PE between arid and moist regions,
while SAC and Noah show more variability, and Mosaic the

Figure 6. Time series of area-averaged monthly mean total column soil moisture (mm) in NLDAS for
Noah (squares), VIC (triangles), Mosaic (circles), and SAC (crosses) for the CONUS quadrants of
(a) NW, (b) NE, (c) SW, and (d) SE for October 1996 to September 1999.

Figure 7. Time series of area-averaged monthly mean root zone soil moisture (mm) in NLDAS for
Noah (squares), VIC (triangles), and Mosaic (circles) for the CONUS quadrants of (a) NE and (b) SE for
October 1996 to September 1999.
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most variability. SD-N emphasizes that a given model’s
dynamic storage range in a given region is not reliably
inferred from the model’s maximum water holding capacity,
but is rather the result of more complex interplay between a
region’s climatology and major facets of a model’s physics.
Koster and Milly [1997] show that a model’s dynamic range
of soil moisture is highly controlled by interaction between
the model’s runoff and evaporation formulations and the
functional dependence of these formulations on the model’s
soil moisture state.
[47] We turn now to Figure 9, which depicts the annual

cycle time series of every term in equation (1). Here
storage S1 is defined as the top two soil layers in Mosaic,
Noah, and VIC, and the top storage reservoir in SAC and
S2 represents all remaining soil storage. The difference
between the solid black line (total precipitation P) and
dashed black line (liquid precipitation) is the snowfall. The
red triangle is P-dSn/dt and the red triangle’s departure
below (above) the solid black line (P) equates to the monthly
increase (decrease) in snowpack depth. In the snow season,
the red triangle coincides with P if monthly snowfall is
balanced by the sum of monthly snowmelt and sublimation,
yielding zero net monthly change in snowpack.
[48] In Figure 9 we first examine region SE, which has

negligible snow and rather small month-to-month changes
in precipitation (in percent terms). Thus the annual cycle of

the SE water budget is driven mainly by PE. The model
differences in runoff response are vivid. Mosaic’s domi-
nance in soil moisture depletion in the warm season is
mirrored by Mosaic having the largest soil recharge during
November–February, leaving rather less precipitation avail-
able during cool months for runoff. SAC also has less cool
season runoff than Noah or VIC, though not so much from
high storage recharge as in Mosaic, but rather from SAC
having the highest cool season evaporation. Noah and VIC
have larger total runoff then Mosaic and SAC in most every
month, with VIC having the notably largest runoff (mostly
subsurface) throughout the fall, winter, and spring, as VIC
requires less cool-season soil recharge to replenish its
smaller summer depletion. In NE in Figure 9, the above
tendencies in SE continue to hold in a broad sense, but other
signatures arise from less precipitation in the cool season,
greater monthly variability of precipitation in the warm
season, and nonnegligible snowpack processes. Lower
precipitation in the cool season compared to SE results in
less cool season runoff in all four models, but in general
VIC still produces the most monthly runoff, followed by
Noah, then Mosaic and SAC. The lack of SAC runoff all
year in NE is noteworthy, as is the high SAC evaporation in
spring.
[49] Given that SAC in NLDAS takes its PE forcing from

Noah PE output, the higher March–April evaporation in

Figure 8. Warm season storage change (mm) of total column soil moisture, from difference of total
column soil moisture (mm) of 30 April minus that of 30 September of 1999 at 23 UTC for (a) Noah,
(b) VIC, (c) Mosaic, and (d) SAC. All colors (except dark red) are positive and denote a net drying during
the period.
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SAC versus Noah in NE and NW is instructive, as
vegetation greenness and hence transpiration are low then
in both quadrants in Noah. Noah, Mosaic and VIC draw
soil moisture for direct evaporation only from their first
soil layer (0.1 m). This one layer is likely unable to sustain
as high evaporation rates as SAC, which taps into both of
its top two soil storages in response to PE demand. This
structural difference in direct evaporation between SAC
and the SVATS likely explains SAC’s dominance in cool
season evaporation (especially winter and spring), which
contributes in turn to SAC’s high mean annual evapora-
tion. Thus, while Figures 2 and 3 show SAC and Mosaic
having similar annual evaporation, the monthly water
budget in Figures 5 and 9 (notably for NE and SE) shows
SAC and Mosaic having rather different temporal character
in evaporation, with SAC (Mosaic) having more in spring
(summer).
[50] Moreover in Figure 9, the high precipitation in June

in NE followed by a large drop of precipitation in July
yields another vivid example of Mosaic’s ability to draw
upon its deep soil moisture. In the face of the steep drop in
July precipitation, Mosaic is the only model in NE to yield
July evaporation larger than June evaporation, and it does so
via the largest July soil depletion. Following in August and
September, Mosaic still sustains higher evaporation than the
other models, despite its larger July storage depletion.
Mosaic’s layer 3 (subroot) storage change was dissected
for July 1998 at one grid cell near 45�N latitude and 92�W
longitude. For this month at this point, the Mosaic drainage
(R2) out the bottom of layer 3 ranged from 4 to 10 mm
across its tiles there, while the upward diffusion of water to
layer 2 ranged from 116 to 124 mm, confirming Mosaic’s
vigorous supply of subroot water to the root zone by
diffusion. Though Noah also includes vertical diffusion of
soil water, the magnitude is much larger in Mosaic.
[51] The contrast between models in Figure 9 is rather

less in the western quadrants, wherein the warm-season
water budget of the three SVAT models is quite similar,
though SAC has less warm season evaporation and soil
moisture depletion. The greater model similarity in SW and
NW likely stems from the sparse vegetation (Figure 1a),
whereby canopy conductance and root-zone processes are
not dominant. In the cool season of NW and SW, VIC still
tends to have the most runoff and is still dominated by
subsurface runoff. Interestingly, SAC has virtually no sub-
surface runoff in NW and SW. One cool season contrast
between models in NW (and NE) is the lower snowpack
accumulation in Noah during winter. Comparison of the
NW January water budget components of Noah with the
other LSMs reveals model agreement in monthly snowfall
amount (difference between solid and dashed lines), but
Noah (unlike the accumulating snowpack in VIC, Mosaic
and SAC) is melting and sublimating in the month about as
much snow as it receives in snowfall, a topic revisited in
section 3.4.
[52] We conclude this section with some discussion of the

causes of the systematic biases noted in the models thus far.

The high bias in Mosaic evaporation over CONUS-east is
most likely a result of the vigorous diffusion of water from
the subroot zone to the root zone. The high bias in SAC
evaporation over CONUS-east is likely a consequence of
SAC’s use in NLDAS of (1) uncalibrated a-priori parame-
ters (section 2.3) and (2) PE from Noah. As a counterex-
ample, in NWS operations at the RFCs, SAC inputs a
NOAA monthly climatology of PE, derived from evapora-
tion-pan measurements. This climatological PE is then
scaled during SAC runs by a monthly fractional coefficient.
This coefficient is a key calibration parameter allowed to be
moderately larger or smaller than 1.0, as determined from
SAC calibration runs over a catchment. No such coefficient
had been derived to date for use in SAC large-scale runs
over the CONUS-wide domain, either with Noah PE or
NOAA climatological PE, and hence a universal coefficient
of 1.0 was used SAC control runs in NLDAS. Moreover, the
Noah PE is known to be higher than NOAA PE climatol-
ogy. These two factors contribute to high SAC evaporation
(E) in NLDAS, but not always the highest E, and typically
less than the E in Mosaic in the warm season over nonsparse
vegetation. Hence the SAC results here are not outliers and
they represent important pathfinder runs of SAC executed
over a national domain in semi-distributed mode with
uncalibrated parameters. Since the SAC control runs here
in NLDAS, NWS/OHD has derived a CONUS-wide field of
the PE coefficient from the vegetation greenness database
cited in Figure 1a. SAC experiments of this field in NLDAS
are imminent.
[53] We last address the unexpectedly low bias in VIC

evaporation in the results here over CONUS-east. Two
separate but related VIC modeling efforts have been
conducted over the NLDAS grid and terrain heights;
specifically, the 3-year retrospective runs executed here
with 1-hour time steps, and the 50-year retrospective runs
reported by Maurer et al. [2002], executed with 3-hour
time steps and with different sources for the surface
forcing. The 3-year VIC runs here use essentially the
same parameters as the VIC runs of Maurer et al.
[2002]. Yet two significant differences were hourly tem-
poral disaggregation of the daily precipitation and subgrid
spatial disaggregation within a grid box, both used in the
VIC runs here but not in those of Maurer et al. Not having
the advantage of hourly radar-anchored precipitation analy-
ses, Maurer et al. used uniform distribution of the daily
precipitation throughout the day and within each 3-hour
forcing interval. Maurer et al. [2002, Figure 2] analyzed
the impact of this uniform distribution versus nonuniform
disaggregation to 3-hour time steps and the results showed
that the differences for the subregion analyzed (Lower
Mississippi basin) were modest. Nonetheless, subsequent
comparisons between the retrospective runs of Maurer et
al. and the 3-year retrospective runs of VIC here show that
the combined and interactive impact of the three factors of
temporal disaggregation, spatial disaggregation, and 1-hour
versus 3-hour time steps can be significantly larger than
suggested by the Lower Mississippi tests of the temporal

Figure 9. Monthly water budget in NLDAS for October 1997 to September 1998. In order, columns 1–4 are Noah, VIC,
Mosaic, and SAC, and rows 1–4 are quadrants SE, NE, NW, and SW. Colors depict terms (mm/month) in equation (1): dS1/
dt (orange), dS2/dt (red), R1 (light blue), R2 (dark blue), and E (green). Black solid line is total precipitation P (mm/month);
black dashed line is liquid precipitation (mm/month). See text for definition of red triangles.
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disaggregation alone. The differences (shown for a transect
across the eastern and central United States at http://
www.hydro.washington.edu/Lettenmaier/Models/VIC/
VIChome.html) are evident in portions of the country with
a high fraction of convective precipitation and full canopy
cover (e.g., CONUS-east summer). More study of the
differences, and development of parameter transformations
to account for disaggregation and time step differences
will be addressed in a future paper.

3.3. Regional Validation of Soil Moisture

[54] This section presents validation of NLDAS soil
moisture over (1) Illinois from Schaake et al. [2004] (SD-
N) and (2) Oklahoma from Robock et al. [2003] (RL-N).
SD-N evaluated NLDAS soil moisture at 17 of 18 sites of
the Illinois State Water Survey [Hollinger and Isard, 1994],
which measures soil moisture at 11 levels down to 2 m.
Figure 10 shows the resulting two-year scatterplot (and
best-fit linear line) of model versus observed, state-wide
average, total-column soil moisture over 2-m at bimonthly
intervals. For VIC, two best-fit lines for northwest and
southwest Illinois were required, because past VIC calibra-
tion yielded rather different soil moisture storage capacities
in these regions. In Figure 10, a best-fit line having slope
greater than one indicates a storage range greater than
observed. Mosaic yields a storage range greater than the
other models (as in sections 3.1–3.2) and about 50% more
than observed. Noah and SAC agree with observations in
both storage range and storage magnitude. VIC also shows
good storage range over its two regions, but storage
magnitude lower than observed. In addition to Illinois
validation, SD-N validates NLDAS soil moisture storage
range in the Arkansas-Red River basin (not shown). More
broadly, SD-N intercompares the soil moisture storage
capacity (explicit capacity) and storage range (‘‘active’’
capacity) of the four LSMs across the entire NLDAS
domain, including mean statistical properties and spatial
variation. The findings reveal significant LSM differences
in soil moisture, as did section 3.2. Such differences
challenge modelers using soil moisture from one LSM to
initialize another.
[55] Similar contrasts in soil moisture between LSMs

themselves and between observations and LSMs are found
over Oklahoma by Robock et al. [2003] (RL-N), which
included close scrutiny at individual stations. In-situ
observations of soil moisture have been installed and
calibrated at 72 Oklahoma Mesonet stations by the
Oklahoma Climatological Survey. Figure 9 of RL-N (not
shown) depicts a 21-month time series during 1998–1999
of observed and NLDAS-simulated daily mean, 0–40 cm
total soil moisture averaged over all 72 Mesonet stations.
The time series show substantial differences in soil
moisture magnitude among the LSMs and between the
LSMs and observations, with VIC showing the best
agreement with the observations. Nonetheless, there is
rather good agreement among the models and between
models and observations in the soil moisture changes in
time, a theme cited earlier here with Figure 6. RN-L also
performs and evaluates important sensitivity tests in the
three SVAT models at many of the OU Mesonet soil
moisture measuring stations, wherein model soil type is
set to match the station-reported soil type and the

assigned soil parameters are unified across the models.
This test improved a model’s performance if the param-
eters were not incompatible with previous model calibra-
tion. Since Noah is not substantially calibrated, the
matching with local soil type and use of unified soil
parameters did improve Noah’s soil moisture performance
at the stations. In VIC, which has been regionally cali-
brated to streamflow over several large basins, including
the Arkansas-Red river basin [Abdulla et al., 1996], the
use here over Oklahoma of local station-matching soil
types and unified soil parameters had less consistent
impact on improving model agreement with the soil
moisture measurements, showing more variance of posi-
tive or negative impact depending on station. Thus soil
parameter changes in an LSM to match local site charac-
teristics may degrade LSM performance at those sites,
especially if the changes disturb an LSM’s calibration
legacy.

3.4. Validation of Snow Cover and Snowpack Content

[56] This section presents results from Pan et al. [2003]
(PS-N) and Sheffield et al. [2003] (SP-N), which perform
large-scale assessment of NLDAS snowpack water equiv-
alent (SWE) and snow cover extent (SCE), respectively.
First, we summarize how the four LSMs treat snowpack.
SAC simulates only the snowpack water balance, via the
SNOW17 model [Anderson, 1973], which includes snow-
fall and snowmelt but not sublimation. Snowmelt is
determined empirically via an index-method based on
maximum-minimum daily air temperature. VIC, Noah
and Mosaic also simulate the snowpack water balance,
including sublimation as well as snowfall and snowmelt,
plus the snowpack energy balance (net radiation, sensible,
latent and subsurface heat fluxes, phase-change heat
sources/sinks). The treatments for processes such as snow
cover fraction, snow albedo and retention/refreezing of
snowmelt differ among the models. SAC, VIC, and Noah
explicitly account for retention of liquid water (snowmelt
or rainfall) in the snowpack, but only VIC and Noah
allow refreezing. Mosaic and VIC carry explicit subgrid
vegetation tiles, but only VIC carries added subgrid tiles
for elevation, known as ‘‘elevation banding’’, which is
cited in PILPS studies as a key factor in VIC’s good
snowpack simulations [Bowling et al., 2003; Boone et al.,
2004]. For each subgrid tile, Mosaic and VIC carry
separate water-energy balances and separate soil, vegeta-
tion and snow states. More on the model snow physics is
provided by SP-N, and by Wigmosta et al. [1994], Koster
and Suarez [1996], Koren et al. [1999], and Anderson
[1973] for VIC, Mosaic, Noah, and SAC, respectively.
[57] There is no distinction between rainfall and snow-

fall in NLDAS precipitation forcing. This requires criteria
to infer snowfall. The input precipitation at each model
time step was assumed to be all rainfall for surface air
temperature >0�C and all snowfall otherwise. This crite-
rion does not guarantee identical snowfall in the models
owing to different model time steps and VIC’s elevation
banding. Noah and Mosaic interpolate hourly air temper-
ature to their 15-min time steps, thus allowing rainfall
and snowfall inside one hour, unlike the hourly steps of
VIC and SAC. VIC adjusts the hourly air temperature to
the elevations of its subgrid elevation bands, thus VIC
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allows both rainfall and snowfall inside a given grid cell
for a given time step.
[58] PS-N validated NLDAS SWE simulations against

NRCS SNOTEL stations west of 104�W. SNOTEL sites
measure SWE, air temperature and precipitation every
15 min. The majority of SNOTEL elevations are above
1000 m, with mean elevation near 2500 m (see PS-N for
references). Since NLDAS terrain resolution is 1/8�, com-
paring model SWE with point-wise SNOTEL is a challenge.
Hence PS-N omitted use of SNOTEL sites whose elevation
differs from that of the nearest NLDAS grid point by more
than 50 m. This retains 110 SNOTEL sites.
[59] Figure 11 shows model versus observed mean-annu-

al maximum SWE for the LSM control runs (and two VIC
tests described later) at the SNOTEL sites by subset in four
mountain ranges: 3 in Sierra Nevada (squares), 17 in
Cascades (diamonds), 29 in southern Rockies (circles), 61
in northern Rockies (triangles). All the LSMs substantially
underestimate maximum SWE in all four regions. Noah has
the largest low bias and the lowest correlation. Mosaic also
shows a rather low correlation. SAC and VIC have notably
better bias and substantially higher correlation. The model
with elevation tiling (VIC) yields the highest correlation, yet
the simplest model (SAC) without elevation tiling or energy
balance treatment is closely competitive.
[60] PS-N found the NLDAS precipitation forcing to be

substantially low when compared to observed precipitation
at all 110 SNOTEL sites. Sites with the highest observed
precipitation are where NLDAS precipitation has the largest
low bias. PS-N determined the linear regression between
SNOTEL and NLDAS precipitation at the 110 sites to be
PSNOTEL = 2.1693 PNLDAS, with an R2 value of 0.64,
revealing a factor-of-2 underestimation by NLDAS precip-

itation at the sites on average. The low precipitation bias is
consistent with that anticipated from the low bias in annual
streamflow in the LSMs in the Northwest in section 3.1
(Figure 4).
[61] PS-N executed two tests in VIC with two methods of

bias-adjusted precipitation. Both tests executed VIC in the
reduced-grid mode (section 2.1) at grid cells nearest the
SNOTEL sites. Test 1 used NLDAS precipitation forcing
scaled upward by a separate regional factor for the four
mountain ranges, based on regional regression fit of the
NLDAS and SNOTEL mean annual precipitation. In test 1
(Figure 11e), the model SWE bias is dramatically less, with
the scatter rather evenly balanced about the 1:1 line. Yet the
scatter remains substantial and the correlation is only
modestly improved, as the regional scaling does not elim-
inate site-specific bias. VIC in test 2 (Figure 11f ) was
forced with site-specific adjusted NLDAS precipitation,
scaled to match the observed annual total precipitation at
each site. Test 2 yields a much smaller bias, substantially
reduced scatter and increased correlation of R2 = 0.82. PS-N
also evaluated NLDAS air temperature bias at SNOTEL
sites, finding it small in the cool season (exceptions at some
stations), contributing much less to model SWE bias than
precipitation. The high bias in NLDAS solar insolation over
snow (section 2.2) also contributes to a low bias in SWE in
the three SVAT models. The impact of this insolation bias
on SWE has not been quantified yet.
[62] SP-N validated NLDAS simulations of areal fraction

of snow cover extent (SCE) against the NESDIS operational,
daily, 23-km, Northern Hemisphere snow cover product
known as the Interactive Multisensor Snow (IMS) [Ramsay,
1998], viewable at http://www.ssd.noaa.gov/PS/SNOW.
NESDIS analysts produce the IMS using an interactive

Figure 10. Comparison of NLDAS versus observed bimonthly total soil moisture (mm) in top 2 m,
averaged over 17 sites throughout Illinois for October 1997 to September 1999 for (a) Noah, (b) VIC,
(c) Mosaic, and (d) SAC. Note different x axis and y axis ranges. See text for discussion of two sets in
Figure 10b.
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workstation to assess snow cover related visible, infrared,
and microwave satellite products, as well as in situ snow
depth observations. Details of mapping the 23-km IMS field
to the NLDAS 1/8� grid and mapping NLDAS snow cover
fraction (0–1 range) to the IMS binary snow cover state (yes/
no) are given in SP-N.
[63] All four LSMs diagnose SCE (0–1 fraction) as an

empirical function of the model simulated SWE, but the
treatments differ significantly, namely, the critical SWE
needed to reach SCE = 1 and the form of the function relating
SCE to SWE. SP-N provides details, but in broad terms SAC
and Noah require relatively deep snowpack for high SCE
values, while Mosaic requires notably less, and VIC very
little. For a nondeep SWE value, VIC will yield the highest
snow cover, followed by Mosaic, then Noah, and finally
SAC. For illustration, assuming a nonforest vegetation type,
a SWE value of 4 mm yields SCE = 1.0, 0.67, and 0.24 in
VIC, Mosaic, and Noah, respectively. Correspondingly
(shown later), VIC, Mosaic, and Noah in order yield the
highest, intermediate, and lowest albedo over snow. (SAC
requires no albedo.) The high SCE fractions in VIC arise in
part because VIC assigns SCE = 1 over any tile with any
nonzero SWE.
[64] SP-N carried out validation of SCE separately over the

8 of 12 CONUS RFCs that exhibit substantial winter snow
cover. In general, all models simulate reasonably well the
regional-scale spatial and seasonal dynamics of snow cover.

Yet systematic biases exist, with (on average over 8 RFCs)
underestimation of SCE by Noah (�22.5%) and MOSAIC
(�19.8%) and overestimation of SCE by VIC (22.3%), with
SAC being essentially unbiased. The level of bias over
individual RFC regions varies (see Figure 4 of SP-N). The
more mountainous RFC regions (Northwest, Colorado, Cal-
ifornia-Nevada) show the largest model differences with IMS
observations and between models. Here VIC further over-
estimates SCE, while Noah further underestimates SCE and
manifests an early bias in spring snowmelt. VIC’s high SCE
bias in the west is surprising at first, since all four LSMs had
notably low bias in SWE at SNOTEL sites in Figure 11,
owing to the low bias in NLDAS precipitation. However, the
number of pixels at SNOTEL sites in any RFC domain is
relatively small, so the effect on the regional mean is difficult
to judge. Yet we surmise that VIC’s high SCE bias stems from
VIC assigning SCE = 1 at any subgrid tile with any nonzero
SWE, however small.
[65] The low bias in Noah SCE appears to result from not

only the high SWE threshold required in Noah for high
SCE, but also the low snow albedo in Noah and its positive
feedback effect on the energetics of snowmelt. For one RFC
domain, Figure 12 shows the time series of monthly
domain-mean (1) snowmelt, (2) snow sublimation and
(3) albedo from the four models (only snowmelt for SAC,
as SAC excludes sublimation and albedo). There are large
differences in snow albedo among the models, with Noah

Figure 11. Comparison of mean annual maximum snow water-equivalent (SWE) during October 1996
to September 1999 between observations (x axis) and model simulations (y axis) at 110 SNOTEL sites for
the control runs of (a) SAC, (b) Noah, (c) VIC, and (d) Mosaic, and two VIC tests runs forced with
(e) regionally adjusted precipitation and (f ) locally adjusted precipitation.
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yielding the lowest (0.2–0.3), Mosaic being intermediate
(0.3–0.5), and VIC yielding the highest (0.5–0.65). Not
surprisingly then in Figure 12, Noah yields notably higher
snowmelt and sublimation in early and midwinter, while
VIC yields very little sublimation, with Mosaic in between.
The larger midwinter snowpack sinks in Noah are consistent
with Noah having the greatest low bias in annual maximum
SWE in Figure 11. By spring, Noah’s snowmelt and
sublimation reduce to almost zero, as much of Noah’s
snowpack has already melted or sublimated earlier in the
winter, while VIC and SAC have the largest spring snow-
melt volumes, in part because they had the smallest subli-
mation sinks during early and midwinter. SAC and Mosaic
tend to have higher melt in the spring than the winter
months while VIC melts at a more quasi-steady rate
throughout the winter and spring.
[66] A low bias in snow albedo is vulnerable to positive

feedback problems in the surface energy balance. A low
bias in albedo contributes to a high bias in net solar
insolation, which melts more snow and reduces the snow
cover, yielding still lower albedo and so on. The feedback is
amplified by the high bias here in the incoming solar
insolation over snow. High albedo and high snow cover,
such as in VIC, is also vulnerable to positive feedback in the
opposite direction, but the high albedo in VIC likely acted
to offset the high bias in NLDAS incoming insolation over
snow. A counterpart to such feedback risk is the simplicity
of snow physics in the SAC/SNOW17 model. Its snowpack
predictions perform rather well when assessed at the large
regional scales of NLDAS. One reason is SAC’s simple
temperature-index approach to snowmelt, which avoids the
feedback loops that can plague energy balance models over
snow. The recent PILPS high latitude modeling experiments
[Bowling et al., 2003] found large differences in snow

ablation and snowmelt among 21 LSMs and also concluded
that differences in model parameterizations of albedo and
SCE have large effects on energy available to the snowpack.

4. Validation of NLDAS Surface Energy Fluxes
and LST

4.1. In Situ Validation of Surface Energy Fluxes Over
the Southern Great Plains (SGP)

[67] This section presents key results from the surface
energy-validation portion of the Robock et al. [2003] study
(RL-N), which validates energy fluxes during January 1998
to September 1999 using the 24 extended facility (EF) flux
stations of the ARM/CART network in Oklahoma and
Kansas. The results include the three SVATS (Noah, Mosaic,
VIC) but not SAC, as SAC omits the physics of surface
energy balance. Multistation spatial averaging and hourly
temporal averaging are used to reduce the influence of scale
differences between NLDAS grid cells (�12 km) and point-
wise flux stations. Radiation fluxes were averaged over the
22 of 24 EF stations using Solar and Infrared Radiation
Station instruments (SIRS). Heat fluxes were averaged over
the 14 of 24 stations using Energy Balance Bowen Ratio
systems (EBBR). Though the energy budget is not exactly
closed in the averaging, discrepancy is less then 20Wm�2 in
most months.
[68] The ARM network spans central and northern Okla-

homa and southern Kansas (see map in RL-N). It is instruc-
tive to consider, a priori, what one would expect to uncover in
the model surface energy budgets in this region based on the
annual water budget validation in section 3.1. This region is a
transition zone between quadrants SE and SW in Figure 3.
Yet over the bulk of this region, Figures 1a and 1b show that
warm-season green vegetation fraction is not sparse, ranging

Figure 12. For the Northwest RFC domain, time series of monthly domain-mean (a) snowmelt (mm/
month), (b) snow sublimation (mm/month), and (c) albedo in NLDAS for Noah (squares), VIC
(triangles), Mosaic (circles), and SAC (crosses) for the time period October 1996 to September 1999.
(Note different y axis range in top two panels.)
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from 0.4–0.8, and the mean annual precipitation exceeds
800 mm during the study period. Hence inspection of Figure
1 leads one to expect the mean surface water and energy
budget of the region to be more similar in nature to that of SE
then SW. Therefore, given that warm-season evaporation
dominates annual evaporation, the following expectation is
warranted: latent heat fluxes of the three SVATS over the
ARM network are likely to reflect the model evaporation
biases established over the SE quadrant in Figure 3b, namely,
that Mosaic, Noah, and VIC will manifest latent heat flux
averages that are substantially higher than observed, close to
observed but somewhat low, and substantially less than
observed, respectively. The validations below in Figures 13
and 14 confirm this expectation.
[69] Figure 13 gives a 21-month time series of monthly

mean observed versus modeled surface energy fluxes of the
NLDAS control runs, including net radiation (R), latent heat
flux (LE), sensible heat flux (H), and ground heat flux (G).
Figure 14 shows corresponding monthly mean diurnal cycles
for the two months of July and April 1999. Columns 1 and 2
of Figure 14 depict only control-run results, while columns 3
and 4 additionally show experiments described later. There is

rather good agreement between observed and simulated R in
all the models. Figure 14 shows some small model phase
errors in R in Noah and VIC, which are further diagnosed in
RL-N.
[70] Of more interest are the several situations of substan-

tial bias in simulated LE, H, and G, examined first in
Figure 13. As correctly anticipated above, in spring and
summer, Mosaic has a substantial high bias in LE and,
correspondingly, a substantial low bias in H. VIC has a
substantial low bias in LE and high bias in H throughout
most of the year (except spring), while Noah shows much
smaller bias in LE (slightly low in warm season) and H
(modestly high in warm season). The LE results here agree
with the sign and relative magnitude of the model evapora-
tion biases inferred in section 3.1. The counterpart to evap-
oration bias in section 3.1 was runoff bias of opposite sign.
Here the analog counterpart to LE bias is H bias of opposite
sign. The warm season LE and H biases of Mosaic, VIC, and
Noah are highlighted further in the July 1999 midday biases
in the diurnal cycles of Figure 14, again showingMosaic with
a significant positive bias in daytime LE and substantial
negative bias in daytimeH, thus very low Bowen ratio (BR =

Figure 13. Time series of monthly mean surface energy fluxes (W m�2) of (a) net radiation R, (b) latent
heat LE, (c) ground heat G, and (d) sensible heat H averaged over the ARM/CART sites during January
1998 to September 1999 from observations (bold line, no symbols) and control runs for Noah (squares),
VIC (triangles), and Mosaic (circles). The y axis range varies among panels. Positive flux is heat sink to
surface, except for G.
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H/LE, not shown), with VIC showing the opposite, and Noah
showing bias similar to VIC in sign but notably smaller in
magnitude. In April, Mosaic retains high LE bias and low H
bias, while VIC and Noah show little bias in LE or H.
[71] Figures 13 and 14 exhibit serious errors in ground

heat flux G in VIC (diurnal cycle), and especially in Mosaic
(both diurnal and annual cycles). Noah shows comparative-
ly little error in G, with virtually no bias in monthly mean
(Figure 13) and rather modest high bias in diurnal daytime
G from phase error. Mosaic has a large bias in monthly
mean G during most months (Figure 13) and most hours
(Figure 14), though the sign changes depending on the time
in the diurnal/annual cycle. VIC has large hourly biases in G
for most hours (Figure 14), but small monthly mean biases
(Figure 13). VIC’s daytime and nighttime biases in G are
rather symmetric and opposite in sign, so they nearly cancel
on a daily or monthly mean basis. Both Mosaic and VIC
show large daytime diurnal high bias and phase error in G in
both July and April of Figure 14, with daytime maximums
2–3 times larger than observed. Finally, the simultaneous
and very high daytime biases in G and LE in Mosaic during
April–July conspire to yield dramatically low sensible heat
flux (H) during these months. Mosaic monthly mean H
values during May–June are less than the annual winter
minimums in observed H.
[72] With NLDAS infrastructure now in place (section 2),

increasing attention is being given to model experiments.
The large biases in G in Mosaic and VIC prompted such
experiments, described in RL-N and presented here briefly.
The VIC and Noah models use a surface energy balance
approach for their surface radiative temperature, calculated
in VIC for a thin but nonvanishing skin layer that has
nontrivial heat storage, while Noah assumes an infinitesi-
mally thin skin layer with negligible (zero) heat storage. As
a test, VIC was re-executed by imposing zero heat storage
in its surface energy balance treatment. The formulation G
in Mosaic [Koster and Suarez, 1996] is based on the
standard force-restore or ‘‘slab’’ treatment. It assumes that
the ‘‘aggregate’’ surface/canopy medium of vegetation and
near-surface soil has nonnegligible heat-storage capacity,
specified by a heat capacity parameter (CH) that strongly
impacts G. In NLDAS, the CH value in Mosaic’s control
run (175,000 J m�2 K�1) was one calibrated in an
earlier, independent temperature data assimilation system
[Radakovich et al., 2001], and not the lower traditional CH

value (70,000 J m�2 K�1) specified by Koster and Suarez
[1996] and used in several Mosaic PILPS experiments. To
gage the impact of CH, a Mosaic test was executed in
NLDAS using the traditional lower value. Columns 3–4 of
Figure 14 give the results of these Mosaic and VIC tests.
(Aside: the Noah test in Figure 14 is presented later in section
4.2 and does not involve a change to surface heat capacity.)
In both Mosaic and VIC, model ground heat flux was
dramatically improved in the tests, both in July and
April, becoming competitive with that in Noah (though

Mosaic manifests an unusual anomaly in G during the early
morning). This improvement in simulated G holds through-
out the year in both models, as shown in RL-N.
[73] However, the improvement in G in the Mosaic and

VIC tests provided no improvement in the large LE biases in
Mosaic or VIC in Figure 14. Rather, the increase in daytime
available energy (R-G) gained by reducing daytime high bias
in G acted only to increase the sensible heat flux H, in both
models, which helped the lowH bias inMosaic andworsened
the highH bias in VIC. The nonresponsiveness of LE and the
high response in H strongly suggests that the canopy resist-
ance is substantially higher than the aerodynamic resistance
in both models in this vegetated region in the warm season.
Sensitivity tests of canopy resistance will be a focus in all
three SVAT models in NLDAS follow-on studies. As a start,
Mosaic tests (not shown) have been run in which the fixed
thicknesses of Mosaic’s soil layers (with fixed 40-cm root
zone) in Mosaic’s control run was replaced with the tradi-
tionalMosaic approach of letting soil layer thickness and root
depth vary tile by tile according to the tile’s vegetation type.
The impact on the warm season latent heat flux of Mosaic
was significant, but the improvement with respect to ARM
flux observations was mixed, being either negative or posi-
tive, depending on which warm season month was examined.
Thus further evaluation is underway.

4.2. In Situ Validation of Land Surface Skin
Temperature Over the SGP

[74] A chief goal of NLDAS is assimilation of satellite
data to improve soil moisture, and in turn, surface fluxes.
One keen interest is the assimilation of satellite-derived
LST. Positive impact from LST assimilation will be greatly
enhanced if errors in modeled LST stem primarily from
errors in the background model’s Bowen ratio that arise
from errors in model soil moisture states. Prospects for
success are much lower if LST errors arise from Bowen
ratio errors caused not by soil moisture, but by errors in the
model’s treatment of (1) vegetation cover and nonsoil
moisture attributes of its canopy conductance, (2) the
surface air layer and its aerodynamic conductance, (3) albe-
do and net solar insolation, or (4) ground heat flux, G, and
its impact on the available energy (R � G). Section 4.1
uncovered substantial errors in G. This section uncovers
significant impact on model LST from intermodel differ-
ences in aerodynamic conductance.
[75] At the top of the hour in NLDAS, all three LSMs

output an instantaneous, grid-cell mean, radiometric surface
temperature, referred to here as the land surface skin
temperature, LST. To obtain LST, each model applies the
Stephan-Boltzmann Law given by L = es(LST)4, in which
e is the surface emissivity (=1 in all three LSMs), s is the
Stephan-Boltzmann constant, LST is the skin temperature
(K), and L is the upwelling longwave radiation (W m�2). In
Noah, which is nontiled, the surface energy budget is solved
once for each grid cell to obtain LST and then L. In Mosaic

Figure 14. Monthly mean diurnal cycle of surface energy fluxes (W m�2) of net radiation R (row 1), latent heat LE
(row 2), sensible heat H (row 3) and ground heat G (row 4) for July (columns 1 and 3) and April (columns 2 and 4) of 1999.
Columns 1 and 2: observed (bold black line, no symbols) and control runs for Noah (open squares, blue), VIC (open
triangles, green), and Mosaic (open circles, red). Columns 3 and 4: same control runs as columns 1 and 2, plus one test each
for Noah (solid squares, blue), VIC (solid triangles, green), and Mosaic (solid circles, red). See text for test features. The
y axis range varies between rows. Positive flux is surface heat sink.
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and VIC, LST and L are obtained for each tile from a tile-
specific energy budget, then the tile-weighted mean L over
the grid cell is obtained, from which the grid-cell mean LST
is derived from L = es(LST)4. Finally, at each SIRS station,
the observed L is time averaged to the top of the hour, and
LST is obtained also from the latter relation using e = 1.
[76] Figure 15a shows the multistation average, monthly

mean diurnal cycle of SIRS-observed and LSM co-located
LST of the control runs, averaged over the SIRS sites, for
July 1999. (The Noah test in Figure 15a is described later.)
Mosaic has a midday cool bias in both months, as
expected, given its high bias in LE and G and low bias
in H in Figure 14 (columns 1 and 2). VIC and Noah have
midday warm biases in July, also as expected, given their
low LE and high H bias in July. While the sign of the
models’ midday LST bias in Figure 15a is as expected, the
comparative magnitude of the bias between the models is
perplexing at first, given the LE and H fluxes in Figure 14.
Specifically, the VIC midday (19–20 UTC) warm bias in
July (about +2 K) is about half as large as Noah (about
+4 K), despite VIC’s Bowen ratio (BR = 2.91) at this time
being much higher than Noah’s (BR = 0.70) and the
observed (BR = 0.38). Thus VIC does not yield the largest
midday warm bias, despite having by far the largest high
bias in Bowen ratio.
[77] The daytime high bias in G in VIC’s control run does

not answer the paradox. Figure 15b shows the LST of the
Mosaic and VIC tests of lower heat capacity (and the later
Noah test) alongside control runs. Figure 15b reveals that
the lower heat capacity (and its lower midday ground heat
flux) in the VIC test does raise VIC’s midday LST as
physically expected, but only slightly, leaving it still well
below the warmer LST of Noah. Figure 15b shows that the
lower heat capacity test in Mosaic does yield a nontrivial
increase in midday LST, reducing Mosaic’s July midday
cool bias by roughly half (though introducing a nighttime
cool bias, because of the reduced nighttime release of stored
ground heat diminished by the reduced heat capacity).
[78] The chief explanation of the paradox of VIC versus

Noah midday summer LST lies in significant intermodel

differences in aerodynamic conductance. In the three mod-
els, the sensible heat flux H (W m�2) is computed from the
typical bulk transfer formulation given by

H ¼ �r cp ChjV j Ta � LSTð Þ ð2Þ

where r is the air density (kg m�3), cp the heat capacity for air
(1004.5 J kg�1 K�1), jVj the wind speed (m s�1), Ta the air
temperature (K), and Ch the surface turbulent exchange
coefficient for heat. The product ChjVj is the aerodynamic
conductance (m s�1), and its reciprocal is the aerodynamic
resistance. Ch manifests a strong diurnal cycle with larger
values during daytime heating. In (2), positiveHmeans a heat
source to the atmosphere and heat sink to the land surface for
daytime LST exceeding Ta. The models get common surface
forcing values of r, jVj, and Ta. Only Ch and LST in (2) are
computed uniquely in each model. Therefore Noah can have
higher midday values of LST than VIC simultaneously with
lower midday values of H than VIC if and only if Noah has
lower values of Ch. Figure 16 depicts the July 1998 monthly
mean diurnal cycle of Ch for each model, averaged across the
14 EBBR stations. The line with solid squares in Figure 16 is
a Noah test, discussed later, using a modified roughness
length for heat. Indeed, the Noah control run has substantially
smaller daytime values of aerodynamic conductance, and
hence Ch, than Mosaic, and far smaller values than VIC.
Follow-on research will seek to derive Ch explicitly from the
EBBR observations.
[79] The smaller Ch values for Noah inferred from

Figure 16 motivated a sensitivity run. The treatment of Ch

in Noah was the subject of the NCEP study by F. Chen et al.
[1997], which examined the impact on Ch of the chosen
formulation for the roughness length for heat, z0t. From a
suite of tests, Chen et al. recommended the z0t formulation of
Zilitinkevich [1995], which is based on the dynamic rough-
ness Reynolds number and includes an adjustable parameter,
denoted here Cz, in the range 0–1. The Noah control run in
NLDAS uses Cz = 0.2. Decreasing Cz increases z0t, which
increases Ch (thus increasing aerodynamic conductance) and
the land/atmosphere coupling, thereby decreasing daytime

Figure 15. Monthly mean diurnal cycle of LST (K) averaged over all ARM/CART SIRS sites for July
1999 from observations (solid line, no symbols), control runs (open symbols) and test runs (solid symbols)
for Noah (squares), VIC (triangles), and Mosaic (circles). (a) All three control runs plus Noah test of
aerodynamic conductance. (b) As in Figure 15a, plus Mosaic and VIC tests of lower surface heat capacity.
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LST. This was investigated by a Noah sensitivity test,
depicted in Figure 16, which used Cz = 0.05 in place of
Cz = 0.2.
[80] The July monthly mean, midday aerodynamic con-

ductance values in the Noah test in Figure 16 exceed the
control values by nearly 70%. The surface fluxes and LST of
this Noah test are depicted in Figure 14 (right columns) and
Figure 15, respectively. Figure 15 shows a pleasing 2–3 K
decrease in Noah’s July peak daytime LST, cutting the
midday warm bias by about half. Inspection of Noah test
versus control surface fluxes in Figure 14 reveals small
midday changes in R (increase) and G (decrease) of about
10–20 W m�2 each, as expected from the lower midday
LST. This slightly improved the already small biases in Noah
R and G and yielded a roughly 20–40 W m�2 increase in
midday ‘‘available energy’’ (R – G) for sensible and latent
heat fluxes. Once again however, very similar to the earlier
response in Mosaic and VIC to increases in (R – G), the LE
change in the Noah test in both July and April was negligible,
especially so in July, with the R – G increase in July once
again being realized almost entirely by an increase in H.
[81] The lack of change in LE in July strongly indicates

that the evaporative resistances to canopy transpiration
(canopy resistance) and bare soil evaporation are much
larger than, and thus dominant over, the aerodynamic
resistance in influencing LE in this situation. Again,
Figure 1a shows that the vegetation cover over the bulk
of the ARM-SGP region in July is of order 40–80%. The
analysis of Vogel et al. [1995] shows that even over an
irrigated midlatitude wheat field in June, the LE change
from a 20% change in aerodynamic resistance yielded only
a 2% change in LE; that is, canopy resistances over non-
sparse vegetation in midlatitude summer are typically much
larger than, and dominant over, aerodynamic resistances,
even when the soil is wet and contributing to a rise in
canopy conductance. These results strongly suggest that the

remaining July bias of +2 K in the Noah test in Figure 15 is
caused by an overly high canopy resistance. Moreover, the
aerodynamic conductance of VIC in Figure 16 may well be
too high, thus acting to preclude a much higher midday
warm bias in LST that would more properly reflect VIC’s
high bias in Bowen ratio (H/LE) in July in Figure 14.
Sensitivity tests of aerodynamic resistance and canopy
resistance will be one focus in follow-on NLDAS studies.

4.3. Satellite-Based Validation of Land Surface
Skin Temperature

[82] The GOES LST fields are produced by the GCIP
partnership of NESDIS and UMD in GOES land surface
products. In this section, after validating GOES LST against
ARM LST as a benchmark, we use GOES LST to assess
NLDASLSTover north central CONUS. The study is limited
to nonmountainous regions, to avoid shadowing effects on
the GOES LST retrievals. The retrievals are obtained from
GOES-East (GOES-8) and provide fields of hourly LST at
0.5� spatial resolution in cloud-free conditions during day-
time. The LST retrieval provides a single aggregate LST for
each 0.5� target scene. We bilinearly interpolate the LST
fields to the 1/8� NLDAS grid. The GOES LST is retrieved
only at 0.5� targets deemed 100% cloud-free. Cloud detection
is based on that of earlier GOES insolation-retrieval studies
such as Tarpley [1979], as refined in later studies such as PT-
N. Despite the 100% cloud-free criteria, clouds may still be
present in the scene owing to (1) optically thin cirrus,
(2) subresolution or ‘‘subpixel’’ cloud (fair weather cumu-
lus), and (3) difficulty of cloud detection over snow cover.
[83] GOES LST is retrieved by the so-called ‘‘split-

window’’ technique of Wu et al. [1999], in which LST is
obtained from a linear regression of the GOES brightness
temperatures in the 11 mm and 12 mm bands. The regression
coefficients were derived assuming a surface emissivity of
e = 1. This assumption is valid over land surfaces of
nonsparse vegetation or snowpack, but less valid over rather
bare soils (wherein e = 0.91–0.97). Uncertainty from
emissivity issues is avoided in this study by staying over
nonsparse vegetation and by our universal application of
e = 1 in (1) the NLDAS models, (2) the in situ ARM/SIRS
sites, and (3) the GOES retrievals.
[84] We assess GOES LST here against the in situ LST

observations of the 22 SIRS sites. We limit the assessment
to nonwinter, as our future assimilation of GOES LST will
generally be confined to the warm season of stronger
coupling between LST and soil moisture. Figure 17 presents
the monthly and multistation mean of the daytime hourly
diurnal cycle of GOES LST and ARM LST for April and
July in 1998 and 1999. The data samples for Figure 17 (and
Figure 18) represent only locations and times when the
GOES cloud screening detected zero cloud. In Figure 17,
the GOES LST demonstrates a remarkable ability to match
the station-observed mean diurnal cycle, though it shows a
small cool bias (likely from undetected clouds) of order 0–
1.5 K before 18 UTC (local noon) and 1–2.5 K thereafter.
The smaller cool bias in the morning is likely from less
prevalent cloud cover then (e.g., subpixel cumulus). In
future data assimilation, one may mitigate this cool bias
by assimilating the 3-hour rise in GOES LST before noon
(about 15–18 UTC here), rather than LST itself. Tarpley
[1994] applied the morning rise of GOES LST to infer

Figure 16. Monthly mean diurnal cycle of aerodynamic
conductance (ms�1) averaged over all ARM/CART SIRS
sites for July 1998 for the control runs of Noah (open
squares), VIC (open triangles), and Mosaic (open circles)
and the Noah test (solid squares) using a modified
formulation for roughness length for heat.
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monthly mean surface-moisture availability. Like the ARM
LST, the 18 UTC GOES LST in Figure 17 is warmer (3–
4 K) and its preceding 3-hour morning rise is larger (by
about 1K) in July 1998 than July 1999. This interannual
LST variability reflects the drought episode over the ARM
region in July 1998, thus conditions were warmer and drier
than in 1999 (and likely less cloudy, hence the smaller
GOES LST afternoon cool bias in July 1998 versus 1999).
[85] Our goal is to use GOES LST retrievals to assess

NLDAS LST over large regions that lack in situ observa-
tions of LST or surface fluxes. As a benchmark for that
goal, Figure 18 illustrates, at the SIRS sites during July
and April 1999 for 18 UTC, a pleasing similarity between
GOES-based and ARM-based site-by-site match-ups with
model LST. Moreover, all three models show good skill in
either the GOES or ARM validation setting by yielding
rather tight clusters close to the diagonal (and hence high
correlations, shown later). In each month, the separate
GOES and ARM match-ups use the same sample of
instances where the GOES deemed the site to be cloud
free. In Figure 18, the sample size of 198 in April (out of
a possible 660 = 30 days x 22 stations) is notably smaller
than that of 334 (out of 682) in July, as the GOES cloud
screening detects cloud more often in the spring. One
would expect this from the natural trend of decreasing
cloud cover from spring to summer and the greater
likelihood in July of shallow, subresolvable cumulus.
Indeed in July, the GOES LST in Figure 18 manifests a
small (but nonnegligible) leftward-pointing ‘‘cold tail’’ of
outlier values that are not present in either the ARM
observations or the models and thus likely represent GOES
cloud detection failures. Similarly, the ARM observations

in April 1999 show several warm outlier values (near
315 K), not present in either the GOES or model LST,
likely representing bad ARM station observations.
[86] Most importantly, as desired, the GOES versus

model match-ups yield the same sense of model midday
LST bias as we derived from ARM data alone in the prior
section. Table 5 compares the GOES-based versus ARM-
based model bias, error standard deviation and correlation
obtained from the Figure 18 match-up and listed top-down
from warmest to coldest model bias. The table shows good
agreement between the sign and magnitude of the GOES-
based and ARM-based model bias. The GOES-based
model bias is order 1 K warmer than the ARM-based
model bias, owing to the aforementioned GOES LST cool
bias of order 1 K versus ARM LST. The GOES-based
model LST bias essentially reproduced the ARM-based
model bias, both in (1) the absolute sense of correct sign
and reasonably good magnitude and (2) the relative sense
between models and between spring and summer season.
Specifically, in agreement with the ARM-based LSM
signatures of control-run midday LST bias presented for
the entire annual cycle in RL-N, the GOES-based model
bias results in Figure 18 show that in summer (1) Noah
has the largest warm bias, which becomes much smaller in
spring, (2) VIC has a smaller and modest warm bias,
which becomes virtually zero in spring, and (3) Mosaic
has a modest cool bias, which becomes larger in spring.
Similarly, the GOES-based and ARM-based standard devi-
ations in Table 5 from Figure 18 are in reasonable
agreement, both in the range of 3–4 K. Finally, the
GOES-based correlations with model LST in Table 5 are
very encouraging, ranging between 0.66 and 0.78, with

Figure 17. Monthly mean diurnal cycle of LST (K) averaged over all ARM/CART SIRS sites for (left)
July and (right) April during (a and b) 1999 and (c and d) 1998 from SIRS observations (solid lines) and
GOES-East retrieval (dashed lines).
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five of six values of 0.70 or more, all without any
screening of the GOES cold LST outliers. The correlations
of model LST with GOES LST are consistently higher
than the ARM-based correlations, likely from better match
of the spatial scale of the GOES footprint and the NLDAS
grid-cell size, versus the point scale of ARM values.
[87] Encouraged by Figures 17 and 18, we evaluated

model LST against GOES LST in Figure 19 across a large
region of the northern Midwest, bounded by latitudes
39�N and 53�N and longitudes 82�W and 98�W (strad-
dling 90�W longitude, representing strict local noon at
18 UTC). This region is chosen for its (1) spatial separa-
tion from SGP, (2) nonsparse green vegetation in summer
(Figure 1a), and (3) vivid model differences in evaporation
in Figure 2. GOES versus model LST over this region
at 18 UTC for July and April 1999 are presented in
Figure 19. The ‘‘screened’’ results therein are described
later. Sample counts in Figure 19 are 70,000–100,000 (2–
3 orders larger than Figure 18, owing to the larger region).
In Figure 19, we binned the data into 1 K intervals (for
display only, kept full precision in statistics) and used
colors to denote 4 orders of data counts: 0–10 (red), 10–
99 (yellow), 100–999 (light green), and 1000–9999 (dark
green). The green shades depict the vast majority of the
sample and they manifest well-behaved, elongated clusters
lying near and parallel to the diagonal, as desired.
[88] Yet the red and yellow ‘‘tails’’ of cold GOES LST

in the unscreened panels of Figure 19 depict a nontrivial
number of points that likely represent cloud detection
failures, similar to the cold tails in the July GOES panels
of Figure 18. Hence we used model simulated LST to
screen the cold GOES LST tails in columns 2 and 4 in
Figure 19. Specifically, we rejected a GOES LST if model-
minus-GOES LST exceeded the unscreened, sample-wide
model-minus-GOES LST bias by more than two times the
model-minus-GOES LST standard deviation of the un-
screened sample. Figure 19 shows that this screening
preserves the high-density core region of the original data
cluster, while eliminating the cold tails. The data counts of
the three panels in any column of Figure 19 are identical
in the unscreened case, but differ slightly (less than 1.2%)
in the screened case, as the screening for each panel uses
the given model’s LST simulation. Last, in Figure 19, we
point out the ‘‘lower lobe’’ of cold model LST in the April
results of Mosaic and VIC. The lower edge of the lobe
ends at freezing, suggesting that Mosaic and VIC have

sustained remnants of melting snowpack too late into the
spring in this region.
[89] Table 6 shows the GOES-based model LST bias, error

standard deviation and correlation obtained from Figure 19.
The screened model-bias results are warmer, as expected, but
by a modest 0.5 to 1.0 K. More notably, the standard
deviation of the model errors are significantly less by around
1.0–1.5 K and the already high correlations increase by
around 0.1 to 0.76 or higher for almost all entries. It is
revealing to compare the unscreened results from the north
central CONUS in Table 6 with the SGP results in Table 5 (all
unscreened). Table 6 preserves the relative nature and order
noted in the biases in Table 5; namely, Noah is warmest and
Mosaic is coolest in July, with Noah notably less warm and
Mosaic notably more cool in April, while VIC falls in-
between in both months. Yet the unscreened biases in Table
6 are consistently 1–3 K warmer than those in Table 5,
reflecting that either the models are warmer in this region
relative to GOES LST than over the ARM SGP region, or the
GOES LST has a larger cool bias (of order 1–3 K) than the
GOES cool bias over the ARM region. We suspect the latter
owing to more cloud contamination in this more humid
region.
[90] We look forward to use of GOES LST in future

assimilation studies and LSM assessments. The validation
and utility of GOES LST in mountainous regions awaits
future study. Efforts continue at UMD and NESDIS to
improve cloud detection and spatial resolution in GOES LST.

5. Summary and Conclusions

[91] A multi-institution partnership under the GCIP pro-
gram has developed and evaluated the backbone for a North
American Land Data Assimilation System (NLDAS). This
paper is the overview of nine NLDAS papers (Table 2), which
appear together in the online HTML version of the GCIP3
special section of Journal of Geophysical Research. These
partners assembled a wide set of GCIP-sponsored products
and other data sources into robust forcing data sets and
multiscale validation databases. Validation applied surface
stations measuring energy fluxes, surface meteorology, soil
moisture and temperature, and mountain snowpack, plus
daily streamflow observations and satellite-derived land
surface temperature (LST) and snow cover.
[92] NLDAS features nonmodel sources of precipitation

and solar insolation and the four LSMs of Noah, VIC,

Figure 18. Comparison of model (y axis) versus observed (x axis) LST (K) at 18 UTC over all ARM/CART SIRS sites for
July (columns 1 and 2) and April (columns 3 and 4) 1999 for (top) Mosaic, (middle) Noah, and (bottom) VIC versus SIRS
observations (columns 1 and 3) and GOES-East observations (columns 2 and 4). Match-up point included only if GOES
LST is available (cloud free), yielding sample sizes of 334 in columns 1 and 2 and 198 in columns 3 and 4.

Table 5. Bias, Error Standard Deviation, and Correlation of Model LST Versus Both ARM LST and

Unscreened GOES LST Over the SGP From Figure 18a

Model

July 1999 (GOES/ARM) April 1999 (GOES/ARM)

Bias, K STDE, K Correlation Bias, K STDE, K Correlation

Noah +6.5/+5.4 3.8/3.5 0.70/0.64 +2.4/+1.7 2.9/4.1 0.78/0.61
VIC +2.8/+1.7 3.4/3.3 0.76/0.68 +0.3/�0.5 3.9/4.3 0.66/0.57
Mosaic �1.2/�2.3 3.7/3.0 0.70/0.72 �4.7/�5.4 3.0/4.0 0.77/0.62

aSTDE, error standard deviation.
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Mosaic, and Sacramento (SAC) executing in parallel on a
1/8� CONUS domain to provide land-state background
fields for data assimilation experiments. The infrastructure
of NLDAS includes streamflow routing and provides both
real-time and retrospective execution to support both oper-
ations and research. The hourly NLDAS forcing, now
spanning seven years from October 1996 to present (at time
of writing), represents an important NLDAS by-product.
[93] The NLDAS thrust here was the forerunner to recent

companion initiatives in 50 + year retrospective executions
of VIC on the NLDAS grid by Maurer et al. [2002] and
Noah on the NLDAS grid by H. van den Dool of NCEP
(private communication, 2003). We encourage researchers
to compare our NLDAS water and energy budgets here
with (1) these 50 + year retrospectives, (2) operational
global and regional coupled 4DDA, and (3) global and
regional reanalysis.
[94] A central distinction between the above suites is the

source and bias in the surface forcing. In NLDAS here, the
forcing is anchored by gage-based daily precipitation analy-
ses (with hourly disaggregation using radar-derived precip-
itation) and hourly surface insolation derived from GOES
satellites. All remaining forcing is from NCEP’s mesoscale
4DDA system, known as EDAS. NLDAS surface forcing
compared well against Mesonet observations over the SGP.
In tests that replaced NLDAS forcing with local-station
forcing, the test versus control differences in states and
fluxes were pleasingly small. Yet we continue thrusts to
further improve the forcing. The GOES-based solar insola-
tion shows some high bias at low sun angles and over
snowpack, though less bias then the fallback insolation from
EDAS. At mountain SNOTEL sites in western CONUS,
NLDAS precipitation has a nearly 50% low bias. Thus
NLDAS partners have implemented a PRISM-based tech-
nique [Daly et al., 1994] into the real-time forcing as of
1 February 2002 (with plans to reproduce the retrospective
forcing using PRISM).
[95] Observed precipitation and streamflow applied to

the annual water budget provided observation-based esti-
mates of evaporation and runoff over large regions. This
revealed substantial biases and intermodel differences in
evaporation. The ARM-observed surface energy budget of
the SGP confirmed the same evaporation bias anticipated
from the annual water budget analysis. The three SVAT-
type models, though they treat vegetation cover explicitly,

nevertheless yield strikingly different warm season evap-
oration over vegetation. This canopy conductance dispar-
ity among the models is a foremost issue. Moreover,
evapotranspiration bias can run counter to intuition.
Though Mosaic has the shallowest root zone in NLDAS
of the three SVATs, it has the highest warm season
evaporation rates and hence highest warm season storage
change in soil moisture, as it allows vigorous upward
diffusion of water from the subroot zone.
[96] Aerodynamic conductance (ChjVj) was a second

area of large disparity. Overly large or small midday Ch

values were found to substantially distort the expected
correlation between daytime LST bias and Bowen ratio
bias. Such distortion has crucial implications for the
prospects of successful assimilation of satellite LST. In
summer of the SGP, though Noah had a small high bias
in Bowen ratio while VIC had a large high bias, Noah
had the largest midday LST warm bias and VIC the
smallest. The cause was the substantially lower Ch values
in Noah versus VIC.
[97] Soil moisture storage emerged as a third area of large

disparity, similar to previous PILPS studies. The forward
radiative transfer models that are crucial to modern-era
assimilation of satellite data are sensitive to absolute mois-
ture states. Thus, while one can simulate evaporation and
runoff well from good simulation of temporal change in soil
moisture, land assimilation of satellite data brings a more
stringent need for good absolute states of soil moisture.
[98] NLDAS simulations of snowpack water equivalent

(SWE) at mountain SNOTEL sites showed a substantial low
bias in all four LSMs, with an attendant low bias in runoff,
owing to the cited high insolation bias over snow and low
precipitation bias in mountains in NLDAS. Yet there was
still notable disparity across the models in snow cover
fraction, snow albedo and timing of spring snowmelt. Noah
exhibited particularly low snow albedo, which conspired
with the high insolation bias in the forcing to yield a very
early bias in Noah seasonal snowmelt. The VIC and SAC
models yielded the smallest biases in simulated SWE and
regional snow cover, with VIC yielding the best snowmelt
timing. The elevation tiling unique to VIC in NLDAS
provides an advantage in snow state modeling. SAC snow-
pack simulations also performed well, as SAC’s simple
temperature index-based snow model bypasses surface
energy balance and snow albedo, and thus avoids the

Figure 19. Comparison of model ( y axis) versus GOES-East (x axis) LST (K) at 18 UTC over the northern Midwest
during July (columns 1 and 2) and April (columns 3 and 4) 1999 for (top) Mosaic, (middle) Noah, and (bottom) VIC
versus unscreened (columns 1 and 3) and screened (columns 2 and 4) GOES LST. See text for color scale definition and
latitude/longitude range of region.

Table 6. Bias, Error Standard Deviation, and Correlation of Model LST Versus Screened and Unscreened GOES LST for North Central

CONUS From Figure 19a

Model

July 1999 (GOES: Unscreened/Screened) April 1999 (GOES: Unscreened/Screened)

Bias, K STDE, K Correlation Bias, K STDE, K Correlation

Noah +9.3/+8.8 3.6/2.6 0.73/0.82 +4.5/+3.7 6.5/4.9 0.60/0.63
VIC +3.9/+3.3 4.2/3.0 0.64/0.76 �0.4/�0.7 6.9/5.3 0.65/0.76
Mosaic +1.6/+1.1 3.7/2.4 0.69/0.82 �3.9/�4.7 5.8/3.7 0.73/0.81

aSTDE, error standard deviation.
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positive feedback loops that can plague snowpack simula-
tions in surface energy balance models [Slater et al., 2001;
Bowling et al., 2003].
[99] We emphasize that the Mosaic, VIC, and SAC LSM

configurations in NLDAS differed in important aspects
from their traditional configurations. For example, Mosaic
executed with fixed soil-layer thicknesses and root depth,
rather then vegetation-dependent spatial variability. VIC
executed with one-hour rather than its typical three-hour
time steps and with hourly rather than uniform daily
disaggregation of precipitation. Moreover, the SAC runs,
by design, were the first executions over a continental scale
of the newly developed, semi-distributed version of SAC,
with a priori noncalibrated parameters. Thus NLDAS exe-
cution of SAC provided an essential benchmark for future
CONUS-wide SAC execution in semi-distributed mode.
[100] Indeed, all the model intercomparisons thus far in

NLDAS must be viewed as incomplete and providing only a
benchmark. The models were not calibrated to NLDAS
configuration (e.g., spatial resolution, model time step,
given fields of surface characteristics, temporal character
of precipitation disaggregation). As in PILPS, our purpose
is not to rank the models, but rather to build an enduring test
bed via the NLDAS infrastructure for development of
objective calibration approaches on very large continental
scales that far exceed and complement the regional scales
applied recently in PILPS [Wood et al., 1998; Bowling et al.,
2003; Boone et al., 2004].
[101] Last, this paper concluded with assessments and

application of GOES-based LST at 1/2� hourly resolution.
The diurnal cycle of GOES LST validated well against SGP
flux-stations. Validation of model LST by means of GOES
LST over the SGP gave validation scores similar to those
from ground-based ARM observations. By using GOES
LST to validate model LST over the northern Midwest, we
found model LST biases consistent with those over the SGP.
Hence GOES LST offers a powerful large-scale LSM
validation tool.
[102] We are now assembling the tools to perform actual

land data assimilation experiments. For this purpose, we
will be adding one or two forward radiative transfer models
into our common NLDAS infrastructure. Additionally, we
are pursuing development of adjoint models and ensemble
Kalman filter approaches. Finally, the NLDAS initiative
here represented a pathfinder for a companion extension to a
Global Land Data Assimilation System (GLDAS) by the
NASA and NCEP partners of NLDAS. The GLDAS is
described by Rodell et al. [2003] and is presently being
ported from NASA to NCEP. With NLDAS and GLDAS
together, NCEP and NASA and partners are striving to
provide land state initial conditions for (1) land-memory
predictability studies and (2) operational weather and cli-
mate model forecasts on daily to seasonal timescales.

Notation

4DDA four-dimensional data assimilation
ARM/CART Atmospheric Radiation Measurement/Cloud

and Radiation Testbed (DOE)
ARS FAO Agricultural Research Service Food and

Agriculture Organization

AVHRR Advanced Very High Resolution Radiometer
on NOAA polar satellites

CAPE convective available potential energy
CONUS continental United States

CPC Climate Prediction Center
CL-N NLDAS paper by Cosgrove et al. [2003a]
CM-N NLDAS paper by Cosgrove et al. [2003b]
DMIP Distributed Model Intercomparison Project
DOE Department of Energy

EDAS NCEP Eta-model-based 4-D Data Assimila-
tion System

EMC Environmental Modeling Center of NCEP
EBBR energy balance Bowen ratio flux stations in

ARM/CART network
EF extended facility flux stations in ARM/

CART network
GAPP GEWEX America Prediction Project
GCIP GEWEX Continental-Scale International

Project
GEWEX Global Energy and Water Cycle Experiment
GOES Geosynchronous Operational Environmental

Satellite (USA)
GRIB Gridded Binary data file format (WMO

standard)
GSFC Goddard Space Flight Center (NASA)
GSWP Global Soil Wetness Project

GTOPO30 Global (30 arc seconds) digital elevation
database

GVF green vegetation-cover fraction
IMS Interactive MultiSensor Snow (NESDIS)
LAI leaf area index

LDAS land data assimilation system
LM-N NLDAS paper by Lohmann et al. [2004]
LR-N NLDAS paper by Luo et al. [2003]
LSM land surface model
LST land surface skin temperature

NASA National Aeronautics and Space Adminis-
tration

NCAR National Center for Atmospheric Research
NCDC National Climatic Data Center
NCEP National Centers for Environmental

Prediction
NDVI normalized difference vegetation index

NESDIS National Environmental Satellite, Data, and
Information Service

NLDAS North American LDAS
NOAA National Oceanic and Atmospheric Admin-

istration
NRCS National Resources Conservation Service

(USDA)
NWIS National Water Information System
NWP numerical weather prediction
NWS National Weather Service (NOAA)
OGP Office of Global Programs (NOAA)
OHD Office of Hydrologic Development (NWS,

formerly Office of Hydrology)
ORA Office of Research and Applications of

NESDIS
PAR photosynthetically active radiation

PILPS Project for Intercomparison of Land-Surface
Parameterization Schemes
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PRISM Parameter-Elevation Regressions on Inde-
pendent Slopes Model

PS-N NLDAS paper by Pan et al. [2003]
PT-N NLDAS paper by Pinker et al. [2003]
RFC River Forecast Center (NWS)
RL-N NLDAS paper by Robock et al. [2003]
SAC Sacramento model (Sacramento Soil Water

Accounting Model)
SCE snow cover extent
SD-N NLDAS paper by Schaake et al. [2004]
SGP Southern Great Plains (field program)
SIRS Solar and Infrared Radiation Station

SNOTEL Snowpack Telemetry network of the NRSC
SNOW-17 Snow accumulation and ablation model

(NWS/OHD)
SP-N NLDAS paper by Sheffield et al. [2003]
SST sea surface temperature

STATSGO State Soil Geographic Database
SURFRAD Surface Radiation Budget Network (NOAA/

OAR-ARL, OGP)
SVAT Surface-Vegetation-Atmosphere Transfer

(model)
SWE snowpack water equivalent

TOGA Tropical Ocean Global Atmosphere
UMD University of Maryland
USGS U.S. Geological Survey
VIC Variable Infiltration Capacity LSM

WMO World Meteorological Organization
WSR-88D Weather Service Radar-Doppler
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measurements and imperfect models. Data assimilation techniques combine complementary information
from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a
sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in
the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has
been demonstrated in land surface data assimilations, there are no systematic studies to investigate its
performance in distributed modeling with high dimensional states and parameters. In this paper, we present
an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of
a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation
experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements,
and its sensitivities are analyzed with respect to the error specification, the initial realization and the
ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model
parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF
performance could be improved after augmenting with other complementary data, such as soil water
content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the
importance of consistent error specification and the potential with small ensemble size in the data
assimilation system.

© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction
 model parameters through calibration with observed data to mitigate

ertainties. Many calibration methods have been
Understanding the response of a river catchment to atmospheric
forcing is critically important to climate studies, agriculture (irrigation
planning and vegetation and crop growth), natural hazards preven-
tion and mitigation (e.g. floods and droughts), and other water
resources managements (e.g. water transfer and storages). These
studies are highly dependent on advanced simulation models and
large amounts of environmental data that are increasingly beingmade
available. Hydrological models are built based on a set of principles
coupled with a number of assumptions and imperfectly defined
parameters, and measurements are usually scarce in space and
discontinuous in time. These result in great uncertainties about the
measurements, model structures and parameters. In applications,
numerical hydrological modeling generally requires estimation of

⁎ Corresponding author. Present address: Room 301, Founder Building, No. 298,
Chengfu Road, Haidian District, Beijing, China. Tel.: +86 10 62757432; fax: +86 10
82529010.
developed, including the automatic calibration with multiple objec-
tives or criteria [20,24,32]. But most of the calibration methods are to
find a set of reasonable parameter values and to attribute all errors to
parameter uncertainties [23]. Moreover, general calibration methods
are difficult to completely utilizemultiple sources of data from remote
sensing and automated ground-based sensors. These limitations can
be remedied with the recently developed data assimilation
techniques.

The hydrological data assimilation method shares the basic tenet
of merging models and observations and accounts for uncertainties
from different sources of information [21]. The idea has been inspired
by and adapted from atmospheric and oceanic data assimilation
systems that concern estimation of initial conditions. In contrast, land
surface dynamics, including hydrological processes at the catchment
scale, are fundamentally damped in nature, and the process
assimilation is all about estimating errors in uncertain meteorological
forcing conditions and model parameterizations [29]. So the sequen-
tial data assimilation methods, such as the Kalman filter (KF) and the
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ensemble Kalman filter (EnKF), are more suitable for hydrological
applications and it can continually update the hydrological states and
model parameters when new data become available. Especially, the
EnKF is becoming popular in many areas of earth sciences because it is
easy to use, is flexible, and makes relatively few restrictive assump-
tions [9,10]. It can also account for nonlinearities and partially non-
Gaussianity.

The EnKF has been successfully applied in the land surface data
assimilation [17,39,40]. The modern adaptive filtering techniques
were investigated to address the error estimation problem that is a
crucial component in the EnKF [6,29]. However, most of these studies
focused on the regional or global scale of interest in hydrometeorol-
ogy, reflecting on the land surface–atmosphere interactions, while the
horizontal movements of water, including the overland flow, stream
flow routing and water interactions between sub-catchments, are
often omitted in the land surface models. On the other hand, the
fundamental operative unit for water resources management is the
catchment or river basin. There is therefore a need to extend the
applicability of data assimilation in hydrology from the regional land
surface processes to catchment scale hydrological issues [37]. At this
more local scale, the main issues are to estimate hydrologic
parameters (e.g. the permeability) and to characterize hydrologic
responses such as runoff, soil water movement, evapotranspiration
and groundwater movement.

There have been a few of studies with encouraging results
concerning the local scale hydrological state estimation with data
assimilation. Kitanidis and Bras [14,15] originally reformulated a
nonlinear (lumped) conceptual catchment model into a form
amenable to linear estimation for the KF application, and they found
that the assimilating feedback significantly improved the real-time
forecasting of river discharges even when the model and input error
statistics are not perfectly known. Schuurmans et al. [33] applied the
KF with a constant Kalman gain to assimilate the remotely sensed
latent heat flux for improving the water balance computation, and
demonstrated that data assimilation has much potential for analyzing
and improving distributed hydrological model prediction. Aubert et
al. [1] investigated the extended KF in an operational forecasting
context by introducing soil moisture data into stream flow modeling.
They also indicated remote sensing data coupled with sequential
assimilation to be well adapted to streamflow forecasting. Komma et
al. [16] examined the benefits of updating soil moisture with the EnKF
in forecasting large floods. Das et al. [8] used an ensemble square root
filter (EnSRF) scheme to assimilate the aircraft-based soil moisture
observations in a distributed hydrological model.

These studies greatly increase the potential to successfully apply
ensemble filtering methods in catchments for hydrological modeling
that allows coupled physical processes including precipitation,
overland flow, infiltration, evapotranspiration, groundwater and
streamflow. The representation of these processes resorts to empirical
and physical nonlinear equations instead of well-defined governing
equations like the general groundwater models or the land surface
models. In distributed hydrological models, unavoidably, there are a
large number of states and parameters [28,35], which pose difficulties
for assimilating different types of observations even with the EnKF.
Hence data assimilation approaches are often used to estimate the
dynamic states while the parameters are excluded from the
assimilation update group [23]. For examples, Pauwels et al. [26]
perturbed parameters associated with TOPMODEL but those para-
meters for every member were not updated when assimilating runoff
to estimate soil moisture, and Clark et al. [5] used streamflow
observations to update dynamic hydrological states based on prior
calibrated parameters. This could obtain reasonable historical values,
butmay not be applicable to the long-term hydrological predictions or
the environment with time-varying model parameters [23].

The filter techniques implicitly provide a combined estimation for
the dynamic state and the parameters by augmenting a joint state
ctor [2,8]. The standard KF is limited to a linear dynamic system
3], while the EnKF bypasses this limitation and it has been success-
lly used in hydrogeology for the parameter estimation with
nthetic experiments [4,36] and with field scale flow and transport
perimental data sets [18]. In order to reduce the degree of freedom
the joint state vector, a dual state-parameter estimation strategy
as developed based on the EnKF and has been demonstrated in
nceptual rainfall-runoff models [23], while this dual estimation
proach neglects the effect of cross-state and parameter dependen-
es [3], and it may be limited due to its overwhelming computational
rden in the presence of large numbers of computational units.
Even though many studies focus on joint estimation using the
KFwith the state augmentation, little attention has been paid to the
stributed hydrological modeling in which the state and parameters
e rather high dimensional. The applicability of the state augmen-
tion is also not clear when assimilating multi-site observations with
ased error estimation. Therefore, the potential of the EnKF needs
rther exploration to address the issues about the combined
timation for distributed catchment models.
In this paper, we assess the performance of the EnKF with the state
gmentation for a physical-based distributed hydrological model,
AT, and focus on the parameter estimation of the curve number

N2) in the SWAT, as well as the estimation of prognostic variables
ch as the runoff, soil water content and evapotranspiration. The
rameters are assembled into an augmented state vector because
ere are strong relations between parameters and dynamic states.
e do so on the basis of synthetic examples. Multiple types of
easurements are introduced and their effects are discussed. In order
better demonstrate its performance, sensitivities from the error
escription, the initial realization and the ensemble size are
vestigated.
The remainder of the paper is organized as follows. After a brief

view of the SWAT model and the EnKF method in Section 2, we
scribe the design of the data assimilation system and illustrate the
nthetic experiments in Section 3. Diagnostics of the capability and
nsitivity of EnKF are discussed in Sections 4 and 5, respectively.
nclusions and a summary of future work are given in Section 6.

Sequential data assimilation

1. Dynamic hydrological process

With the time evolving, a hydrological system is integrated with
namic states and static parameters under driving forces. A dynamic
drological model can be expressed as a nonlinear stochastic process
],

+ 1 = f Xt ;Ut + 1
� �

+ ωt + 1 ð1Þ

here t denotes the time step, X is an augmented state vector
nsisting of dynamic variables (e.g., water content in the soil profile)
d static parameters (e.g., hydraulic conductivity), f is the nonlinear
drological model forward operator, U is a set of externally specified
e-dependent forcing variables (e.g., precipitation), and the noise

rm ω accounts for model errors that represent all uncertainties
lated to model structure, forcing variables and parameters.
Observations using different instruments or techniques can be
tained from the hydrological system. It could be directly or
directly related to the hydrological states and be written as,

= H Xtð Þ + εt ð2Þ

here Y denotes the observation vector from measurement instru-
ents, H is the linear or nonlinear observation operator specifying
terministic relationship between the observation data and the true
ate X, and ε is a noise term accounts for both measurement error
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(instrument and processing errors in the measurement) and
representation error (introduced by imperfect observation model H),
like the random variable ω in Eq. (1). In general, these noise terms are
assumed to be Gaussian.

In order to get optimal estimates for hydrological states and
parameters of interest, we should combine the complementary
information from hydrological models and observations, which is
the basic idea of data assimilation. Sequential assimilation algorithms
march forward in time, alternating between model propagation and
data assimilation update whenever observations become available.

2.2. Framework of ensemble Kalman filter

The EnKF is based upon Monte Carlo method and the Kalman filter
formulation to approximate the true probability distribution of the
model state, conditioned on a series of observations of the model
states [3]. Instead of computing the error covariance explicitly, the
probability density of model states is represented by a large ensemble
of model states, including parameters, and each member of the
ensemble is integrated forward in time by the model independently.
Similar to Eq. (1), the model forecast is executed in the EnKF for each
ensemble member as follows:

Xi−
t + 1 = f Xi +

t ;Ui
t+1

� �
+ ωi

t+1; ω
i
t+1∼N 0;Qt+1

� �
; i = 1;…;n ð3Þ

Ui
t+1 = Ut+1 + ζit+1;ζ

i
t+1∼N 0;Rt+ 1

� � ð4Þ

where n is the ensemble size, namely the number of ensemble
members, Xt+1

i− is the component of the ith ensemble member
forecast at time t+1, Xt

i+ is the ith updated ensemble member at time
t, Ut

i is the ith perturbed forcing variables, ωt+1
i and ζt+1

i are
independent white noises for the forecast model and forcing terms,
drawn from multi-normal distributions with zero mean and specified
covariance Qt+1 and Rt+1. At time t+1, the observation ensemble
member can be written as,

Yi
t + 1 = HXt + 1 + εit + 1 ; ε

i
t + 1∼N 0; St + 1

� � ð5Þ

where HXt+1 is a simplification of H(Xt+1), which is the original
observation vector obtained from the true hydrological catchment
state Xt+1, and εt+1

i is the noise term with zero mean and specified
covariance St+1.

With the model forecasts and observations being available, the
assimilation or updating process can be expressed as,

Xþt+1 = X−
t+1 + Kt+1 Yi

t+1−HXi−
t+1

� �
ð6Þ

Kt+1 = P−
t+1H

T HP−
t+1H

T + St+1

� �−1 ð7Þ

P−
t+1≈

1
N−1

∑
N

i=1
Xi−
t+1−〈X−

t+1〉
� �

Xi−
t+1−〈X−

t+1〉
� �Th i−1

ð8Þ

〈X−
t+1〉 =

1
N

∑
N

i=1
Xi−
t+1 ð9Þ

where Xt+1
+ is the new optimal estimate vector of hydrological states

after assimilation, Kt+1 is the Kalman gain, which determines the
weight between the modeling and observation states in assimilation
processes, Pt+1

− , approximated with the ensemble, is the prior model
error covariance. Similarly, the updated (posterior) error covariance
could be estimated with the updated ensemble members. This
covariance is not indispensable for the EnKF, whereas its estimation
is necessary in the standard Kalman filter.
As shown in Eqs. (8) and (9), the EnKF algorithm uses the first and
second order moments to represent the probability density, which
means the Gaussian hypothesis is implicit for the model states,
including parameters. Even though this hypothesis is often violated
for the hydrological modeling, the EnKF appears to provide a good
approximation for nonlinear and non-Gaussian land surface problems
[40].

3. Data assimilation setup

3.1. SWAT model and hydrological state

The data assimilation algorithm is implemented on a popular
distributed hydrological model, Soil and Water Assessment Tool
(SWAT). Since it is physically based and computationally efficient,
uses readily available inputs, and enables users to study long-term
impacts, this model has been widely used to predict impacts of land
management practices on water, sediment, and agricultural chemical
yields in large, complex watersheds with varying soils, land use, and
management conditions over long periods of time [11,19,25]. For
modeling purposes, a catchment is partitioned into a number of sub-
catchments or sub-basins according to the property of Digital
Elevation Model (DEM) data, and then input information for each
subbasin is grouped or organized into different hydrologic response
units (HRUs) that are comprised of unique land cover, soil, and
management combinations.

The land phase of the hydrologic cycle is simulated at the HRU
scale based on a water balance equation with a daily step:

SWt = SW0 + ∑
t

i=1
Ri−Qsurf ;i−ETi−Wseep;i−Qgw;i

� �
ð10Þ

where SWt is the final soil water content (mm H2O), SW0 is the initial
soil water content (mm H2O), t is the time (days), Ri is the amount of
precipitation on day i (mmH2O), Qsurf,i is the amount of surface runoff
on day i (mm H2O), ETi is the amount of evapotranspiration on day i
(mm H2O), Wseep,i is the amount of percolation and bypass flow
exiting the soil profile bottom on day i (mm H2O), and Qgw,i is the
amount of return flow on day i (mmH2O). In this equation, the term of
Qsurf,i is the main component that determines streamflow in reaches
and the soil moisture in soil profiles. It can be expressed with an
empirical model, SCS runoff equation:

Qsurf ;i =
Ri−0:2Sið Þ2
Ri + 0:8Si

ð11Þ

where Si is the retention storage of soil profiles (mm H2O). It is
empirically defined as:

Si =
25400
CNi

−254 ð12Þ

where CNi is the temporal curve number for the day. In order to
capture the temporal–spatial variations of the retention storage (Si)
due to changes in soil water content, soil properties, land use,
management and slope, the temporal curve number is implicitly
expressed as:

CNi = f CN2; SWið Þ ð13Þ

where CN2 is the static curve number corresponding to the average
moisture condition, and it depends on the soil's permeability, land use
and antecedent soil water conditions [25]. Its value is often between
30 and 100. It is a dominant parameter for the surface runoff
generation in an HRU, and consequently influences the streamflow
process and the soil moisture states.
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After the surface runoff generation, other processes including soil
percolation, evapotranspiration, groundwater and seepage are carried
out at the HRU level and subsequently water from these processes is
aggregated to the subbasin level. The total runoff generated in a
subbasin is routed through the channel network using the variable
storage routing method or the Muskingum River routing method
[19,25].

Although the SWAT model is capable of simulating other
processes, such as the plant growth and the sediment movement,
here we exclusively focus on the water movement in catchments.
Moreover, we select 11 primary state variables to diagnose the
performance of data assimilation on this model, even though there are
hundreds of state variables to support the model run.

As shown in the Table 1, the first seven general states, including
water stored or lagged in the soil profile and the drainage reaches, are
model-dependent variables to characterize water storage conditions
in HRUs or in subbasins. The subsequent three dynamic variables,
Runoff (R), Soil water content (SW) and Evapotranspiration (ET) are
viewed as observable or prognostic states since they could be
measured with specific instruments or techniques. In addition, there
are a large number of static variables (parameters) needed to be
identified for a simulation application, and each of them may make a
different contribution. However, the SCS runoff curve number, CN2, is
the most sensitive parameter and its uncertainty could induce great
effects on runoff modeling and other hydrological processes
[13,24,32,34]. It is often needed to be estimated by calibration
methods or data assimilation methods. In the SWAT model, it should
be mentioned that the curve number is used to compute the
maximum retention value and other two shape coefficients [25].
This computational process is implicitly expressed with Eq. (13). The
three parameters will be continuously correctedwith the CN2 updated
in the data assimilation process.

3.2. Experimental area description

In this study, an experimental catchment is adopted in the Lake
Fork Watershed in Northeast Texas, USA. This catchment area covers
489.85 km2 and the altitudes of the basin vary between 106 m and
195 m above sea level. The pasture (51.3%), range-grasses (28.4%) and
deciduous forest (16.0%) are the three main land use types.

The data set including topographic information, land use infor-
mation, soil data, daily precipitation, and climate records is taken from
the SWAT visual software modular [19]. As a synthetic data
assimilation experiment, nevertheless, the data about stream runoff

Table 1
Selected dynamic states and parameters for the assimilation update.
Order State
variable

Description Scale Class

1 Qsufstor Amount of surface runoff stored or lagged HRU V
2 Qlatstor Amount of lateral flow stored or lagged HRU V
3 Qshall Amount of shallow water stored or lagged HRU V
4 Qrchrg Amount of recharge entering the aquifer HRU V
5 Qpregw Amount of groundwater flow into the

main channel
HRU V

6 Wsol Amount of water stored in the soil layer
for each HRU

HRU×Nlay V

7 Wr Amount of water stored in the reach subbasin V
8 R Amount of water flow (Runoff) out of a

reach
subbasin Vo

9 SW Amount of water in soil in a subbasin subbasin Vo

10 ET Amout of actual evapotranspiration in
subbasin

subbasin Vo

11 CN2 SCS runoff curve number for moisture
condition II

HRU P

Note: The class V denotes general state variables, Vo denotes the observable or
prognostic variables, and P denotes principle parameters; Nlay is the number of layers
of soil profiles in a hydrologic response unit (HRU).

Fi
W

treamflow), soil water content and actual evapotranspiration in
bbasins are drawn from a reference simulation that will be
scribed in the next subsection.
Based on a digital elevation model, the catchment is partitioned

to 20 subbasins and subsequently 49 HRUs according to the land use
d soil type information. The soil profile is divided into seven layers
ith different soil properties. As shown in Fig. 1, the serial number of
bbasins is not in a natural sequence because some outlets are added
get approximately uniform subbasin areas. This is beneficial to the
drological simulation and the data assimilation. Consequently, the
int state vector consists of 717 such variables as stated in Table 1.

3. Data assimilation procedure

Synthetic experiments are designed to assess the capability and
nsitivity of the assimilation process to model parameterizations and
ysical representations, and this is also a general and effectual way
investigate data assimilation performance on predictive systems as
own by Chen and Zhang [4] and Kumar et al. [17]. Since the true
rameter values are known in the experiments, we can easily assess
e performance of the assimilation approach. In these experiments,
e reference field is randomly picked up from a predefined Gaussian
stribution with given statistics. And then the hydrological model is
tegrated to obtain the reference state (or “true” state), referred to as
e “control run” or reference modeling. At the measurement
cations, the observations (e.g. the runoff) to be used in the
similation system are drawn from the reference state. Finally, the
similation integrations are conducted by introducing the synthetic
servations on the basis of a stochastic modeling platform.
In the hydrological modeling, a warming up process is often
eded to initialize the model state and harmonize hydrologic
sponses with the meteorological forcing, and thus the warming up
riod should be set before the assimilation performs. However, the
mputation may be expensive to run an ensemble with a large
mber of modeling members through a long warming up period,
hich is often more than one year. Alternatively, we could run only
e member of the ensemble to warm up (spin up) the model and
en perturb themeteorological forcing terms and generate stochastic
alizations of the parameters. In this study, three running periods are
g. 1. Subbasin distribution of the experimental catchment from the Lake Fork
atershed in Northeast Texas, USA.



specification, the ensemble size is 200 for all cases, and detailed

Fig. 2. Stochastic realizations of the CN2s with Gaussian distribution, N(75.0, 5.02), 200
members.
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specified for the data assimilation procedures: (1) Warming up
period: the model propagates forward with the same boundary
conditions (meteorological driving force) as the “control run”, and the
parameters (here is the curve number, CN2) could be specified
randomly; (2) Perturbation period: At the beginning of this period an
ensemble of stochastic parameter fields are generated using a
predefined Gaussian distribution, and the meteorological condition
is perturbed using additive white noise throughout this period. Each
member of the ensemble propagates forward independently and the
hydrological states are simulated given the continuously perturbed
the driving force; (3) Data assimilation period: After the ensemble has
been generated and initialized, the hydrological states are updated by
assimilating observations drawn from the “control run”. Themodeling
states, as well as the driving force, are perturbed with white noises
throughout this period. Clearly, these procedures are not only
applicable to the synthetic experiments in this study but also could
be carried out in a real-world application. Furthermore, when there is
a poor knowledge about the initial hydrological conditions of a
catchment for short-period modeling, the first two procedures are
able to create reasonable distributions of hydrological states to
approximate the initial conditions and be beneficial to the subsequent
data assimilation operations. For long period modeling, however,
there is no need to perturb meteorological conditions during the
perturbation period, since the impact from poor initial conditions on
assimilation performances may not be significant owing to the
damping nature of hydrological systems [29].

In this study, the length of the control run is three years, 1095 days
in total. As to the data assimilation modeling, correspondingly, the
first 445 days is set as warming up period, and then it is the
perturbation period (from 446th to 455th day). Without exceptional
specification, subsequently, the assimilation is carried out from the
456th to the 1095th time step, 640 days in total. It should be reminded
that the data assimilation method used here focuses on the
estimations of CN2 and prognostic variables exclusively, and other
parameters in the control run and assimilation run hold identical
values.

In terms of the landuse and soil types in our study area, the values
of the curve numbers (CN2) for each HRU are around 75.0 [25], and
uncorrelated stochastic realizations of CN2s are generated for the 49
HRUs by specifying Gaussian distributions, N(75.0, 5.02). The
assumption of the Gaussianity is made for the convenience and
should be subject to further investigation. Moreover, the standard
deviation is empirically set as 5.0 that is large enough to account for
their uncertainties, because the range of CN2s are not beyond (60, 90)
in this area according to the reference values [25]. Based on this
statistics, the Latin hypercubemethod [12,27] is used to generate a set
of realizations. Fig. 2 shows 200 realizations and the black squares are
randomly selected as a reference parameter field to simulate the
“true” states under the control run.

Since the first seven general variables in Table 1 are temporary and
their model errors are difficult to be identified, we assume they are
free of model errors in our experiments. In contrast, the prognostic
variables, namely the runoff (R), evapotranspiration (ET) and soil
water content (SW), are perturbed by additive white noises to
represent the possible measurement and model errors. These noises
are mutually uncorrelated in space and time with means equaling to
zero (indicating unbiased estimations) and standard deviations
scaling to the current values of variables. Likewise, the precipitations
are perturbed, and the standard deviations also equal to the products
of a scaling factor and the current precipitation values. Furthermore,
two different scaling factors for precipitation perturbations could be
used in the perturbation period (period 2) and the assimilation period
(period 3). Specifically, in the period 2, giving a larger scaling factor
(here it is 0.30) can generate broad spreads of precipitation and
hydrological response to account for uncertainty in the initial
conditions when the prior knowledge is poor. Without exceptional
specifications are shown in Table 2.
It should be mentioned that these errors may be prescribed in a

number of ways. One way is to specify time-dependent errors [9,30]
or even to use a modern adaptive filter algorithm [6,29]. But the other
way described above is much more straightforward and operational
and has been widely used in data assimilation works [5,17]. In
addition, the hydrological system in our study is free of errors, since
both of the referencemodeling and the data assimilationmodeling are
implemented based on the samemodel (SWAT), and the observations
are directly drawn from the reference simulation. In fact, the success
of EnKF is quite dependent on the way of error prescription that
should be consistent with the real uncertainties of the model and the
measurement [9,10,26]. Therefore, the errors prescribed with scaling
factors (Table 2) have overestimated the real uncertainties of the
interested hydrological system, and this inconsistency is favorable to
examine the robustness of EnKF.

4. Capability of EnKF

In practice, runoff is a comprehensive response to the hydrological
cycle and it could be easily obtained from hydrological stations. We
take it as a preferred observation data in the assimilation work as it is
the most general type of measurement in catchments. Moreover, the
remote sensing products, for example the soil moisture retrieval data,
play more and more important roles in hydrological modeling with
the recent technology development and they could be considered as
complementary data sets in data assimilations.

4.1. Runoff measurement

We first take five runoff observations in the lower catchments as
shown in Fig. 1, from the subbasins 7, 8, 9, 10 and 14. The runoff
observations are drawn from reference modeling and assimilated at
every time step. The initial realizations of curve number (CN2) are
generatedwith Gaussian distributionN(70, 5.52), which is biasedwith
respect to the true solution, representing an initial guess to (prior
knowledge of) the unknown true properties. It is also feasible to
specify relatively accurate estimation of CN2 for each HRU according
to prior knowledge (soil and land cover properties), due to the
assumption of independence for all HRUs. But here we simply set
identical distributions for all HRUs. In order to assess the capability of
EnKF, we also prescribe relatively small scaling factors for the
standard deviations of the errors: 0.001 for the observed runoff and
0.01 for the precipitation and the three model-based prognostic
variables. These detailed specifications are exhibited as Case 1 in



Table 2. Impacts of larger scaling factors will be discussed in the next assimilation steps. It is apparent that the initial estimates of CN2s are
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Table 2
Statistical parameter specification for the EnKF assimilation cases and the control run.

Case Measurement
type

CN2

distribution
So for observation Sm for model Sp for

precipitation
R SW ET R SW ET

True N(75, 5.02)
1 RL N(70, 5.52) 0.001 0.01 0.01 0.01 0.01
2 RU N(70, 5.52) 0.001 0.01 0.01 0.01 0.01
3 RO N(70, 5.52) 0.001 0.01 0.01 0.01 0.01
4 Ro+SW N(70, 5.52) 0.001 0.001 0.01 0.01 0.01 0.01
5 Ro+ET N(70, 5.52) 0.001 0.001 0.01 0.01 0.01 0.01
6 RL N(70, 5.52) 0.05 0.01 0.01 0.01 0.01
7 RL N(70, 5.52) 0.1 0.01 0.01 0.01 0.01
8 RL N(70, 5.52) 0.1 0.1 0.1 0.1 0.1
9 RL N(70, 5.52) 0.3 0.3 0.3 0.3 0.3
10 RL N(70, 5.52) 0.4 0.4 0.4 0.4 0.4
11 RL N(70, 7.02) 0.05 0.03 0.03 0.03 0.05
12 RL N(65, 7.02) 0.05 0.03 0.03 0.03 0.05
13 RL N(65, 5.52) 0.05 0.03 0.03 0.03 0.05

Note: So, Sm and Sp are the scaling factors for error standard deviations corresponding to variables; RL, RU and RO denote the runoff observations from five lower, five upper streams
and the catchment outlet, respectively; SW and ET denote observations of the soil water content and the evapotranspiration; “+” denotes a combination of two kinds of
measurements. The SW and the ET observations are only assimilated at the 1st, 31st, 61st, 91st and 121st assimilation steps.
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section.

4.1.1. Parameter estimation
After assimilation under the conditions described above, scatter-

plots for the ensemble means of the CN2s vs. the reference field are
depicted in Fig. 3 for the initial, the 60th, the 180th and the 640th
Fig. 3. Assimilation estimates of the CN2s vs true (reference) values for Case 1: (a) ensemble
ensemble means at the 180th assimilation step, and (d) ensemble means at the 640th assimil
out 70 and do not have any resemblance of the reference field.
sed on this set of initial realizations, the model replicates run to the
xt time step and are assimilated with the five runoff observations.
e scatter points of the final result are around the 45-degree line,
hich indicates a good agreement between the ensemble means of
2s and the true values. Even just at the 180th assimilation step, the
means of initial realizations; (b) ensemble means at the 60th assimilation step; (c)
ation step (final results).



free water evaporation, and these processes are dominated by many
parameters and variables. In this study, however, we only focus on the

Fig. 5. RMSE series of the three prognostic variables based on the data assimilation
(Case 1) and the open loop simulation: (a) runoff, (b) soil water content, and (c)
evapotranspiration.
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ensemble means capture the major features of the reference field, and
there is a slight improvement for the CN2 estimation in the rest of
assimilation steps.

It is of interest to note that some estimates are still discrepant to
the true values although the prognostic variables are matched very
well. This implies the well-known nonuniqueness in the inverse
problems. Specifically, the biased estimation values of CN2s could
provide acceptable hydrological responses, such as the runoff
estimation. As typical examples taken from the 7th HRU in subbasin
5 and the 28th HRU in subbasin 10 (Fig. 4), the ensemble means of the
CN2s match the true values very well after 120 assimilation steps. In
contrast, for the 31th HRU in the subbasin 11, the value of CN2 is
underestimated, and the ensemble spreads to a broad range.

4.1.2. Prognostic variable estimation
Getting accurate estimation for the prognostic variables is an

objective of the hydrological simulation and the data assimilation. To
compare the performance of the assimilation integrations, open loop
simulations are conducted using the same initial realizations of the
CN2s as well as the uncertain precipitation inputs but without
assimilating the model with observations. Thus each member of the
ensemble integrates forward independently without updating para-
meters and variables. Root mean square errors (RMSEs) with respect
to the true simulation are computed based on the ensemble means of
the three prognostic variables to assess the estimation accuracy.

Fig. 5 shows average time series of RMSEs of prognostic variables
for the entire modeling domain. It is clear that the data assimilation in
Case 1 reduces the RMSEs of the runoff and soil water content
estimations. Especially in peak runoff occurring periods, the RMSEs
are lower than that in open loop simulations. However, the
assimilation does not give any significant improvement for the
evapotranspiration estimates as the two RMSE series keep at the
same levels approximately. Evapotranspiration is a complex process
containing the soil water evaporation, plant transpiration and canopy
Fig. 4. Typical assimilation processes of the CN2s: (a) for HRU 7, Subbasin 5; (b) for HRU
28, Subbasin 10; and (c) for HRU 31, Subbasin 11.
curve number (CN2) estimation that dominates the surface runoff
generation and soil water balance (Eqs. (10)–(13)) and indirectly
influences the evapotranspiration processes. In order to diagnose the
performance of evapotranspiration estimation, other parameters
related to these processes may be needed under this assimilation
condition.

Furthermore, taking subbasin 2 as a typical example which is far
away from the observation locations, we exhibit the results monthly
in order to distinguish the discrepancies of the EnKF and the open
loop. It shows that the data assimilation estimates provide better
matches with true processes than do the open loop simulations in
which great discrepancies are present at the peak value points (Fig. 6).
In fact, these results are general exhibitions that are shared by the
other subbasins. Consequently, the data assimilation is capable of
reducing the simulation uncertainties of these prognostic variables
and improving their estimation accuracy.

4.2. Impact of runoff measurement sites
Runoff measurement stations may be assembled at the upper

streams or the lower streams in a catchment. Runoff processes at
different measurement sites are impacted by hydrological responses
from their upper regions. Thus, it is necessary to examine the impact
of runoff measurement sites on data assimilation. Two sets of data
assimilation runs are conducted: (1) The runoff observations from the
five upper streams, in subbasins 1, 3, 4, 15 and 19, are assimilated into
the SWAT model at every simulation time step, and (2) the runoff
observation only from the outlet at subbasin 14 is assimilated. As
described in Case 2 and Case 3 in Table 2, other assimilation conditions



are not changed. The initial ensemble means for the two cases are still
about 70 as shown in Fig. 3a.

assimilating the satellite radiances directly with nonlinear observa-
tion operators (as Eq. (2)), this treatment is too complex to get
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Fig. 6.Monthly true processes and estimations from the data assimilation and the open
loop simulation in the subbasin 2: (a) runoff, (b) soil water content, and (c)
evapotranspiration.

Fig. 7. Final results of the CN2 estimates vs true (reference) values: (a) Case 2 and (b)
Case 3.
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Fig. 7 exhibits the final results of Case 2 and Case 3. In Case 2, most
of the points are below the 45-degree line, which indicates that the
values of CN2s are underestimated and that reasonable estimates for
CN2s are not obtained by assimilating the five observations from the
upper streams (Fig. 7a). However, the Case 3 shows much better
results since the assimilated-true points are around the 45-degree line
(Fig. 7b).

When comparing the RMSE series of Case 1, Case 2 and Case 3 as
shown in Fig. 8 (a), we can see that the RMSE level obtained with the
five lower observations is lowest in the assimilation period, while that
obtained with the upper observations is at the highest level.
Furthermore, another favorable error measure, mean absolute error
(MAE), is employed as it describes a natural error magnitude and
avoids the effect of long-tail probability distributions [38]. However,
the MAEs show identical patterns to the RMSEs (Fig. 8), which means
long-tail probability distribution does not exist evidently and the
parameter estimates can be improved by assimilation observations.
Particularly, more reasonable results could be obtained by assimilat-
ing the runoff observations from the lower stream stations. This trait
attributes to the fact that the runoff from lower streams, especially the
catchment outlet, contains the full information about the hydrological
states of the upper regions.

4.3. Multiple measurements

There are many types of measurements that can be combined to
estimate the hydrological states. In the measurement family,
hydrologic remote sensing plays an important role since it can
provide much more information about the land surface conditions at
large scales, for example the radiance, surface soil moisture and
evapotranspiration. Even though the EnKF method is capable of
ccessful application for poor knowledge of radiative transfer
ocesses [31]. Alternatively, it is possible to assimilate the remote
nsing retrieval data that is considered as complementary informa-
on when the runoff observations are inadequate.
To test this idea, Case 4 and Case 5 are designed based on Case 3 as
own in the Table 2. In addition to the runoff observation from the
tlet (subbasin 14), the soil water content and evapotranspiration of
e each subbasin, drawn from the reference modeling, are assimi-
ted at the 1st, 31st, 61st, 91st and 121st time steps. Hence, the
easurement groups are multiple: five-time data of soil water
ntent are added to the single runoff observation for Case 4, and
apotranspiration for Case 5 likewise. As the treatment on the runoff
servations, the scaling factors of standard deviations of these new
servations are prescribed with 0.001 to account for their uncer-
inties in our synthetic experiments, even though this value may be
o optimistic for practical measurements.
It is clear from the Fig. 8 that assimilating multiple types of

easurements reduces the RMSEs and the MAEs of CN2 estimates and
ads to systematic improvements over the case of only assimilating the
tlet runoff (Case 3). The improvement of Case 5 (adding evapotrans-
ration observations) is not as significant as that of Case 4 since the
lationship between the CN2 and the evapotranspiration is weak as
plained before. Fig. 9 gives final results of Case 4 and Case 5 for the
2s estimates vs. the true values, indicating that their matches are
ceptable despite the nonuniqueness and nonlinearity between
rameters and hydrological responses. Moreover, Case 4 provides the
st estimates about the three prognostic variables among the first five



cases after 100 assimilation steps even though its estimation accuracy
for CN2 is not comparable toCase 1 (Figs. 10 and 5). In fact, the soilwater

the source and statistical structure of these errors are often unknown
[7]. Adaptive filtering approaches addressing this problem are capable

Fig. 8. Root mean square errors (RMSEs, (a)) and mean absolute errors (MAEs, (b)) of
the CN2 estimations for the first five cases.

Fig. 9. Final results of the CN2 estimates vs true (reference) values: (a) Case 4 and (b)
Case 5.
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moisture condition plays an important role in controlling the surface
runoff generation and the evapotranspiration processes, as expressed in
Eq. (10) through Eq. (13). When its observations are assimilated, for
example at the first assimilation step, thewater storages in all subbasins
approach the reference (true) values and these updated states result in
acceptable estimates on the runoff and evapotranspiration at the second
and subsequent steps. Therefore, the soil water content observation
provides complementary data to the assimilation systems, even though
it may not be available or utilized at every time step.

5. Sensitivity of EnKF

The EnKF is a Monte Carlo approximation based on a sequential
Bayesian filtering process. When constructing a data assimilation
framework, we should first consider various aspects, mainly including
the model and observation errors, the prior knowledge about the
parameter distribution as well as the ensemble size, because these
factors have critical impacts on the accuracy and performance [4,17].
In this section, we diagnose sensitivities of the EnKF and focus on the
performance with respect to the three factors. The detailed design for
the cases is given in Table 2.

5.1. Error specification

The EnKF requires estimates of the model and observation errors
to properly merge model predictions with observations [17], while
the accurate specification of the errors is generally difficult because
of estimating model and observation error covariance information
during the online cycling of a data assimilation system [6]. To date,
however, these approaches have received little attention and been
rarely applied to hydrological modeling [29]. Here we hence prescribe
the error noises explicitly by representing the standard deviations
scaling to the current values of the variables, as described in
Section 3.3. This treatment holds an implicit assumption that larger
values of model and observation variables could introduce greater
errors. In actual applications, it is preferable to overestimate rather
than underestimate errors as the underestimation may result in filter
divergences [5]. So here we examine the impacts of large errors by
varying the scaling factors and focus on the parameter (CN2)
estimation.

The scaling factors (So and Sm) for the observation and the model
as well as the precipitation (Sp) are changed intentionally to represent
different error magnitudes. Five cases (from Case 6 to Case 10) are
designed based on Case 1 in order to identify their contributions to the
assimilation system. Note that all errors in these cases are over-
estimated compared to the true ones in the error-free synthetic
hydrological system.

Fig. 11a illustrates that the assimilation estimates of the CN2s for
Case 6 (So=0.05) agree with their true values very well, and the
result is comparable to that of Case 1 with small errors. When the
three scaling factors increase to 0.1 (Case 8), the result is suboptimal
as the matching points are symmetrically distributed around the 1:1
line (Fig. 11b); and further the assimilation estimates will only
capture synoptic properties of the distribution of true values as the



scaling factors reach 0.4 (Case 10, Fig. 11c). Therefore, it is preferable
that the overestimated level of the errors should be kept below 10%

the forcing boundary (i.e. precipitation in this study), the observation
and the model. For example, Case 7, whose scaling factor for runoff
ob
pr
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w
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Fig. 10. RMSE series based on Case 3 and Case 4 for (a) runoff, (b) soil water content,
and (c) evapotranspiration.

Fig. 12. RMSEs (a) and MAEs (b) of the CN2 estimations with different error
specifications (Case 6 to Case 10).
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(corresponding to the 0.1 for the scaling factors), and larger levels
may degrade the performance of EnKF for a catchment hydrological
system [7]. These characteristics are further interpreted by Fig. 12 that
describes the estimated errors of the CN2 for the five cases. As to Case
6, for example, the RMSE and theMAE series drop dramatically within
the first 100 assimilation steps, and the final errors approximate to the
results of Case 1. Moreover, with the increase of the scaling factor, the
series of the RMSE and the MAE would go up gradually.

In addition to the error magnitude, the data assimilation
performance also depends on a consistent combination of errors for
Fig. 11. Final results of the CN2 estimates vs true (reference
servation (So=0.1) is ten times the size of the model and the
ecipitation (Sm=Sp=0.01), exhibits quite discrepant estimates.
en though its RMSE series andMAE series follow the levels of Case 6
ithin the first 100 assimilation steps, they jump up subsequently and
ep at high levels (Fig. 12). This property is not unique for Case 7, and
) values: (a) Case 6, (b) Case 8, and (c) Case 10.
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Case 1 also presents oscillatory behaviors as shown in Fig. 8. In fact,
more unacceptable results can appear in the cases with inconsistent
combination of errors, especially the case with large error magnitudes
(e.g., for So=0.05, Sm=0.01 and Sp=0.05, not shown). This kind of
combination may not render negative impact at the beginning steps,
but at the late assimilation steps it spoils the data assimilation
performance or even induces filter divergences. Remedy to this issue
may be made by prescribing time-correlated errors or using adaptive
filter techniques [6,29].
broadly covering true values and making each realization approach
truths by assimilating observations.

Fig. 14. RMSEs (a) and MAEs (b) of the CN2 estimations under different initial guesses
(Case 11 to Case 13).
5.2. Initial realization of parameters

Usually according to the prior knowledge of the landuse and soil
type in a catchment, the initial realizations can be generated with raw
statistical properties including means and variances. If the land cover
type is pasture and the soil type is in “B group” with fair hydrological
condition in an HRU, for example, the mean of CN2 could be set as 69
and the variance would be small [25]. In practice, this kind of rough
prescription may be far away from the true statistics of parameters,
particularly when the HRU contains an erratic type of landuse and
complex soil formations. So the subjectivity and randomness are often
unavoidable. The goal of this subsection is to examine the impact of
the biased prior statistics on the estimation results. The mean and
variance are taken into account in Case 11, Case 12 and Case 13 whose
means and variances are far away from the true values (Table 2).

Fig. 13 illustrates final results of the three cases. It is clear that
these assimilation estimates have captured principal properties of the
CN2 distribution for the HRUs. Case 11 with relative small initial biases
provides the best result while there are no significant differences
among the three. This has also been demonstrated by the evolutions
of errors. As shown in Fig. 14, the RMSEs and MAEs drop dramatically
at the first five assimilation steps even for Case 12 and Case 13 with
large initial biases. After 250 assimilation steps, each of them keeps
constant approximately and there are small differences mutually. The
overestimated errors of the observation, the model and the forcing
boundary (Table 2) should be partially responsible for the estimated
results, which are not as good as that of Case 1. Therefore, the data
assimilation performance is not greatly dependent on the initial guess
of the parameters. In addition, compared to Case 13, Case 12 with
larger initial biases exhibits less RMSE and MAE within the beginning
90 assimilation steps and even its final errors are not comparable to
that of Case 13. So it is preferable to enlarge the magnitudes of the
variances if the prior means are far away from the truths (i.e., with
poor prior knowledge), especially for a short-period assimilation.
Wide range distributions of the initial realizations are beneficial for
Fig. 13. Final results of the CN2 estimates vs true (referen
5.3. Ensemble size

In the EnKF, a cluster of realizations (samples) are used to
approximate the probability distribution of the states. Generally,
increasing the ensemble size enables the algorithm to propagate the
error information more accurately but at the same time it increases
ce) values: (a) Case 11, (b) Case 12, and (c) Case 13.



estimations. Our objective here has been to better understand the
capability of combined state-parameter estimation with EnKF and to
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Fig. 15. RMSEs (a) and Ensemble Spreads (b) for CN2 estimations with different
ensemble sizes (the light gray areas are the 95% confidence intervals).
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the computational burden. Moreover, the assimilation estimation
results also depend on specified random realizations even with the
same ensemble size. Therefore, it is of great importance to explore the
appropriate ensemble size to balance the estimation accuracy and the
computational efficiency.

On the basis of Case 13, other three cases with ensemble size of 100,
400, 1000 are assembled with 300 assimilation time steps. For each of
the four (Case 13 also included), we perform30 sets of assimilation runs
by varying the random seeds to generate different realizations. In
addition to the RMSE, anothermeasure of the goodness is the Ensemble
Spread,which represents theestimateduncertainty. It shouldbe close to
the RMSE if the EnKF estimates the uncertainty of the state properly [4].
The confidence intervals for RMSE and Ensemble Spread at each
assimilation step, with the 0.95 confidence intervals, are computed
based on the 30 sets of assimilated results.

Table 3 displays the final results of the four cases. As expected, the
spatial average RMSE decreases with the increase of ensemble size,
while it exhibits slight improvement when the size is in excess of 400.
For the case with a small ensemble size (e.g., 100, 200) the Ensemble
Spread is smaller than the RMSE, which indicates that the realizations
systematically underestimate the uncertainty of the state. This kind of
underestimation can be eliminated by increasing the ensemble size.
For example, in the case with size=1000, the Ensemble Spread is
close to the RMSE after 50 assimilation steps (Fig. 15). Nevertheless,
this improvement comes with the price of a large computational time.
With a computer of dual 3.50G HZ processor, the execution time
increases from 78 s to 3977 s as the size goes from 100 to 1000, given
the 300 time steps. The cost with size=1000 is not quite expensive
for our problems, but the computational burden will increase and
become overwhelming if there are more than a hundred of
computational units (sub-basins) in a different catchment. Certainly,
the reasonable size depends on the nature of the problem. For
example, the atmospheric estimation could be performed well with
64 ensemble members [22] and the land surface assimilation may
require the size only about 10 [17], while the hydraulic conductivity
estimation in geologic formations requires about 200 members [4].

With equal ensemble sizes, furthermore, different sets of param-
eter realizations will provide different estimation accuracy, especially
for the small-sized cases. While the ensemble-spread confidence
interval is negligible, there is a certain RMSE confidence interval for
every case as shown in Table 3 and Fig. 15, and the case with
size=100 exhibits the broadest interval. This characteristic results
from the basic principle of the EnKFwhich uses finite random samples
to represent a notional probability distribution. So it is preferable to
try different random realizations and compare their results when we
conduct data assimilation with the EnKF.

6. Summary and conclusions

This paper has investigated the performance of the ensemble
Kalman filter (EnKF) for the catchment scale hydrological data
assimilation. Distributed hydrological models outperform lumped
hydrological models in capturing the spatial patterns of the coupled
hydrological processes in catchments [28,35], but their high dimensions
of states and parameters will pose difficulties for obtaining optimal

Table 3
Estimated confidence intervals of the CN2s and computational requirements for
different ensemble sizes.
ev
co

to
th
w
m

Ensemble
size

RMSE Ensemble spread Execution
time (s)

Mean Confidence Interval Mean Confidence Interval

100 7.775 (7.299, 8.250) 0.790 (0.774, 0.806) 78
200 6.080 (5.698, 6.461) 1.428 (1.411, 1.444) 215
400 4.614 (4.387, 4.842) 2.040 (1.938, 2.142) 699
1000 4.118 (3.917, 4.319) 2.814 (2.797, 2.830) 3977
tain amore complete understanding of its sensitivities. Accordingly, a
ta assimilation system has been constructed based on a physically
sed hydrological model (SWAT), and synthetic assimilation experi-
ents have been performed to estimate a dominant parameter, CN2, as
ell as the threeprognostic states, namely the runoff, soilwater content,
d evapotranspiration.
It has been found that by assimilating observations, such as the

noff, the EnKF can effectively update the hydrological states and
ogressively improve the parameter estimation. The hydrologic
ates (e.g., the soil water content) can be well reproduced even with
ased prior knowledge of the parameter. The hydrologic parameters
emore difficult to get perfect estimates owing to the nonuniqueness
oblem in distributed models.
Moreover, the runoff observations from different sites play different

les in the assimilation. The observations from lower streams,
rticularly from the outlet station, make the greatest contribution to
e estimations. So the outlet runoff is a preferred observation for data
similation if only a limited number of stations are available. In
dition, taking the soil water content as complementary observations
n obviously improve the inverse estimate of parameters, while the
apotranspiration observations are less effective owing to its weak
rrelation to the interested parameter (CN2).
Besides themeasurement sites and types, the EnKF is also sensitive
other factors about the assimilation system setup. The success of
e data assimilation is quite dependent on the error specification,
hich should be appropriate to the model capability and the
easurement flexibility. Not only is the level of error overestimation
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limited (less than 10% being recommended), but also the combination
of errors (about the model, the observation and the forcing boundary)
should be kept consistent to avoid spoiling the assimilation
performance. Furthermore, the biased initial estimates of parameters
do not pose significant impacts because they can be improved
sequentially by assimilating observations, but relatively large var-
iances are preferable when short-term data assimilation is conducted.
In addition, before achieving statistical convergence the assimilation
results also depend on the particular set of initial realizations because
the EnKF is basically a Monte Carlo method. It may be a good idea to
compare results from different sets of realizations for the case with a
small ensemble size. A reasonable ensemble size should be taken into
account to balance estimation accuracy and computational feasibility.

Our analysis is limited by several factors that could be addressed in
the future work. In this study, first, the state-parameter estimation
was based on the EnKF by concatenating the uncertain parameters
into a single joint state vector (state augmentation). This approach
highly relies on the state-parameter dependencies. It is not able to
provide good estimates if the dependencies are weak (e.g., Case 5 in
this study, see Fig. 8). To address this challenge, the novel variants of
the EnKF, including the smoothed EnKF [3] and other dual estimate
approaches [23], may be useful remedies. Furthermore, we focused
only on one dominant parameter estimate in the synthetic data
assimilation system by drawing observations from reference simula-
tion and assumed the parameter to obey a Gaussian distribution. In
reality, a number of additional parameters and states may control the
hydrological processes, and the Gaussian assumptionmay be violated.
These problems will need to be examined in real-world hydrological
environment instead of synthetic experiments. In addition, the model
and observation errors are assumed to vary with the magnitude of the
variables according to the prescribed scaling factors. This simple
treatment may be augmented with the adaptive filtering approach
that estimates the error information during the online cycling of a
data assimilation system [6,29]. Finally, a more general analysis would
examine a broad range of observations including the in-situ
measurements, multi-scale remote sensing soil moisture, evapotrans-
piration and land surface temperature. Our ongoing work is addres-
sing some of these issues.
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The role of United Nations Educational, Scientific 
and Cultural Organization–International Hydro- 
logical Programme in sustainable water resources  
management in East Asian countries  

Ramasamy JAYAKUMAR, DUAN Xiaoli, Eunah KIM, *LIU Ke 
Natural Science Sector, UNESCO Office Beijing, Beijing 100600, China 
 

Abstract: For over 30 years, IHP (International Hydrological Programme) has been actively 
operating as a UNESCO’s (United Nations Educational, Scientific and Cultural Organization) 
international scientific cooperative programme in water research, water resources manage-
ment, education and capacity-building, and the only broadly-based science programme of the 
UN (United Nations) system in this region. By a number of initiatives and networks, the IHP 
has progressively carried out activities on the quantity and quality of global/regional water 
resources, transboundary water resources management, mitigation of water related hazards, 
and water education. While addressing comprehensive areas over water challenges, greater 
emphasis has been placed on the role of water resources management for sustainable de-
velopment and with respect to the expected changes in climate and environmental conditions. 
WWAP (World Water Assessment Programme) and its major product WWDR (World Water 
Development Report) in East Asia are under the framework of IHP which supports field ori-
ented activities on monitoring freshwater, developing case studies, enhancing national as-
sessment capacity, and facilitating decision making processes. In light of transboundary wa-
ters in IHP, RSC (Regional Steering Committee) plays a focal role for facilitating regional 
cooperation in the Southeast and East Asia and Pacific States. Furthermore, ISI (International 
Sediment Initiative) and IFI (International Flood Initiative) have significant roles, respectively, 
for the management of erosion and sedimentation in line with river system or reservoir man-
agement, and for the flood management focusing on capacity building of each country in East 
Asia. There are other major areas of concern under UNESCO’s IHP programme in East Asia, 
specifically in aspects including, mitigating water conflicts on transboundary aquifers through 
ISARM (International Shared Aquifer Resources Management), water management of arid 
areas through Water and Development Information for Arid Lands- A Global Network (Asian 
G-WADI), and sustainable management of groundwater by UNESCO Water Chair, as well as 
water education through the programme of Sustainable Water Integrated Manage-
ment-Educational Component. 

Keywords: UNESCO-IHP; East Asia; water resources 
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1  Introduction 

It was recognized in the World Summit on Sustainable Development, held in Johnhansberg 
2002, that sciences have an indispensable role in providing solid underpinning for sound 
decision and policy-making process on sustainable development. The findings and recom-
mendations stemmed from the summit, together with those from the World Sciences Forum 
held before, have guided United Nations Educational, Scientific and Cultural Organization 
(UNESCO) in further shaping its science programmes, defining missions of the programme 
as “the Promoter and Broker of Sciences”. The mission was further structured into two ma-
jor programmes of: 
z Science, environment and sustainable development, aimed to improve human secu-

rity through a better management of the environment 
z Capacity-building in science and technology for development, that seeks to enhance 

human and institutional capacities in science and technology to allow the widest 
possible participation in the knowledge society, and also to adapt science policy to 
societal needs 

Both of the programmes are endeavored to pursue the UN Millennium Development 
Goals (MDGs), in particular those in relation to the eradication of poverty, gender, environ-
mental sustainability and the development of a global partnership for peace and develop-
ment.  

2  The International Hydrological Programme (IHP) 

IHP is UNESCO’s international scientific cooperative programme in water research, water 
resources management, education and capacity-building, and the only broadly-based science 
programme of the UN system in this region. For 30 years until now (1975–2005), IHP has 
been committed to developing the science of hydrology to meet requests derived from social 
development. Its primary aim is to draw together scientists worldwide in order to establish 
the scientific and technological bases for the rational management of water resources with 
respect to water quantity and quality. UNESCO contributed to the preparation of the first 
United Nations Conference on Water held at Mar del Plate, Argentina, in March 1977. This 
conference attended by representatives of 116 governments and of many international or-
ganisations, had a paramount importance in the international recognition of water as a key 
factor in socio-economic development. 

In January 1992, UNESCO was one of the twenty bodies and agencies of UN system 
which organized the International Conference on Water and the Environment (ICWE) in 
Dublin, Ireland. The Dublin Statement enunciates four basic principles: 

1. Freshwater is a finite and vulnerable resource, essential to sustain life, development 
and the environment 

2. Water development and management should be based on a participatory approach, 
involving users, planners and policy-makers at all levels 

3. Women play a central part in the provision, management and safeguarding of water 
4. Water has an economic value in all its competing uses and should be recognized as 

an economic good 
The ICWE was designed as an input to the UN Conference on Environment and Devel-
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opment (The Earth Summit) held in Rio de Janeiro, Brazil in June1992. The Agenda 21 
adopted by the conference mentions, inter alia, that “The holistic management of freshwater 
and the integration of sectoral water plans and programmes within the framework of national 
economic and social policies are of paramount importance of action in the 1990s and be-
yond”. The above-mentioned principles are fully in line with the basic philosophy of the IHP 
(Sorin Dumitrescu, 2006). 

In the general framework of IHP, greater emphasis has been placed on the role of water 
resources management for sustainable development and with respect to the expected 
changes in climate and environmental conditions. Progress has also been achieved in meth-
odologies for hydrological studies, training and education in the water sciences. One of 
IHP’s continuing objectives is to integrate developing countries into research and training 
efforts, thereby reinforcing regional aspects while maintaining global coordination. 

The current phase IHP-VII (2008−2013) entitled ‘Water Dependencies: Systems under 
Stress and Societal Responses’ will focus on the strengthening of the existing scientific 
knowledge to provide new directions for science and research to develop scientific tools and 
responses to help mitigate and reverse these trends.   

3  Overview of fresh water situation in East Asia 

3.1  Global water resources scenario 

In 2006, the 2nd version of the World Water Development Report (WWDR) was issued by 
the World Water Assessment Programme (WWAP). The report is the flagship report of 
WWAP, a programme under the UN Water—a cross-agency entity coordinating 24 UN 
agencies dealing with water issues. The report not only includes latest data and information 
reflecting the world water situation, but also grasps major themes of the general trend for 
researches and management on water issues.   

As is addressed in the 2nd version of the World Water Development Report, one of the 
major themes identified is the changing context of the world water situation. The changes 
may come from both natural and social origins. In the natural part, more and more scientific 
data are verifying the fact that the natural environment is subject to the influences of a 
changing climate. This may have given rise to natural changes and even disasters such as the 
Indian Ocean Tsunami, and the frequent hurricane attacking the Caribbean and Pacific coasts. 
Moreover, changes are also brought forth from the social aspect, including population 
growth, immigration, and transboundary management of water resources. Some of these 
matters may even incur water related tensions and conflicts in areas suffering from serious 
water scarcity. In addition, the recent fast-paced economic development, especially in de-
veloping countries like China, has generated large amount of pollution that is threatening the 
safety of drinking water resources. Moreover, an efficient and strong governance mechanism 
needs also to be urgently set up to sustainably protect and manage precious water resources. 

3.2  Water resources of East Asia 

Table 1 shows that water availability varies greatly in this region. To illustrate, Mongolia 
enjoys the highest water resources availability rate. Although Mongolia is comparatively 
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rich in water resources stemming from precipitation in the high mountains, in its desert 
southern, western and eastern provinces, the water resources are much scarcer and are gen-
erally of poorer quality with increasing salts and diminishing water levels in groundwater 
tables, streams and lakes (FAO-AQUASTAT, 1999). Another country share the problem of 
uneven water distribution is China (FAO-AQUASTAT, 1999). Besides low water availability 
per capita, the water resources in China are unevenly distributed in terms of time and space. 
Affected by monsoons, precipitation occurs mostly in the summer months providing 60-80% 
of the total annual precipitation, which is advantageous for agriculture. This pattern of pre-
cipitation tends to result in droughts in spring and floods and waterlogging in the summer. 
Furthermore, quality of fresh water resources in this region varies greatly. Japan and R.O. 
Korea yield much higher water quality than the rest.  

Water availability varies in different seasons. Most of the East Asian region is subject to 
the monsoon climate, the warm and wet winds in spring and summer times bring most of the 
annual precipitation. However, in the winter seasons, the climate tends to be cold and dry. 
This situation often makes this region vulnerable to natural disasters such as hurricane and 
storm in summer and drought in winter. For instance, the Chinese capital Beijing has been 
experiencing continuous drought from 1999 to 2006 in winters. The per capita water re-
sources per year are less than 300 cubic meters, which is only 1/30 of the world’s average. 
To cope with the situation, groundwater has become one of the major alternative resources 
for cities like Beijing. Unfortunately, the groundwater consumption often follows an exces-
sive manner, leaving a series of problems such as land subsidence and sea water intrusion. 
The problems can be particularly worsened when climate change brought higher tempera-
tures, reducing amount of precipitation but increasing that of evaporation.  

 
Table 1  Water availability of East Asian countries 

Country Population 
Precipi-
tation 
Rate1

TARWR
volume 

2005

TARWR2

per capita 
2000 

TARWR 
per capita

2005 

Surface 
water ratio
to TARWR

Ground- 
water ratio
to TARWR

Over-
lap3 
ratio

Incoming 
water ratio 
to TARWR 

Outgoing4 
water ratio 
to TARWR 

Total use 
ratio to 

TARWR 

 103 mm/yr km3/yr m3/yr m3/yr % % % % % % 

China 1,320,892 600 2,830 2,259 2,140 96 29 26 1 25 − 
China, 
Taiwan 
Prov. 

22,894 2,400 67 − 2,930 94 6 0 0 − − 

DPR  
Korea 22,776 1,400 77 3,464 3,390 86 17 16 13 6 12 

Japan 127,800 1,700 430 3,383 3,360 98 6 4 0 0 21 

Mongolia 2,630 200 35 13,739 13,230 94 18 11 0 76 1 

RO Korea 47,951 1,100 70 1,491 1,450 89 19 15 7 − 27 

Source: FAO-AQUASTAT, 2005, the table was extracted from World Water Development Report 2 (1Average Precipitation 
(1961-90 from IPCC (Intergovernmental Panel on Climate Change) (mm/year). As in the FAO-AQUASTAT Database, for some 
countries large discrepancies exist between national and IPCC data on rainfall average. In these cases, IPCC data were modified 
to ensure consistency with water resources data. 2TARWR stands for Total Actual Renewable Water Resources. 3Overlap is the 
water that is shared by both the surface water and groundwater systems. 4Outflow - Sep. 2004 for surface water and Aug. 2005 
for groundwater) 

 

3.3  Regional cooperation on transboundary waters 

Transboundary waters include any surface or groundwater that mark, cross or located on the 
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boundaries between two or more Sates. In other words, wherever transboundary waters flow 
directly into the sea, these transboundary waters end at a straight line across their respective 
mouths between points on the low-water line of the banks (Helsinki Convention 1992). By 
the year 2006, 263 transboundary waters were identified in the world and the number has 
increased by emergence of the newly independent states after the breakup of the former So-
viet Union. Europe alone has 100 transboundary groundwater aquifers and more are ex-
pected to be identified in the future (United Nations Development Programme, 2006). About 
60% of the global population depends on these transboundary waters which often preserve 
natural ecosystems. However, due to the increasing pressure of economic development and 
competition for scarce resources, many international water basins have to suffer serious en-
vironmental, social and political problems. The United Nations Conference on Environment 
and Development (UNCED) in Rio de Janeiro in 1992 adopted Agenda 21, recognizing the 
multi-sectoral nature of water resources development as well as the diverse interests in their 
utilization (United Nations University, 1990). While there have been much efforts among 
European, South-American and Middle-East countries for cooperation on transboundary 
water between neighbouring countries, East Asia has relatively low number of transbound-
ary waters and thus less cooperative work regarding sharing waters. 

China shares 12 main rivers with six neighbouring countries, including Mongolia, Paki-
stan, India, Kazakhstan, the Kyrgyz Republic, Myanmar, Lao People’s Democratic Republic 
and Viet Nam.  The mean annual volume of water entering the country is 17.2 km³, of 
which 4.2 percent in the Heilongjiang basin, 52.9 percent in inland rivers, 0.7 percent in 
rivers in the southwest, and 42.2 percent in the Pearl River basin. Table 2 presents data on 
rivers entering into and flowing out of China.  

In light of international cooperation regarding water sharing problems UNESCO’s PCCP 
(Potential Conflict to Cooperation Potential) facilitates multi-level and interdisciplinary 
dialogues to foster peace, cooperation and development. It uses methodologies of joint re-
search and training activities to find ways to enhance the concerned parties’ knowledge of 
the shared water resources as well as to achieve progress on the cooperation and develop-
ment.  

4  IHP in East Asia 

4.1  Regional Steering Committee (RSC) 

Regional Steering Committee (RSC) is a regional network of IHP in Southeast Asia. Its 
members consist of representatives from 14 IHP National Committees from this region. This 
has made it easier for regional cooperation to carry out IHP initiatives. Since 1993, annual 
RSC meetings have been convened in different countries of the region to report, evaluate 
and review a wide range of activities conducted in the framework of IHP as well as to design 
new ones.  

With strong support from the Japanese Government through providing a Funds-in-Trust 
contribution on a regular basis, in co-operation with UNESCO Jakarta and the participating 
member states, the RSC has coordinated a wide spectrum of initiatives over the ten years 
covering research studies, technical projects, workshops, training courses and annual sym-
posia, bringing together many specialists in the field of water activities. Among initiatives 
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generated by RSC, the most notable ones include the AP-FRIEND (Asian Pacific Flow Re-
gimes from International and Experimental Network Data) project, the Asian Pacific Water 
Archive and the Catalogue of Rivers.   

4.2  International Sediment Initiative (ISI) 

The management of erosion and sedimentation has been an important part for catchments, 
river system, and reservoir management. It has been recognized that, without appropriate 
treatment methods, more than 50% of the world’s reservoir capacity will be lost in the next 
decades due to erosion and sedimentation. Nevertheless, relevant investigations on sedi-
mentation and erosion need to be further promoted in a world scale. In this general backdrop, 
the International Sedimentation Initiative (ISI) was launched, as a major activity, in the sixth 
phase of UNESCO-IHP (2002-2006).  

The initiative is expected to improve awareness on the sedimentation and erosion issues. 
It is also aimed to provide advices and enhance the making and implementation of policies 
that would contribute to the sustainable management of erosion and sedimentation. To real-
ize the aims, a series of activities have been carried out. For instance, under the general ISI 
framework, a global repository was constructed with inputs of data and information, col-
lected by major international research institutes, derived from documents on erosion and 
sedimentation.  

One of such reputable institutes in East Asia is the International Research and Training 
Center for Erosion and Sedimentation (IRTCES) located in Beijing. Through its competent 
investigations, IRTECES managed to provide the latest data and information on the situation 
of the erosion and sedimentation in major river basins such as the Yangtze River and the 
Yellow River. In addition, it also organizes trainings and conferences to improve awareness 
and capacity to sustainably manage and monitor the erosion and sedimentation in China. 

4.3   International Flood Initiative (IFI) 

As one of the greatest water-related natural disasters, flooding can cause devastating damage 
that affect millions of people’s livelihood, claiming thousands of lives each year. However, 
on the other hand, the floods are naturally occurred phenomena providing elements not only 
to the sustainability of particular ecosystems, but also to the development of many human 
activities.  

Unfortunately, water-related disaster is under constant rise as a result of urbanization, 
climate change and global warming. Since 1992, the yearly number of water-related disas-
ters has risen from slightly over 50 to more than 150. The disasters have claimed about 
25,000 lives and affected over 500 million annually, costing the world economy more than 
$60 billion. Under the circumstances, during the World Conference on Disaster Reduction 
(WCDR), International Flood Initiative (IFI) was launched in 2005. IFI aims to reduce hu-
man and socio-economic losses from flooding and use of flood plains while increasing so-
cial, economic and ecological benefits.  

In order to achieve its goals, IFI has engaged many carefully designed activities related to 
integrated flood management covering research studies, training, information networking, 
empowering communities with good governance and technical assistance. Through these 
activities, IFI is expected to develop the capacity of each country to better understand and 
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handle flood involved hazards, vulnerabilities and benefits. 
IFI is based in the International Centre for Water Hazard and Risk Management 

(ICHARM) hosted by the Public Works Research Institute in Tsukuba, Japan. ICHARM was 
endorsed as the global facility and Secretariat responsible for the IFI at UNESCO’s 33rd 
session of its General Conference. 

4.4  G-WADI Asia 

Approximately 80 countries, constituting 40% of the world’s population, were suffering 
from serious water shortages by the mid-1990s (Asian G-WADI-UNESCO, 2007). In less 
than 25 years, two-thirds of the world’s population will be living in water-stressed countries. 
Globally, arid and semi-arid areas face the greatest pressures to deliver and manage fresh-
water resources. Furthermore, these areas are under growing pressure of water management 
derived from issues including, population growth, agricultural expansion, salinity increases, 
and agricultural/urban pollution. These problems have exerted further difficulties to realize 
goals of water resource availability, equity in water management, and strategies to support 
peace and security.  

As a result of growing attention and challenges on water management in arid and 
semi-arid areas, the 15th session of the Intergovernmental Council of the International Hy-
drological Programme (IHP) decided to establish a Global Network on Water Resources 
Management in Arid and Semi-arid Zones, in December 2002. Following this decision, the 
Global Network on “Water and Development Information for Arid Lands (G-WADI)” was 
established in the initiating meeting held in Paris on 14 and 15 April 2003. G-WADI’s stra-
tegic objective is to strengthen the global capacity to manage water resources in arid and 
semi-arid areas. Its primary aim is to create an effective global community to promote in-
ternational and regional cooperation in arid and semi-arid areas. 

In light of the goal of G-WADI, in March 2005, in Roorkee, India Asian G-WADI was 
established to create a network promoting international and regional cooperation of water 
management in arid and semi-arid areas with specific emphasis on Asia. This network cov-
ers eleven countries including Afghanistan, China, India, Iran, Kazakhstan, Kyrgyzstan, 
Mongolia, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan. Asian G-WADI serves as a 
platform for information and resource sharing. Focusing on this aim, Asian G-WADI has 
formulated guidelines for proposing one or more basins as G-WADI pilot basins in a country, 
which can contribute to the knowledge base for the region. Asian G-WADI is working effec-
tively in network building of data, groundwater modelling and research. Asian G-WADI has 
also identified specific research needs for arid and semi-arid areas of Asia that would be 
highlighted as areas of special emphasis and would provide assistance to conduct studies and 
research. 

4.5  Groundwater for emergency situation 

In recent years, the availability of and access to freshwater have been highlighted as among 
the most critical resource challenges in the world. With the blooming economic development 
and the rapid urban population increase in China, water shortage has become a widespread 
issue. More than 400 cities (about two-thirds of the cities in China) are being puzzled by 
seasonal or perennial water shortage; among them more than 100 cities are facing serious 
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water crisis. 
As part of the global initiative, UNESCO Office Beijing initiated a pilot case study on 

“The Emergency Water Supply in Beijing for Coping with the Consecutive Drought.” The 
Project is being implemented by the China Institute for Geo-Environmental Monitoring 
(CIGEM), China Geological Survey and Geo-Environmental Monitoring Station (GEMS), 
Beijing (UNESCO Office Beijing, 2007). 

Beijing is regularly influenced by the continental climate with semi-humid monsoon, and 
faces serious shortage of water resources that is far below the UN standard water resource 
availability per capita and also below the lowest standard of water resource availability per 
capita to ensure the modern and easy social life and production presented by UNESCO.  

In the beginning of 2007, UENSCO paid much attention to the serious water shortage in 
Beijing, trying to find out solutions for the shortage of water supply in the consecutive years 
of drought in Beijing, and to share the experiences of emergency water supply for other 
regions and countries with similar situation. To complete the mission successfully, CIGEM 
and Beijing Geological Environment Monitoring Station (GEMS) were selected to collabo-
ratively conduct data collection, and general research incorporated five field investigations. 
A completed report on the Use of Groundwater for Emergency Cases in Beijing has been 
prepared.  

4.6  Rainwater harvesting of Shenzhen urban area 

As one of the biggest economic centres of China, Shenzhen is facing great challenges of 
extreme water shortage although enjoying fast economic growth. It ranks as one of the top 
seven cities in China facing most severe water shortage crisis. Shenzhen’s geographic char-
acter, in line with its large amount of water consumption, and other human activities have 
jointly worsened its water shortage problem. Water resources in Shenzhen city heavily rely 
on rivers and groundwater resources. However, rainfall, as another source of important water 
supply, has not been sufficiently used yet. For instance, only one third of its total rain fall 
volume has been properly collected and stored for usage. Additionally, most of the rain har-
vesting venue concentrates on various reservoirs. Despite the fact of water shortage and 
problems on rain harvesting Shenzhen is facing, it is still one of the cities advocating rain 
harvesting also with successful experiences. The case of Shenzhen and downside of rain 
harvest activities can serve as example for other cities with similar situation. Therefore, 
conducting a case study of rain harvesting in Shenzhen city would greatly contribute to rain 
harvesting endeavours elsewhere in China. 

In view of that, UESCO Office Beijing sponsored a pilot case study on "Urban Rain Wa-
ter Harvesting–Case Study in the Shenzhen City" carried out by College of Water Sciences, 
Beijing Normal University. This case study was conducted in 2007 and a report on Rain 
Harvest in Shenzhen City has been completed and submitted to UNESCO Office Beijing. 

The report elaborates experiences of the Qiaoxiang district, a pilot district of rain har-
vesting in Shenzhen. Three major rain harvesting methods, including roof rainwater collec-
tion, road rainwater collection and green space rainwater collection were identified and in-
vestigated in detail. Data analysis of the report showed that annual mean rainfall volume in 
Shenzhen is above 1837 mm, but the value of water resources availability per capita is less 
than 200 m3. Additionally, Shenzhen City Reservoir Runoff accounts in the proportion of the 
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total runoff in the city of Shenzhen were 30.5%, 31.8% and 33%. In other words, only 
one-third of the Shenzhen annual rainwater resources are properly stored for usage. There-
fore, Shenzhen has great potential in rain harvesting. Another contribution of this research 
paper is that it explored advantages, disadvantages and respective harvesting methods in 
three different areas including mountain areas, urban areas and drainage areas, where rain 
harvesting is being carried out. Lessons learned from this case study could well provide ref-
erence and benchmark to be shared for rain harvest endeavors in China. 

4.7  Transboundary aquifer 

Approximately 40% of the world’s population lives in river basins and aquifer systems that 
cross the political boundaries of two or more countries. The aquifers, apart from its envi-
ronmental function as vital natural resources, are also endowed with crucial social function, 
constituting solution for preventing conflicts over water resources. Transboundary Aquifers, 
as part of the global groundwater resource system, are important for building a society 
where civilizations coexist harmoniously and accommodate each other.  

With the goal of promoting sound use of transboundary aquifers, ISARM (Internationally 
Shared Aquifer Resource Management) has led to several regional initiatives, including 
ISARM-America, ISARM-Europe, ISARM-Balkans and ISARM-Asia. As one of the out-
puts of ISARM-Asia programme, the report on “Transboundary Aquifers in Asia with Spe-
cial Emphasis to China” represents advanced research on transboundary aquifers in the 
Asia-Pacific region. Through this report, UNESCO, as a major coordinator of ISARM, 
promoted awareness on transboundary aquifers as vital natural resources, especially among 
the policymakers, and also to enhance collaboration of countries with shared aquifers on 
management of such resources in a sustainable manner.  

Based on previous experiences in other regions, the report of “Transboundary Aquifers in 
Asia with Special Emphasis to China”, comparatively, is in need of further promotion. The 
authors supervise and develop regional preliminary data on selected shared aquifers in Asia 
and conduct a pilot case study on the Heilongjiang-Amur River flowing through China and 
Russian Federation under ISARM-Asia framework. This report covers topics including 
groundwater resources and transboundary aquifers in Asia, groundwater resources and 
transboundary aquifers in China, pilot study of shared aquifer between provinces within 
China, and a case study of shared aquifers between China and the Russian Federation - the 
aquifers underlying the Heilongjiang-Amur River basin.  

In this report, UNESCO-IHP programme identified twelve significant transboundary aq-
uifers in Asia, demarcated as Table 2, that are with significant socio-economic and ecologi-
cal implications for the sharing nations. Also, the aquifers are often factors to maintain re-
gional peace and cooperation. Based on data collected on groundwater resources contained 
in such aquifers, the groundwater systems in Central, East, and South Asia are analyzed. 
Particularly, aquifers on the national boundary of China are evaluated in details. Moreover, 
the research on the middle basin of Heilongjiang-Amur River that boarders China and Rus-
sia has been taken as the first case study on transboundary aquifers in East Asia. The infor-
mation presented through such case study is now available for sharing for other Asian coun-
tries that possess transboundary aquifers. The report also provided primary data and infor-
mation for the joint management of transboundary water resources. For instance, joint man-
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agement on the Heilongjiang-Amur River basin is investigated in the case study. This could 
contribute to the ISRAM-Asia, as one of the first initiatives, from the management perspec-
tive. The report could also serve to promote as well the ISRAM-Asia Network headed by 
China.  

 
Table 2  Transboundary aquifers in Asia (Han Zaisheng et al., 2006)  

No Name of transboundary 
aquifer system Countries sharing this aquifer system Type of aquifer 

system 
Extension 

(km2) 

1 Ertix River Plain Russia, Kazakhstan  1 120000 

2 West Altai Russia, Kazakhstan  1,2 40000 

3 Ili River plain  China, Kazakhstan  1 53000 

4 Yenisei upstream Russia, Mongolia 1,2 60000 

5 Heilongjiang River plain China, Russia 1 100000 

6 Central Asia Kazakhstan,Kyrgyzstan, Uzbekistan,  
Tajikistan,Turkmenistan, Afghanistan 1,2 660000 

7 India River plain India, Pakistan  1 560000 

8 Southern of Himalayas Nepal, India  1 65000 

9 Ganges River plain Bangladesh, India  1 300000 

10 South Burma Burma, Thailand  2 53000 

11 Mekong River plain Thailand, Laos, Cambodia, Vietnam 1 220000 

12 New Guinea Island Indonesia, Papua New Guinea 2 870000 

Type of aquifer system: 1 porous, 2 fissured/fractured, 3 karst 
 

4.8  Water education 

Designated by the UN general assembly as the leading agency for the Decade of Education 
for Sustainable Development (DESD), UNESCO as the UN technical Agency takes upon its 
leading role in water education. It has become imperative to teach and guide young children 
for a sustainable future through water education. Effective water education can greatly con-
tribute to improving awareness and imparting applicable knowledge and techniques for sus-
tainable water management to our next generation. In collaboration with the Chinese Minis-
try of Water Resources and the Italian Ministry for the Environment and the Territory, it 
launched Sustainable Water Integrated Management – Water Education Programme 
(SWIM-EDU). This programme aims to educate Chinese students from primary to the high 
school on water resources management in their daily lives. SWIM-EDU aims to improve 
awareness among general public on the preciousness of water resources, and ultimately ad-
vocate concrete actions to protect, cherish and conserve water. 

SWIM-EDU has successfully carried out a poster competition among primary school 
students with theme of water protection in cooperation with CAST (China Association for 
Science and Technology). Winners of the competition were awarded certificates jointly is-
sued by UNESCO and IMELS (Italian Ministry of Environment, Land and Sea). Addition-
ally, the winning posters have been made into calendars. Through the promoted engagement 
of students in this activity, awareness and applied knowledge on daily water resources man-
agement was improved by an effective manner. More importantly, SIWM-EDU is also co-
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operating with CAST and Ministry of Education (MOE), P.R. China in compelling a series 
of text books of water education, and a series of teacher training would also be initiated ac-
cordingly. Furthermore, a website of SWIM-EDU was established as one of the main outputs 
of this project. 

Through providing a platform for hydrologists, education experts, national government 
and international organizations to work together, UNESCO is working effectively with both 
schools and policy makers in advancing water education in China.    

4.9  Impact of climate change in water resources 

Climate change has been a serious and urgent issue for the last few decades, calling upon 
related national and international sectors’ attention to mitigate or adapt to the impact of 
global climate change. Its impacts are detrimental especially in developing countries where 
infrastructures are not ready to the changes, and consequently challenging to the achieve-
ment of the MDGs, specifically in regard to the eradication of poverty, combating diseases 
as well as ensuring environmental sustainability. According to China’s First National As-
sessment of Global Climate Change released in June 2007, climate change will affect on 
China’s production of wheat, corn and rice to drop by up to 37% over the next 50 years. In 
addition, increased intensity and frequency of flooding and droughts as well as deterioration 
of public health were expected (Lin Erda et al., 2007). 

UN Theme Group on Energy and Environment, in collaboration with the government 
counterparts in China has formulated a joint programme namely China Climate Change 
Partnership Framework to be carried out for three years starting from 2008. It is applicable 
to the category ‘Environment and Climate Change’ among the agenda of MDG fund focus-
ing on an effort to achieve the MDGs. The principal outcomes of the joint programme are: 1) 
mainstreaming climate change mitigation and adaptation into national and sub-national poli-
cies, planning, and investment frameworks; 2) establishment of innovative partnerships and 
dissemination of technologies to mitigate climate change and increase local access to sus-
tainable energy; and 3) accelerated action by China in assessing vulnerability to climate 
change and developing adaptation plans and mechanisms. More specified outputs under 
those main outcomes are assigned to the nine participating UN agencies in correspondence 
towards their specialized expertise so that the programme takes accumulative benefits of the 
agencies’ strengths and lessons learned from past experiences.  

Water resources are one of the vulnerable areas that have shown symptoms of worsening 
water scarcity, deteriorating water quality and increasing risks of water-related disasters. 
UNESCO takes the leading role on water issues enclosed under framework of the joint pro-
gramme with cooperation with other relevant UN agencies and government partners. Water 
sector in the joint programme will focus on vulnerability assessment, development of adap-
tation measure, increasing monitoring capacity on climate change impact, as well as the 
definition and enact of remedial actions. Based on the level of vulnerability to climate 
change in China, Yellow River Basin was identified as the focus area for this project, where 
is needed to develop a water management scheme covering aspects of vulnerability assess-
ment, monitoring, and the development of adaptation and remedial measures. UNESCO will 
implement the project at Yellow River Basin to carry out analysis on present status, need 
assessment, and a thematic report on the challenges would also be prepared which will be 
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included in the 3rd World Water Development Report (WWDR). In addition, a training 
workshop would also be organized under this project.  

4.10  World Water Assessment Programme 

The World Water Assessment Programme (WWAP) is one of the core programmes in 
UN-Water. Housed in UNESCO, it supports activities on monitoring freshwater, developing 
case studies, enhancing national assessment capacity, and facilitating decision making proc-
esses. The major product of the programme is a periodic publication of the WWDR com-
prising comprehensive reviews on the state of the world’s freshwater resources. 

WWDR includes a thematic component, a methodological component involving analysis 
and the production of indicators of water-related stress, and a case study component. As 
depicted in the Diagram 1, the key objectives of the WWDR are building national capacity 
on self-assessment of water resources and facilitating the application of the accumulated 
knowledges given, mutually exchanging progressive feedback for the next periodic report. 
In this regard, case studies from all around the world contribute to knowledge sets including 
indegenous experiences and cross-sectoral methodologies in water resources management 
from various natural and socio-economic environments.  

4.11  Case study of Tokyo River Basin, Japan (WWDR-1, 2003; WWDR-2, 2006) 

The first WWDR included the pilot case study ‘Greater Tokyo Region’ providing interesting 
geographical features of combining small river basins and a mega city scale which covered 5 
river basins, namely Tone River, Ara River, Tama River, Sagami River, and Tsurumi River. 
Being a rich and industrialized country, its region has been known as best practices in water 
resource management and environmental protection by managing risks with well-established 
infrastructures. However, it was also reported to have water challenges such as deterioration 
of water quality, flood and drought. 

Comprehensive indicators were presented as a major outcome of the region’s successful 
water management to monitor water qualities of the five river basins with regard to the 
challenging areas, which had also adapted public opinion through internet based survey. 
Those indicators based on the clear criteria (relevance, cost, comprehensibility, clarity, con-
tinuity and social benefit) are important for future assessment though some of them are va-
gue to measure exact values. 

In WWDR-2, Japan provided an overview of water issues that challenge the country’s 
water resource management and extended its concern about water related disasters and sus-
tainability of water resources. The overview not only presents basic information on water 
supplies to the public and rates of population with access to sanitation, it also briefed on the 
environmental laws in fields of agriculture, industry, and energy regulating sustainable use 
of water resources, increasing public access to sanitation facilities, combating environmental 
degradation.  

4.12  Case study of Tuul River Basin, Mongolia  (WWDR-2, 2006) 

Mongolia is a landlocked country covering about 1.5 million km2. Most of the nation’s ter-
ritory is high plateau with an average altitude of 1,580 m above sea level. Due to such geo-
graphical features, Mongolia suffers from frequent water stress. Only 6% of the annual pre-
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cipitation is available as water resources in form of surface water with other left sips into the 
soil. Not only quantity, the quality of water resources in Mongolia is also a big challenge. 
Based on statistics enclosed in the report, it shows that 40% of the Mongolian population 
lacks access to safe water and only 25% has sustainable access to sanitation facilities. The 
major cause of such deficiency was recognized as the national poverty. As a result, wa-
ter-related diseases are common, and the poor are often left out of due health services. 

In the second WWDR, a brief summary on a pilot study of the Tuul River Basin, Mongo-
lia was presented. It is a significant area of the country where the capital city Ulaanbaatar is 
located. This region, despite its small coverage within national territory (only 3.19%), is 
however accommodating more than half of the whole national population. Due to a large 
number of the poor (25% of the urban poor) living in Ulaanbaatar, the proportion of those 
with adequate access to safe water resources is low. Furthermore, rapid urbanization and 
growing mining industry significantly contaminated water resources of the Basin, also dis-
rupted local ecosystems. 

Even though the Mongolian government well recognizes importance of water resources 
and has made numerous efforts to protect ecosystem, for instance carrying out the National 
Water Programme, it has been difficult to actually implement such efforts due to the defi-
ciency of resources, and hardship to coordinate various ministries and local and central gov-
ernments. Consequently, water related policies developed at the national level often do not 
reach the local level. The report thus presents challenges towards water resources in Mongo-
lia, including low level of per capita water consumption with standard far below sanitary 
requirement, deforestation, poor hydropower potential, lack of early warning systems, lack 
of public awareness, and poor management of water-related programme policies. 

4.13  Case study of river basins in PR China and RO Korea 

To contribute to the 3rd WWDR that will be published in 2009 during the fifth World Water 
Forum in Istanbul, Turkey, PR China and RO Korea have been carrying out case studies on 
Yellow River Basin and Han River Basin respectively. It is the first time for both countries 
to jointly show results of case study in the report. As the major theme of the report would 
focus on “Climate Change and Water,” the case studies will focus on the trend of hydrologi-
cal cycle and impact on land use in response to global climate change as well as the state of 
freshwater resources. Based on capacity assessment of the two countries in mitigating and 
adapting towards climate challenges, proper measurements would be projected correspond-
ing to respective natural and socio-economic contexts of the two nations. In China, the case 
studies will be comprehensively further developed under the framework of the Spanish 
MDG Funds project for three years and presented again as a full paper in the 4th WWDR.  

5  Conclusions 

As one of the main four pillars supporting UNESCO’s freshwater initiative, IHP has been 
actively operating for over 30 years. IHP is the only science and education programme de-
voted to freshwater issues in the UN system. Its purpose is to enhance scientific, technical, 
institutional and human capacities in Member States to achieve internationally agreed wa-
ter-related goals, particularly those enclosed under the MDGs.  
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In the Asia-Pacific region, IHP activities are mainly implemented through UNESCO’s 
Field Offices and the IHP National Committees in respective countries. This IHP regional 
network addresses a wide range of critical water challenges covering from availability and 
sanitation of water resources, transboundary water resources management, mitigation of 
water related hazard, to water education and impacts of climate change upon water re-
sources. 

Not a single country is able to solve the above-mentioned challenges and problems alone, 
therefore, joint regional researches are vital. In close cooperation with hydrologists, local 
governments and water related institutes, IHP serves as a platform for the sharing and ex-
change of information, knowledge, and technology on regional fresh water protection. It has 
been continuously providing support for decision makers in East Asia in developing adapta-
tion strategies to cope with the impact of global changes, in socio-economic and ecological 
terms, on the precious freshwater resources. 
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The State Program for High-Tech Research and Development (863 Program) Key 

Project of Earth Observation and Navigation Field 

————————Generation & Application of Global Products of Essential Land Variables 

1. Introduction 

In current research on global changes and R&D of earth system models, the potential of satellite 

observation has not been fully tapped. So far, as for the research on global land surface changes and 

R&D of land surface models, there is still lack of global land products of long-time series, high 

temporal and spatial resolution and high quality in the international land remote sensing field. Earth 

system model R&D and research on global changes in China are facing great development 

opportunities, and it is rather necessary to focus on the establishment of production system of global 

land products to support the research on global changes and R&D of new generation earth system 

models.  

This key project implementation period is from July 2009 - July 2012 with total funding 35.39 

million RMB. It will make comprehensive use of domestic and overseas remote sensing data sources, 

develop new inversion algorithm and production system for the following five land products: Leaf 

Area Index, Albedo, Emissivity, Downwelling Shortwave Radiation and Photosynthetically Active 

Radiation. It will further improve the parameterization scheme and assimilation technology of key land 

surface processes, advance its simulation capability and develop demonstrative application research of 

global land surface changes to provide data basis and technical support for China to make decisions in 

dealing with global changes.  

2. Project Topics 

No.  Sub-project Topics  Responsible Person  Supporting Unit  

01  

Integration of global 

multi-source land observation 

data  

Wenping Yuan  Beijing Normal University 

02  
Inversion algorithm 

development  
Qing Xiao  

Institute of Remote Sensing 

Application Chinese Academy of 

Sciences 

03  
Production System Development 

and Product Generation  
Shunlin Liang  Beijing Normal University 

04  
Land Surface Simulation and 

Data Assimilation System  
Mingguo Ma  

Cold and Arid Regions 

Environmental and Engineering 

Research Institute, Chinese 

Academy of Sciences  

05  

Demonstrative Research on 

Global Land Surface Change of 

Land Surface Products  

Xiaodong Zeng  
Institute of Atmospheric Physics 

Chinese Academy of Sciences  



2.1. Integration of Global Multi-Source Land Observation Data 

The project will comprehensively integrate domestic and overseas multiple satellite remote sensing 

data, land surface parameter products and other auxiliary data, and establish global land observation 

database through geometrical correction and radiometric calibration. It’ll develop database 

management system, build highly efficient storage, retrieval and scheduling strategy of massive data, 

and realize visualization and batch distribution service of data products. 

2.2. Development of Advanced Inversion Algorithms 

For these five products (Leaf Area Index, Albedo, Emissivity, Downwelling Shortwave Radiation 

and Photosynthetically Active Radiation), the project will evaluate the best algorithm for single 

satellite data and integrate various advanced algorithms. It’ll develop the inversion algorithms for 

domestic satellite data, study the generation method of land surface parameter products based on 

multi-source satellite data with the support of background field, and conduct validation and uncertainty 

analysis.  

2.3. Production System Development and Product Generation  

Based on various global remote sensing data, the project will develop a full automatic production 

system of land products. It is able to process multiple satellite data to meet the demand of global 

change and land surface model for data products. It’ll produce global Leaf Area Index, Albedo and 

Emissivity products of 1985-2010, as well as global Downwelling Shortwave Radiation and 

Photosynthetically Active Radiation products of 2008-2010. Finally, it’ll adopt the methods of 

automatic checking, visual inspection and field observation data validation to check the accuracy of 

quality and data products. 

2.4. Improvement of Land Surface Simulation and Data Assimilation System 

Based on global land surface parameter products produced by the project and land surface process 

model CoLM, the project will improve the canopy radiation transfer model and coupled dynamic 

vegetation model, and establish a better CoLM based land surface simulation system. It’ll develop 

advanced land data assimilation method and high resolution forcing data sets, and establish land 

surface data assimilation system which can assimilate multi-source remote sensing data products 

produced by the project. The land surface data assimilation system will be demonstrated over China 

with the physics compliance and space-time compliance between land surface system simulation and 

forecast.  

2.5. Demonstrative Research on Global Land Surface Change of Land Surface Products 

Based on global land surface parameter sets, the project will assess their change trend, spatial and 

temporal characteristics, and leaf phenology to reveal the fact of global land surface energy, water and 

carbon cycles. It’ll study the capability of land products in improving the simulation performance of 

the climate and Earth system models and distinguish the contribution and attribution of natural 

variations and human activities to global climate change.  



 

3. Expected Outcomes 

3.1. Integrated Global Multi-Source Land Observation Data 

(1) Collection of 11 kinds of moderate and low resolution satellite remote sensing data globally. 

(2) Pre-processing of Remote Sensing Data: Geometric correction and image registration precision 

is better than 2 pixels. 

(3) Data Management and Storage: It will have the capability of 200TB online massive remote 

sensing database management, and scalable and distributed storage.  

(4) Database Service Performance: It will provide quick database access interface and data access 

interface, and meet the online inquiries of over 100 users simultaneously.  

3.2. Inversion algorithms  

The project will integrate domestic and overseas existing algorithms, and develop inversion 

algorithm of global Leaf Area Index, Land Surface Albedo, Emissivity, Downwelling Shortwave 

Radiation and Photo-synthetically Active Radiation, with the overall accuracy of products better than 

that of current products.  

3.3. Production System Development and Product Generation 

(1) The project will integrate domestic and overseas existing algorithms, and develop inversion 

algorithm of global Leaf Area Index, Land Surface Albedo, Emissivity, Downwelling Shortwave 

Radiation and Photo-synthetically Active Radiation, with the Production System: It can process 

multiple global satellite data comprehensively with pre-processing functions of radiometric calibration, 

geometric correction, image registration, spatio-temporal filtering and cloud detection. It will integrate 

multiple algorithms for generating the same product. 

(2) Production of five global land Products: Spatial resolution of Leaf Area Index, Land Surface 

Albedo and Emissivity products is 1km-5km, and temporal resolution is 8 days, with time span of 

1985-2010; spatial resolution of Downwelling Shortwave Radiation and Photo-synthetically Active 

Radiation products is 5km, and temporal resolution is 3 hours, with time span of 2008-2010. 

(3) These products will be validated with the validation data over 10 typical experimental areas of 5 

continents globally, including over 20 typical land cover types. 



3.4. Land Surface Simulation and Data Assimilation System 

(1) Canopy Radiation Model: It can be used for earth system model and accurately estimate solar 

radiation and thermal radiation respectively absorbed by canopy and land surface; it can fully consider 

the differences of features, three-dimensional structure, underlying surface factor and heterogeneity of 

space, provide direct estimate of spectral land surface albedo corresponding with the number of sensor 

channel, output direction component and interpret albedo with visual angel restriction and direction 

land surface albedo. 

(2) Dynamic Vegetation Model: Statistical dynamic vegetation model can distinguish different 

functions and types of vegetation, check and evaluate the simulation results of dynamic model. 

Dynamic vegetation model can simulate the process of vegetation growth, cycle and withering, and 

simulate vegetation distribution, seasonal and yearly change features based on function classification 

of vegetation. 

(3) Data Assimilation System: It will include the integrated assimilation method of Kalman filter, 

ensemble Kalman filter and various particle filters, with high performance parallel computing, and 

provide land surface data assimilation system software which can assimilate multi-source remote 

sensing data. 

(4) Simulation accuracy of land surface model is better than that of the most advanced model of the 

same kind in the world. Data Assimilation Demonstration: It will generate land surface system 

assimilation data sets of China with temporal resolution of 1 hour and spatial resolution of 5km. 

3.5. Demonstrative Research on Global Land Surface Change of Land Surface Products  

(1) Generating global vegetation phenology data sets of 1985-2010 at spatial resolution of 5km. 

(2) Providing quantitative analysis and evaluation of global land surface parameter change trend and 

space-time features. 

(3) Providing the evaluation of the effect of land surface parameter remote sensing products on the 

improvement of earth system simulation performance. 

4. Participating Institudes 

The Principal Investigator of this project is Dr. Shunlin Liang, professor of Beijing Normal 

University, and the Department of Geography, University of Maryland.  

The project is funded through the College of Global Change and Earth System Science, Beijing 

Normal University. All participating institutes include: 

(1) Beijing Normal University 

(2) Institute of Remote Sensing Application, Chinese Academy of Sciences (CAS) 

(3) Cold and Arid Regions Environmental and Engineering Research Institute, CAS 

(4) Institute of Atmospheric Physics, CAS 

(5) Peking University 

(6) University of Electronic Science and Technology of China 



(7) Wuhan University 

(8) Jiangxi Normal University 

(9) Sun Yat-sen University 

(10) Institute of Geographic Sciences and Natural Resources Research, CAS 

(11) Institute of Tibetan Plateau Research, CAS 

(12) National Climate Center, China Meteorological Administration  

5. Contact Information 

Address: 863 project office, College of Global Change and Earth System Science, 

        Beijing Normal Unversity, 19 Xinjiekouwai Street, Haidian District,  

        Beijing 1000875, China  

Tel:  +86-10-5880-9071 

Fax:  +86-10-5880-3002 

E-mail: lsl_863@163.com 

Website: http://www.glass-bnu.com  



Invited Experts for the Summer School 

No. Experts Affiliation E-mail 

1 Prof. Shunlin Liang Beijing Normal University and University of Maryland (USA).  sliang@umd.edu 

2 Prof. Chunxiang Shi Chinese Academy of Meteorological Sciences, China cshi@mail.iap.ac.cn  

3 Prof. Peng Zhang National Satellite Meteorological Center, China zhangp@cma.gov.cn 

4 Dr. Suhung Shen George Mason University and NASA/GSFC, USA Suhung.Shen@nasa.gov 

5 Prof. Jiancheng Shi University of California, Santa Barbara (UCSB)  shi@icess.ucsb.edu 

6 Prof. Yongkang Xue University of California, Los Angeles, USA yxue@geog.ucla.edu 

7 Prof. Xu Liang University of Pittsburgh, USA xuliang@pitt.edu 

8 Prof. Kun Yang Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), China yangk@itpcas.ac.cn  

9 Prof. Soroosh Sorooshian University of California, Irvine, USA soroosh@uci.edu 

10 Prof. Qingyun Duan Beijing Normal University, China qyduan@bnu.edu.cn 

11 Dr. Dennis S. Ojima The H John Heinz III Center for Science, Economics and the Environment, USA ojima@heinzctr.org 

12 Prof. Xin Li Cold and Arid Regions Environmental and Engineering Research Institute, CAS, China lixin@lzb.ac.cn 

13 Prof. Xiaogu Zheng Beijing Normal University, China x.zheng@bnu.edu.cn 

14 Prof. Jun Qin Tibetan Plateau Research, CAS shuairenqin@yahoo.com.cn 

15 Prof. Jeffrey P. Walker University of Melbourne, Australia j.walker@unimelb.edu.au 

16 Prof. Lixin Lu University of Colorado, USA lixin@atmos.colostate.edu 

17 Prof. Hongliang Fang State Key Laboratory of Resources and Environmental Information System, CAS, China fanghl@lreis.ac.cn 

18 Dr. Youlong Xia NCEP/NOAA, USA youlong.Xia@noaa.gov 

19 Dr. Xianhong Xie Beijing Normal University, China xiexh@pku.edu.cn 

20 Dr. Bhanu Neupane UNESCO Office New Delhi  b.neupane@unesco.org 

21 Dr. Ramasamy, Jayakumar UNESCO Office Beijing r.jayakumar@unesco.org  

22 Dr. Anil Mishra  UNESCO Office Paris a.mishra@unesco.org 
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