International Workshop on Marine Invasive Species (MIS) problems in Northwest Pacific

Hongbo SHANG, Policy Research Center for Environment and Economy, MEP, China,
shang.hongbo@prcee.org

Konstantin A. LUTAENKO, A.V. Zhirmunsky Institute of Marine Biology, Far East Branch of the Russian Academy of Sciences, Russia, lutaenko@mail.primorye.ru

Yoshihisa SHIRAYAMA, Japan Agency for Marine-Earth Science and Technology, Japan,
yshira@jamstec.go.jp

Hee-Dong JEONG, National Fisheries Research and Development Institute of Korea, Korea,
hdjeong@nfrdi.re.kr

- Making a Difference –
Scientific Capacity Building & Enhancement for Sustainable Development in Developing Countries
Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region

Project Reference Number: CBA2012-08NSY- Hongbo
Final Report submitted to APN
OVERVIEW OF PROJECT WORK AND OUTCOMES
Minimum 2pages (maximum 4 pages)

Non-technical summary
The problem of marine invasive species (MIS) is one of the major threats to marine biological diversity at present, while there is still insufficient information about MIS at both national and international levels. With the aim of exchanging of information on MIS problems, and exchanging of experiences on the prevention and control of MIS, the Regional Workshop on marine invasive species (MIS) Problems in Northwest Pacific Region was held in Qingdao, China during 23–24 October 2012. About 20 prominent experts were invited from 17 organizations, such as Division of Marine Environment of the Department of Pollution Prevention and Control of the Ministry of Environmental Protection of China, Division of Biological Safety of the Department of Nature and Ecology Conservation of the Ministry of Environmental Protection of China, NOWPAP RCU, Shandong Maritime Safety Administration of China, and more than 20 local researchers in Qingdao City. During the workshop, participants discussed on Current situation of MIS problems in NOWPAP member states, Impacts of the MIS on Ecosystems and Environment in NOWPAP Member Countries, and Current policies and measures on preventing and controlling MIS problems in the NOWPAP member states and future needs for policies, measures and regional cooperation. Finally, they made recommendations on several areas, which include regional cooperation, reliable research and study, prevention measures and so on.

Keywords
Marine Invasive Species, Northwest Pacific, NOWPAP, DINRAC

Objectives
The main objectives of the project were:
1. exchange of information on MIS problems among officials and experts from NOWPAP member states
2. exchange of experiences on the prevention and control of MIS problems among officials and experts from NOWPAP member states
3. analysis of the needs for policies and measures on MIS problems
4. recommendations for NOWPAP member states

Amount received and number years supported
The Grant awarded to this project was:
US$ 25,800 for Year 1:

Activity undertaken
The Regional Workshop on marine invasive species (MIS) Problems in Northwest Pacific Region was held in Qingdao, China during 23–24 October 2012

Results
The regional workshop mainly discussed such issues as the current situation of MIS problem in the NOWPAP region, experiences and good practices on the prevention and control of MIS, challenges in prevention and control of MIS, and the needs for policies and measures on MIS in NOWPAP member states, the necessity and ways of cooperation among NOWPAP member states for the prevention and control of MIS in NOWPAP region, etc.

Through this workshop, it can be said that the understanding of the issue of MIS among the researchers and government officials of NOWPAP member states was improved, the awareness on
the necessity and ways to prevent and control MIS among NOWPAP member states was increased, and the awareness on the need for regional cooperation among NOWPAP member states to prevent and control MIS was also increased.

Relevance to the APN Goals, Science Agenda and to Policy Processes
This project is in line with the aims of CAPaBLE and APN, and will contribute to the goals of CAPaBLE and APN. MIS problems are among the most important global issues with regard to biodiversity changes and management of the marine ecosystems, but there is still insufficient information about MIS at both national and regional levels in NOWPAP region. This workshop is to promote the exchange of information on MIS, exchange of experiences on the prevention and control of MIS among officials and experts from NOWPAP member states, analysis of the needs for policies and measures on MIS problems and recommendations for NOWPAP member states, thus to promote the understanding of MIS problems by experts and policy-makers, facilitate and science-policy linkages, influence policy, and also to raise awareness and capacity of the experts and officials in NOWPAP region, and to promote the contacts and links among the relevant experts and officials in NOWPAP region.

Self evaluation
During the workshop, officers and experts from China, Korea, Japan and Russia discussed such issues as current situation of MIS problem in NOWPAP region, experiences and good practices on the prevention and control of MIS, challenges in prevention and control of MIS, and the needs for policies and measures on MIS in NOAPAP member states, the necessity and ways of cooperation among NOWPAP members states for prevention and control of MIS in NOWPAP region, ect.

Through this workshop, it provides a better and wider view of MIS in NOWPAP region, meanwhile, the outcome of this workshop has disseminated to other institutes, organizations, and experts concerned MIS problems through our publication, emails, and experts/officials who attended this workshop.

Last but not the least, this workshop provides a platform for international officials and experts to communicate, and build a cooperation mechanism through this workshop.

Potential for further work
The problem of marine invasive species is one of the major threats to marine biological diversity, including the Northwest Pacific area, and this workshop is very necessary for solving marine invasive species problems. The outcome of the workshop analyzed the situation of MIS and point out several ways to strengthen the future work, which including strengthening national, regional and international efforts to control invasive alien species; encourage the development of effective work programme on invasive alien species at all levels; accelerate the development of measures to address invasive alien species; and more cooperation on MIS with other international organizations.

Publications (please write the complete citation)
1. Report of the “Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region”
2. Report of recommendations reached at the workshop to relevant officials in NOWPAP member countries;
3. Publicize the workshop proceedings at DINRAC’s website for free access

References
N/A
Acknowledgments
This report was prepared by NOWPAP DINRAC (North West Pacific Action Plan, Data and Information Network Regional Activity Center), with financial support from the Asian-Pacific Network for Global Change Research (APN) under its CAPaBLE Programme.

During the workshop, A.V. Zhirmunsky Institute of Marine Biology of the Far-East Branch of Russian Academy of Science, Japan Agency for Marine-Earth Science and Technology, and East Sea Fisheries Research Institute of Korea National Fisheries Research & Development Institute, gave their technical support for holding this workshop. Contributors to this report included Dr. Kun Lei, and Dr. Caiyun Zhao from Chinese Research Academy of Environmental Sciences; Dr. Changyong Wang from Nanjing Institute of Environmental Sciences, MEP, China; Dr. Nahui Zhang from Dalian Maritime University; Dr. Lijun Wang from National Marine Environmental Monitoring Center; Dr. Yamin Wang from Shandong University at Weihai; Dr. Jiayu Bai from Ocean University of China; Dr. Sangjin Lee from NOWPAP of UNEP; Dr. Keun-Hyung Choi from Korea Institute of Ocean Science and Technology; Dr. Jae-Young Lee from Marine Ecology Division, Ministry of Land, Transport and Maritime Affairs; Dr. SOOK SHIN from Sahmyook University; Mr. MICHIO OTANI from Osaka Museum of Natural History; Dr. Takafumi YOSHIDA from Special Monitoring and Coastal Environmental Assessment Regional Activity Centre; Dr. Konstantin LUTAENKO from A.V. Zhirmunsky Institute of Marine Biology, FEB Russian Academy of Science; Dr. Olga SEMENIKHINA from Far-Eastern Marine Research, Design and Technology institute. Also, Mr. Yi Li and Mr. Jie Wang from Ministry of Environmental Protection, P. R. China, Mr. Xiaofeng Peng and Ms. Xiaoman Xu from China Maritime Safety Administration gave their suggestions from governmental view. Researchers from the First Institute of Oceanography, SOA provided many supports here.

The participation, support, and guidance receiving during the preparation of this report are highly appreciated.
Preface
This report synthesized the main findings and recommendations from the Regional Workshop on marine invasive species (MIS) Problems in Northwest Pacific Region. The objective of this report is to display the current MIS situation, including the problems, insufficient methods in NOWPAP region, and find solutions for these problems and provide a direction for future study.

Overall, MIS is one of the major threats to marine biological diversity at present all over the world, and the report’s conclusions and recommendations identify the key measures needed to effectively move forward in this direction. We hope this report could assist NOWPAP region and even worldwide in MIS’s future study.

NOWPAP DINRAC
Table of Contents

1.0 Introduction ... 1

2.0 Methodology .. 2

 2.1 The Status Quo of Marine Species Invasion in Northwest Pacific Region and Its Influences 2

 2.2 Policies and Measures on Dealing with Invasive Marine Species in Northwest Pacific Ocean Region and the Inadequacy .. 3

 2.3 International Conventions on Marine Species Invasion and the Regulations 4

3.0 Results & Discussion ... 6

4.0 Conclusions ... 8

5.0 Future Directions ... 9

References ... 11

Appendix ... 12
1.0 Introduction

The problem of marine invasive species (MIS) is one of the major threats to marine biological diversity, which plays a critical role in overall sustainable development and poverty eradication, and is essential to our planet, human well-being and to the livelihood and cultural integrity of people. Marine invasive species have serious negative impacts on marine biodiversity, including damage to ecosystems, change of ecosystem functions, and cause of genetic changes in coastal organisms. It also has impacts on economy. For many years, the international society has been making efforts to control this problem. The Convention on Biological Diversity states that each Contracting Party shall, as far as possible and as appropriate, prevent the introduction of, control or eradicate those alien species which threaten ecosystems, habitats or species. The Agenda 21 called on the International Maritime Organization (IMO) and other international bodies to take action to address the transfer of harmful organisms by ships. The WSSD in 2002, in its Johannesburg Plan of Implementation, urges all countries to strengthen national, regional and international efforts to control invasive alien species, encourage the development of effective work programme on invasive alien species at all levels, and urges nations to accelerate the development of measures to address invasive alien species in ballast water. In the outcome document of “Rio+20”, “the future we want”, it is stated that “We note the significant threat alien invasive species pose to marine ecosystems and resources and commit to implement measures to prevent the introduction of, and manage the adverse environmental impacts of alien invasive species, including, as appropriate, those adopted in the framework of the IMO”.

With the support and cooperation from all members of the Northwest Pacific Action Plan (NOWPAP), the Data and Information Network Regional Activity Center (DINRAC) of NOWPAP carried out a joint research on MIS and its potential damage in Northwest Pacific region in 2009, which produced national reports by China, Japan, Republic of Korea and Russia, and a regional overview. The regional overview concluded that there is insufficient information about MIS at both national and international levels. There is a strong need to strengthen the data exchange and communication among relevant countries to share available information and to discuss future activities in this field.

Under this situation, with assistance from the partners, namely, the A.V. Zhirmunsky Institute of Marine Biology of the Far-East Branch of Russian Academy of Science, Japan Agency for Marine-Earth Science and Technology, and East Sea Fisheries Research Institute of Korea National Fisheries Research & Development Institute, DINRAC started to apply for financial support from the Asian-Pacific Network for Global Change Research (APN) under its CAPaBLE Programme to convene a regional workshop on MIS problems in the Northwest Pacific Region to promote exchange of information on MIS problems among officials and experts from NOWPAP member states, exchange of experiences on the prevention and control of MIS among officials and experts from NOWPAP member states, analysis of the needs for policies and measures on MIS and recommendations for NOWPAP member states, which also meets the objectives of the CAPaBLE Programme, which aims at providing researchers (young and aspiring scientists in particular) and decision-makers with opportunities for capacity development in the area of global change.

In April 2012, DINRAC was awarded financial support by APN to hold the “the Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region”. In July 2012, the Contract for the workshop project was signed between APN and DINRAC.

Since July 2012, DINRAC started the preparatory work for the workshop, including making the Announcement of the Regional Workshop, Logistic Information (Annex 2) and Registration form. In order to facilitate the invitation of prominent and experienced experts from China, Japan, Korea and Russia, since July 2012, DINRAC started to seek support from the Regional Coordination Unit (RCU)
of NOWPAP, A.V. Zhirmunsky Institute of Marine Biology of the Far-East Branch of Russian Academy of Science, Japan Agency for Marine-Earth Science and Technology, East Sea Fisheries Research Institute of Korea National Fisheries Research & Development Institute had provided professional support, the Ministry of Environmental Protection of China, Japan Oceanographic Data Center, Chinese Research Academy of Environmental Science, the Marine Ecology Research Center of the First Institute of Oceanography of State Oceanic Administration of China and other research institutes to improve the agenda of the workshop and help invite experts from the four countries. These organizations and institutes have been working on MIS problems for many years and have contacts with prominent experts in this field.

With technical support from the organizations, the Final Agenda of the workshop included three major topics: Session 1: Current situation of MIS problems in NOWPAP member states, Session 2: Impacts of the MIS on Ecosystems and Environment in NOWPAP Member Countries, and Session 3: Current policies and measures on preventing and controlling MIS problems in the NOWPAP member states and future needs for policies, measures and regional cooperation. About 20 prominent experts were invited from 17 organizations in the four countries and more than 20 relevant local researchers in Qingdao City were also invited.

During October 23-24, 2012, the Regional Workshop on marine invasive species (MIS) Problems in Northwest Pacific Region was held in Qingdao, China. Representatives from the Division of Marine Environment of the Department of Pollution Prevention and Control of the Ministry of Environmental Protection of China, Division of Biological Safety of the Department of Nature and Ecology Conservation of the Ministry of Environmental Protection of China, NOWPAP RCU, Shandong Maritime Safety Administration of China made opening remarks at the workshop, and 13 presentations were made by the experts, followed by discussions.

With financial support from the Asian-Pacific Network for Global Change Research (APN) and human resource support from the First Institute of Oceanography of State Oceanic Administration of China, DINRAC tried its best to provide appropriate accommodation, food and other meeting support for the participants, who showed satisfaction with the organization of the workshop.

2.0 Methodology

2.1 The Status Quo of Marine Species Invasion in Northwest Pacific Region and Its Influences

The reports of research and seminars on invasive species in Northwest Pacific regions produced by experts from government and research departments, colleges of China, Japan, Korea and Russia initiated by Data and Information Network Regional Activity Center of NOWPAP (The Action Plan for the Protection, Management and Development of the Marine and Coastal Environment of the Northwest Pacific Region) demonstrate the following:

In total, more than 120 species are introduced to China seas, mainly from North America, England, Europe, Pacific Ocean and North Indian Ocean, of which 9 are bacteria, 7 algae, 8 plants, 7 coelenterate, 1 polychaete, 17 molluscs, 8 crustacea, 4 planus, 2 echinoderm, 4 urochorda, 45 fishes, 4 birds and 8 mammals. China had introduced 41 aquaculture species as of the year of 2007. Main fish species are Japanese prawn, South America white spawn, red claw crayfish, giant river prawn, tiger prawn, penaeus styloiostris, etc. Main shells are: argopecten irradians, patinopecten yessoensis, crassostrea gigas, haliotis rufescens, haliotis fulgens, panopea generosa and mercenaria mercenaria, etc. Main aquatic plants are spartina alterniflora, apartina anglica etc. The others are balanus eburneus, balanus improvises, amphibalanus amphitrite, ciona intestinalis, molgula manhattensis, styela canopus etc. The invasive algae carried by ballast water are chaetoceros concavicornis,
cyclindrotheca closterium, melosiar cancellate, nitzchia deicatissima, prorocentrum minimum, prorocentrum sigmoïdes, scrippsiella trochoidea, pinnularia viridis, prorocentrum balticum, alexandrium catenella, peridiniales, alexandrium tamarense, gymnodinium catenatum and karenia mikimotoi hasen.

There are 39 marine species that have invaded Japan (as of the year of 2011), of which 60.9% is from ship fouling, 15.2% from ballast water, and 13% from aquaculture. The number is still growing year by year. The invasive species are mainly from Northwest Pacific Ocean, East Asia Seas and Northwest Atlantic Ocean and include 2 platyhelminthes, 3 annelida, 12 molluscs, 12 arthropods, 9 bryophyta and 1 angiosperm. Main marine invasive species are: maja spinigera, mediterranean green crab, mercenaria mercenaria, lateolabrax japonicus, euspïra fortunei, amphibalanus amphitrite, nassarius semiplicatus, mytilus galloprovincialis, perna viridis, mytilopsis sallei, meretrix petechialis, hydroides elegans and corbicula fluminea.

Korea has 27 marine invasive species (as of the year of 2011), mainly from ship fouling, ballast water and aquaculture. The invasive species include 1 spongiatia, 3 coelenterata, 3 molluscs, 4 cirripedia, 5 bryophyta, 5 phylum chordata and 6 algae. There are 7 primary invasive species, mytilus galloprovincialis, amphibalanus amphitrite, hole balanus, ciona intestinalis, styela plicata, and two ulva.

Russia has 66 marine invasive species (as of the year of 2011), mostly from ship fouling and ballast water, and secondly from aquaculture and international introduction. The primary invasive species are balanus improvisus, corophium acherusicum, portunus sanguinolentus, plagusia tuberculata, nereis succinea, mytilus galloprovincialis, haliotis discus hannai, aplysia parvula, bugula californica, ciona intestinalis, dermochelys coriacea, red turtle and pelamis platura.

Marine species invasion endangers ecosystem, economy and public health in various degrees. Ecologically, the invasive marine species threatens bio-diversity, damages genetic diversity, and causes genetic pollution. Economically, it has caused great loss to agriculture. In the meantime, the cost occurring in the elimination and control of invasive species is gigantic. And the collateral damage to the society, ecology, environment, and resources is incalculable. As far as public health is concerned, many invasive marine species themselves are the pathogens or the media of pathogens, which cause epidemics, and threaten human health.

2.2 Policies and Measures on Dealing with Invasive Marine Species in Northwest Pacific Ocean Region and the Inadequacy

China has not promulgated specific laws or regulations on marine invasive species, but some regulations involve the management of invasive marine species, such as Fisheries Law of the People’s Republic of China, Marine Environmental Protection Law of the People’s Republic of China, Law of the People’s Republic of China on the Protection of Wildlife and Regulations Of the People’s Republic of China on Wild Plants Protection etc. Article 16 of Fisheries Law of the People’s Republic of China stipulates that no new aquatic species may be popularized unless it has been examined and approved by the National Committee for Examination and Approval of Original Breeding and Good Breeding and has been announced by the fishery administrative department of the State Council. Article 25 of Marine Environmental Protection Law of the People’s Republic of China provides that the introduction of marine biological species shall be subject to scientific assessment to avoid damages to marine ecosystems. Article 24 of Law of the People’s Republic of China on the Protection of Wildlife states that the export of wildlife under special state protection or the products thereof, and the import or export of wildlife or the products thereof, whose import or export is restricted by international conventions to which China is a party, must be approved by the department of wildlife
administration under the State Council or by the State Council, and an import or export permit must be obtained from the state administrative organ in charge of the import and export of the species which are near extinction. Article 20 of Regulations of the People’s Republic of China on Wild Plants Protection prescribes that the export of wild plants under special state protection or the import or export of wild plants whose import or export is restricted by international conventions to which China is a party, must be verified by the department of wild plants administration under the government of the province, autonomous region or municipality directly under the central government which the importer or exporter belongs to, and then be submitted to the department of wild plants administration under the State Council for approval. In the field of prevention and control of marine invasive species, China is still in need of systematic regulatory and legal system, and is facing plenty problems, like scarce scientific research investment, inadequate information, incomplete management and control system, and the low awareness of the public.

Japan is currently the biggest source country of ballast water. Japan discharged 318 million tons of ballast water in 1997, accounting for 10% of the world’s total discharge. In Japan, marine invasion is mainly from ship fouling, but this country is lack of research on ship fouling introduction as well as the distribution information on ship fouling, especially the distribution information in Tokyo Bay, Osaka Bay and Ise Bay. Inadequate information is now the main obstacle of the prevention and control of marine species invasion for Japan, therefore it is necessary for Japan to develop and promote innocuous antifouling paint technology, to expand science and technology to reduce the flow of species outside the ship, to increase the frequency of ship docking to examine and remove fouling, and to regulate or prohibit the under-water remove of ship fouling, as well as to emphasize the international communication to jointly prevent and control marine species invasion[1].

Korea has enacted some laws and regulations on marine invasive species, like Action Plan for the Protection and Management of Marine Ecosystems, Action Plan for Marine Environment Management, and Action Plan for Ballast Water Management. Chapter 3 of Action Plan for the Protection and Management of Marine Ecosystem stipulates that the marine species should be protected, and Article 23 under which is about the biological management and control of species damaging the marine ecosystem, and the relevant measures to prevent and control marine invasion species. Chapter 3 of Action Plan for Marine Environment Management provides relevant regulations on the prevention and management of marine pollution, Article 22 under which prohibits the discharge of contamination. The purpose of formulating Action Plan for Ballast Water Management is to control the destructive aquatic organism invasion, which involves management, exchange and discharge.

Russia’s environmental legal system consists of federal law, presidential decree, governmental order and federal executive agencies act etc. Russia has not enacted specific laws on the invasion species, and lacks relevant state level measurements. Federal laws contain some regulations on marine species invasion, like prohibiting the growth and existence of plants and animals that do not belong to their natural ecosystem, prohibiting the introduction of another species to national wildlife reserves and national parks, requiring approval of related statutory machinery on the transfer of a specific fauna. Regulations on Federal Supervisory Natural Resources Management Service approved by Russian government stipulates that the federal department of the Federal Supervisory Natural Resources Management Service is entitled to issue permit on the entrance of non-native fauna. In 2004, Russia acceded to International Convention for the Control and Management of Ships’ Ballast Water and Sediments, meanwhile, it also acceded to International Convention for the Prevention of Pollution from Ships.

2.3 International Conventions on Marine Species Invasion and the Regulations

Marine invasion species threatening marine ecosystem by means of ballast water has aroused attention. The species in the ballast water can be as many as thousands. Global Environment Facility (GEF) has listed the introduction of harmful species to new environment via ballast water and the consequent damages as one of the four hazards. Agenda 21 adopted on the United Nations Conference on Environment and Development held in Brazil in 1992 requested International Maritime Organization (IMO) to take necessary measures to solve the transfer of harmful aquatic organisms carried in ballast water. World Summit on Sustainable Development held in South Africa in 2002 reiterated Agenda 21, and called for IMO to take immediate measures to solve the problem of the introduction of aquatic organisms carried in ships. In 1997, IMO adopted a non-mandatory regulation, Guidelines for Control and Management of Ships’ Ballast Water to Minimize the Transfer of Harmful Aquatic Organisms and Pathogens [A. 868(20)]. It also convened Diplomatic Conference in 2004 and concluded International Convention for the Control and Management of Ships’ Ballast Water and Sediments [2]. The convention should enter into force twelve months after ratification by 30 countries, representing 35 percent of world’s merchant shipping tonnage.

The core technology content of International Convention for the Control and Management of Ships’ Ballast Water and Sediments is the management of ballast water, by means of mechanical, physical, chemical or biological processes, either singularly or in combination, to remove, render harmless, or avoid uptake or discharge of harmful aquatic organisms and pathogens within ballast water and sediments. The ultimate purpose of this convention is to require ships to conduct ballast water treatment to meet the density standards for the existence of organisms and microorganisms. The convention is composed of Articles, technology Annex and two Appendices. The convention includes 22 Articles, providing application, general obligations, inspection, violation and requirements on entry into force. Annex Regulations for the Control and Management of Ships’ Ballast Water and Sediments to Prevent, Minimize and Ultimately Eliminate the Transfer of Harmful Aquatic Organisms and Pathogens, including General Provisions (Section A), Management and Control Requirements For Ships (Section B), Special Requirements in Certain Areas (Section C), Standards for Ballast Water Management (Section D), Survey and Certification Requirements for Ballast Water Management (Section E), provides detailed regulations and requirements. Appendices contain forms of International Ballast Water Management Certificate as well as Ballast Water Record Book [3].

Annex Regulations for the Control and Management of Ships’ Ballast Water and Sediments to Prevent, Minimize and Ultimately Eliminate the Transfer of Harmful Aquatic Organisms and Pathogens specifically stipulates requirements on Ballast Water Management. General Provisions (Section A) consist of definitions, general applicability, exceptions and exemptions. Management and Control Requirements for Ships (Section B) includes: 1. Each ship shall have on board and implement a Ballast Water Management Plan approved by the administration to provide safe and effective Water Management procedures. 2. A ship must have a Ballast Water Record Book (Regulation B-2) to record when and where and how much ballast water is taken on board, circulated or discharged into the sea. It should also record when Ballast Water is discharged to a reception facility and other circumstances of ballast water management. Usually the first mate is responsible for recording and keeping of the record book. 3. Ballast Water Management for ships: Ships constructed before 2009
with a ballast water capacity of between 1500 and 5000 cubic meters must conduct ballast water management that at least meets the ballast water exchange standards or the ballast water performance standards until 2014, after which time it shall at least meet the ballast water performance standard. Ships constructed before 2009 with a ballast water capacity of less than 1500 or greater than 5000 cubic meters must conduct ballast water management that at least meets the ballast water exchange standards or the ballast water performance standards until 2016, after which time it shall at least meet the ballast water performance standard. A Ship constructed in or after 2009 with a ballast water Capacity of less than 5000 cubic meters must conduct ballast water management that at least meets the ballast water performance standard. Ships constructed in or after 2009 but before 2012, with a ballast water capacity of 5000 cubic meters or more shall conduct ballast water management that at least meets the ballast water performance standard after 2016. Ships constructed in or after 2012, with a ballast water capacity of 5000 cubic meters or more shall conduct ballast water management that at least meets the ballast water performance standard. All ships conducting ballast water exchange should: whenever possible, conduct ballast water exchange at least 200 nautical miles from the nearest land and in water at least 200 meters in depth. In cases where the ship is unable to conduct ballast water exchange as above, Ballast Water exchange should be conducted as far from the nearest land as possible, and in all cases at least 50 nautical miles from the nearest land and in water at least 200 meters in depth. When these requirements cannot be met, areas may be designated where ships can conduct ballast water exchange. All ships shall remove and disposal of sediments from spaces designated to carry ballast water.

Special requirements in certain areas (Section C) includes: A Party, individually or jointly with other Parties, may impose on ships additional measures to prevent, reduce, and ultimately eliminate the transfer of Harmful Aquatic Organisms and Pathogens through ships' Ballast Water and Sediments. In these cases, the Party or Parties should consult with adjoining or nearby States that may be affected by such standards or requirements and should communicate their intention to establish additional measure(s) to the Organization at least 6 months, except in emergency or epidemic situations, prior to the projected date of implementation of the measure(s). When appropriate, Parties will have to obtain the approval of IMO.

Standards for Ballast Water Management (Section D) provides ballast water exchange standard and ballast water performance standard, and that Ballast Water Management systems must be approved by the Administration in accordance with IMO Guidelines, and Prototype Ballast Water Treatment Technologies and Review of standards.

Survey and Certification Requirements for Ballast Water Management (Section E), requires that a ship of 400 gross tonnage and above should conduct an initial survey, annual survey, intermediate survey and renewal survey, and be issued or endorsed a Certificate after successful completion of the survey, excluding floating platforms, Floating Storage Units (FSUs) and Floating Production Storage and Offloading Units (FPSOs).

The execution and implementation of Convention will prevent, reduce and ultimately eliminate the risk of harmful aquatic organisms and pathogens carried by ship vessels entering into our ports, and protect marine ecosystem. In the meantime, as the execution date approaches, all the countries are intensifying the research and development of Ballast Water management technology, and have met the IMO’s high technology standards, accomplished system integration and high intelligentization. [4]

3.0 Results & Discussion
Through this workshop, experts and officials from the NOWPAP member countries got more knowledge and understanding of the current situation of MIS issue in the region, the measures to prevent and control MIS problems, and the necessary policies and measures to tackle MIS problems. The target audience and participants were from research institutions, government agencies and local authorities. This workshop functioned as a platform to strengthen the linkage between science and policy. Also, the connection among relevant experts was also set up and strengthened, which could facilitate their cooperation and scientific activities in the future.

The problems related to the MIS in the NOWPAP region are ones of the most important issues with regard to biodiversity changes and management; the problems including MIS appearance, establishment and expansion impact ecosystems, economy and public health; and there is insufficient information about MIS at both national and international levels, and there is no international coordination in research and management of the MIS in the NOWPAP region.

The problems of marine invasive species are directly linked to sustainable development. It is one of the major threats to biological diversity, which is the combination of life forms and their interactions with each other and with the rest of the environment that has made Earth a uniquely habitable place for humans. Biodiversity plays a critical role in overall sustainable development and poverty eradication, and is essential to our planet, human well-being and to the livelihood and cultural integrity of people. Marine invasive species have serious negative impacts on marine biodiversity, including damage to ecosystems, change of ecosystem functions, and cause of genetic changes in coastal organisms. It also has impacts on economy. For instance, marine invasive species cause great losses of aquaculture production. Meanwhile, costs of cleaning and controlling invasive species are huge. Many marine invasive species are human pathogens or vectors of the pathogens that could be epidemic. Those are harmful to human health, and can invade human body easily, spreading illness.

In response to the threats posed by invasive marine species, Article 8 (h) of the Convention on Biological Diversity states that each Contracting Party shall, as far as possible and as appropriate, prevent the introduction of, control or eradicate those alien species which threaten ecosystems, habitats or species. The Convention on Biological Diversity was one of the key agreements adopted at the 1992 Earth Summit in Rio de Janeiro. The Agenda 21 called on the International Maritime Organization (IMO) and other international bodies to take action to address the transfer of harmful organisms by ships.

The WSSD in Johannesburg in 2002 re-affirmed its commitment to Agenda 21, and in its Plan of Implementation, the WSSD called for acceleration of the development of measures to address invasive species in ballast water and urged IMO to finalize the IMO Ballast Water Convention. Paragraph 44(i) of the Johannesburg Plan of Implementation urges all countries to strengthen national, regional and international efforts to control invasive alien species, which are one of the main causes of biodiversity loss, and encourage the development of effective work programme on invasive alien species at all levels. And its paragraph 34(b) urges nations to accelerate the development of measures to address invasive alien species in ballast water. The International Convention for the Control and Management of Ships’ Ballast Water and Sediments was adopted by IMO in February 2004.

There are a number of major gaps regarding the issue of marine invasive species identified in the “Gaps and Priorities in Addressing Marine Invasive Species” published by IUCN in 2005, including taxonomy, understanding invasion patterns, prevention and treatment technologies, legislation and regulations, management, etc. In the Joint Work Plan on Marine Invasive Species drafted for the Workshop on the Joint Programme of Work on Marine and Coastal Invasive Species jointly convened by the Secretariat of the Convention on Biological Diversity, the Global Invasive Species Programme
(GISP) and the UNEP Regional Seas Programme in Montreal in 2005, a number of gaps were also identified, including regulatory and institutional framework, management measures, capacity building needs, research needs, info sharing and awareness.

In 2010, the tenth meeting of the Conference of the Parties to the Convention on Biological Diversity adopted the Strategic Plan for Biodiversity 2011-2020, in which Target 9 states that, by 2020, invasive alien species and pathways are identified and prioritized, priority species are controlled or eradicated, and measures are in place to manage pathways to prevent their introduction and establishment.

This workshop touched upon the above mentioned issues and make contributions to them.

In one word, the workshop focused on the problems of marine invasive species and measures to tackle them, and contributed to the control of invasive species and the conservation of biological diversity.

4.0 Conclusions

The main objectives of the workshop include: exchange of information on MIS problems among officials and experts from NOWPAP member states, exchange of experiences on the prevention and control of MIS among officials and experts from NOWPAP member states, analysis of the needs for policies and measures on MIS and recommendations for NOWPAP member states.

Through the workshop, the understanding of the issue of Marine Invasive Species among the researchers and government officials of NOWPAP member states was improved; the awareness on the necessity and ways to prevent and control MIS among NOWPAP member states was increased; and the awareness on the need for regional cooperation among NOWPAP member states to prevent and control MIS was also increased.

Through nearly two days’ discussion, participants to the workshop made the following major conclusions:

Participants to the workshop stressed that that the problem of MIS is one of the major threats to marine ecosystem, including the Northwest Pacific area, and this workshop is very necessary for the Northwest Pacific region to brings together relevant officials and experts to exchange information and experiences on the prevention and control of MIS.

In the Northwest Pacific region, there are already a lot of research and information on the current situation of MIS, such as the origins, pathways, categories, distribution and impacts of MIS, but they are still inadequate for policy-making and management. There is insufficient reliable research and statistics of the origins, pathways, categories, distribution and impacts of MIS.

Countries in the Northwest Pacific region have made many efforts to prevent and control MIS, including legislations, putting management responsibilities on governmental organizations, implementation of international rules and guidelines, development of technologies, etc. However, due to limited knowledge and understanding of MIS, and also due to the extreme difficulty to fully investigate and control this problem, the measures are still inadequate in terms of legislation, management system and concrete actions. Participants acknowledged that, through this workshop, they shared information, experiences and knowledge on MIS in the Northwest Pacific region, and their understanding of the issue of MIS was improved, which will benefit their future international cooperation on MIS.
Participants recommended that more investigation of and research on MIS are needed, and countries in the Northwest Pacific region need to provide resources to strengthen the investigation and researches on this issue, and to develop regional cooperation on data-sharing in the framework of NOWPAP, and close cooperation with other international organizations.

Participants stressed that, since it is very difficult to eliminate MIS after their invasion, prevention measures are very important and indispensable, including strict inspection and environmental impact assessment.

Participants recommended that a rapid entry into force of the IMO Ballast Water Convention is essential to prevent further spread of MIS. There is a need to strengthen regional cooperation through participation in international organizations, including FAO, UNEP and PICES, etc.

Participants recommended that current national legislation and management systems for MIS need to be improved to further prevent and control MIS, including control of pathways that lead to the introduction and spread of MIS, routine monitoring to detect and rapid response to eradicate or control MIS before they spread, and long-term response to mitigate the impacts of MIS.

Through this workshop, it can be said that the understanding of the issue of MIS among the researchers and government officials of NOWPAP member states was improved, the awareness on the necessity and ways to prevent and control MIS among NOWPAP member states was increased, and the awareness on the need for regional cooperation among NOWPAP member states to prevent and control MIS was also increased.

5.0 Future Directions

This outcome of regional workshop was meaningful for future relevant intergovernmental activities.

Firstly, this regional workshop was organized under the broader background of NOWPAP, which is a regional intergovernmental cooperation mechanism for marine environmental protection. Therefore, the outcome of this workshop will be put under the attention of the NOWPAP member countries as one of the references for their policy-making and decision-making.

Secondly, MIS issue is also one of the important issues on the agenda of the International Maritime Organization (IMO), and the outcome of the workshop, together with other relevant work of NOWPAP, will be disseminated at relevant IMO forums on ballast water management by NOWPAP as a whole. The outcome of the workshop, together with other relevant work of NOWPAP, will be both assisting and informing IMO’s relevant work on formulating global guidelines on the management of ballast water.

Thirdly, the outcome of the workshop will also provide support to the implementation of Article 8(h) of the Convention on Biological Diversity through contribution to the knowledge and awareness of invasive species.

This workshop is not meant to be a one-off activity. It is not only a continuation of the past DINRAC work on MIS issue, but built upon the past work and facilitate future work of DINRAC and the whole NOWPAP on MIS issue. Under the background of lacking expert and scientific knowledge on MIS issues in the NOWPAP region, the information, knowledge, and ideas collected through this workshop will be utilized during DINRAC’s future work and also guide future activities of DINRAC; the participating experts and officials will expand DINRAC’s expert network on MIS issue and be the
potential expert resource for NOWPAP DINRAC’s future work, such as MIS database, toolbox on the prevention and control of MIS, etc

For future study, there are 5 parts needed to be considered: (1) improve the framework of laws and regulations on marine invasive species; (2) strengthen the supervision capacity of marine invasive species; (3) more systemic scientific study on marine invasive species; (4) improve the awareness of public; (5) more international communication and cooperation
References

(1) Michio Otani. Important vectors for marine organisms unintentionally introduced to Japanese waters. 92-103, Assessment and Control of Biological Invasion Risks.

(2) Xiaoman XU, Dongsheng FAN, 我国《压载水公约》履约准备工作的建议. 439-445. 海上污染防治及应急技术研讨会论文集.

(3) Jialiang HUANG, Pinfang Li, IMO 国际船舶压载水和沉积物控制与管理公约介绍. 46-49. 《航海技术》2006年第1期.

Appendix

1. Agenda for the Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region

2. Welcome Remarks and Introduction of the Workshop by DINRAC Director

3. Opening Remarks by Mr. Yi Li, Deputy Director of the Marine Division of the Ministry of Environmental Protection of China

4. Announcement of the Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region

5. List of Participants

6. Presentation materials

7. Report of the “Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region”
Agenda for the Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region

22 October, 2012

Arrival of Participants

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:00–20:00</td>
<td>Buffet Dinner</td>
</tr>
</tbody>
</table>

Day 1: 23 October 2012

Opening Session

Moderator: Mr. Hongbo SHANG, Director of NOWPAP DINRAC

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30–9:00</td>
<td>Registration</td>
</tr>
<tr>
<td>9:00–9:10</td>
<td>Introduction to the workshop</td>
</tr>
<tr>
<td></td>
<td>- Mr. Hongbo SHANG</td>
</tr>
<tr>
<td>9:10–9:30</td>
<td>Opening Remarks</td>
</tr>
<tr>
<td></td>
<td>- Mr. Yi LI, Deputy Director of the Marine Division of the Ministry of Environmental Protection of China</td>
</tr>
<tr>
<td></td>
<td>- Mr. Jie WANG, Director of the Bio-safety Management Division of the Ministry of Environmental Protection of China</td>
</tr>
<tr>
<td></td>
<td>- Mr. Xiaofeng PENG, Senior Engineer, Shandong Maritime Safety Administration</td>
</tr>
<tr>
<td></td>
<td>- Dr. Sangjin LEE, NOWPAP Scientific Affairs Officer</td>
</tr>
<tr>
<td>9:30–9:40</td>
<td>Group Photo</td>
</tr>
</tbody>
</table>

Session 1: Current situation of MIS problems in NOWPAP member states

Moderator: Dr. Kun LEI, Director of River and Coastal Environmental Research Center, Institute of Water Environment, Chinese Research Academy of Environmental Sciences

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:40–10:15</td>
<td>Introduced marine and brackish organisms in Japanese coastal waters, and the processes for their introduction</td>
</tr>
<tr>
<td></td>
<td>- Mr. Michio Otani, Osaka Museum of Natural History (30 min)</td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>10:15–10:50</td>
<td>Current situation of the MIS in Korea</td>
</tr>
<tr>
<td></td>
<td>- Dr. SOOK SHIN, Sahmyook University (30 min)</td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
</tr>
<tr>
<td>10:50–11:05</td>
<td>Tea Break</td>
</tr>
<tr>
<td>11:05–11:40</td>
<td>Marine invasive species in the Russian Far East: an overview</td>
</tr>
<tr>
<td></td>
<td>- Dr. Konstantin Lutaenko, A.V. Zhirmunsky Institute of Marine Biology,</td>
</tr>
<tr>
<td></td>
<td>FEB Russian Academy of Sciences (30 min)</td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
</tr>
<tr>
<td>11:40–12:15</td>
<td>Invasive species in China seas and its impacts</td>
</tr>
<tr>
<td></td>
<td>- Prof. Lijun Wang, National Marine Environmental Monitoring Center</td>
</tr>
<tr>
<td></td>
<td>(30 min)</td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
</tr>
<tr>
<td>12:15–12:30</td>
<td>Summary of Session 1</td>
</tr>
<tr>
<td>12:30–14:00</td>
<td>Buffet Lunch</td>
</tr>
<tr>
<td>Session 2: Impacts of the MIS on Ecosystems and Environment in NOWPAP Member Countries</td>
<td></td>
</tr>
<tr>
<td>Moderator: Dr. Konstantin Lutaenko, Senior Research Scientist and Head of the International Cooperation Department of the Institute of Marine Biology, Far East Branch of the Russian Academy of Sciences, President of Russian Far East Malacological Society</td>
<td></td>
</tr>
<tr>
<td>14:00–14:35</td>
<td>Impacts, Risk Analysis, and Management of Marine Invasive Species in Korea</td>
</tr>
<tr>
<td></td>
<td>- Dr. Keun-Hyung Choi, Korea Institute of Ocean Science and Technology</td>
</tr>
<tr>
<td></td>
<td>(30 min)</td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
</tr>
<tr>
<td>14:35–15:10</td>
<td>Pros and Cons of Invasive Cordgrass Spartina spp. Introduced into China from UK and USA over 30 Years Ago</td>
</tr>
<tr>
<td></td>
<td>- Dr. Changyong WANG, Nanjing Institute of Environmental Sciences, MEP (30 min)</td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
</tr>
<tr>
<td>Time</td>
<td>Session Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>15:10–15:45</td>
<td>The influences of invasive alien species Spartina alterniflora on ecosystem of Chinese coastal wetland</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45–16:10</td>
<td>Tea Break</td>
</tr>
<tr>
<td>16:10–16:45</td>
<td>China's Response to Marine Invasive Species from the Legal Perspective and Challenges Review</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic Surveys for International Convention for the control and management of ship's Ballast Water and Sediments</td>
</tr>
<tr>
<td>16:45–17:20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>17:20–17:40</td>
<td>Summary of Session 2</td>
</tr>
<tr>
<td>18:00–20:00</td>
<td>Dinner</td>
</tr>
</tbody>
</table>

Day 2: October 24, 2012

Session 3: Current policies and measures on preventing and controlling MIS problems in the NOWPAP member states and future needs for policies, measures and regional cooperation

Moderator: Dr. Sangjin LEE, NOWPAP Scientific Affairs Officer

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Presenter</th>
<th>Location</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00–9:35</td>
<td>Ballast Water Management - An Approach to Combat Marine Invasive Species</td>
<td>Dr. Nahui ZHANG</td>
<td>Environmental Engineering Institute, Dalian Maritime University</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:35–10:10</td>
<td>Aquaculture and MIS in China: Status, management and policy</td>
<td>Dr. Yamin WANG</td>
<td>College of Ocean, Shandong University at Weihai</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10-10:30</td>
<td>Discussion (5 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:05</td>
<td>Tea Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:05</td>
<td>Current policies, measures and the challenges in Korea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dr. Jae-Young Lee, Marine Ecology Division, Ministry of Land,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport and Maritime Affairs (30 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:05-11:40</td>
<td>Current policies and measures on preventing and controlling MIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>problems in Russia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dr. Olga SEMENIKHINA, Far-Eastern Marine Research, Design and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technology institute (30 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion (5 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>Summary of Session 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Conclusion of the Workshop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-14:00</td>
<td>Buffet Lunch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Welcome Remarks and Introduction of the Workshop by DINRAC Director

Distinguished experts, dear friends from Japan, Korea, Russia and China, It is the honor of the Data and Information Network Regional Activity Center of Northwest Pacific Action Plan, hereafter I call it DINRAC, to have you all here today at this important workshop. On behalf of DINRAC, I would like to extend my sincere appreciation to you all for your participation to this workshop.

The problem of marine invasive species is one of the major threats to marine bio-diversity. Meanwhile, the costs of cleaning and controlling invasive species are huge. For many years, the international society has been making efforts to control this problem. The Convention on Biological Diversity states that each Contracting Party shall, as far as possible and as appropriate, prevent the introduction of, control or eradicate those alien species which threaten ecosystems, habitats or species. The Agenda 21 called on the International Maritime Organization (IMO) and other international bodies to take action to address the transfer of harmful organisms by ships. The WSSD in 2002, in its Johannesburg Plan of Implementation, urges all countries to strengthen national, regional and international efforts to control invasive alien species, encourage the development of effective work programme on invasive alien species at all levels, and urges nations to accelerate the development of measures to address invasive alien species in ballast water.

In the outcome document of “Rio+20”, “the future we want”, it is stated that “We note the significant threat alien invasive species pose to marine ecosystems and resources and commit to implement measures to prevent the introduction of, and manage the adverse environmental impacts of alien invasive species, including, as appropriate, those adopted in the framework of the IMO”.

With the support of NOWPAP member states, DINRAC initiated a joint research on marine invasive species and its potential damage in Northwest Pacific region in 2009. You may find this report at the corner of this meeting room and also on our website. One of the conclusions of this joint research claimed that, the problems related to the marine invasive species in the NOWPAP region are among the most important issues with regard to biodiversity changes and management. However, there is insufficient information about this problem at both national and international levels, and there is a strong need to strengthen the data exchange and communication among relevant countries to share available information and to discuss future activities in this field.

As a following effort on the problem of marine invasive species, DINRAC successfully secured financial support from the Asian-Pacific Network for Global Change Research (APN) under its CAPaBLE Programme to convene this workshop. The CAPaBLE Programme aims at providing researchers (young and aspiring scientists in particular) and decision-makers with opportunities for capacity development in the area of global change. As an APN-funded activity and a DINRAC event, this workshop aims to promote the exchange of information and experiences on the prevention and control of marine invasive species, analysis of the needs for policies and measures, and recommendations for NOWPAP member states, thus to promote the understanding of MIS problems by experts and policy-makers, and to facilitate and science-policy linkages.
As you may see from the Agenda, this workshop has 3 major topics and will last for one and a half days. Experts will make presentations under different sessions, and time for discussion was allocated for each presentation. We wish this arrangement would, to a certain extent, satisfy your needs.

During the preparation of this workshop, the Regional Coordination Unit of NOWPAP, A.V. Zhirmunsky Institute of Marine Biology of the Far-East Branch of Russian Academy of Science, Japan Agency for Marine-Earth Science and Technology, East Sea Fisheries Research Institute of Korea National Fisheries Research & Development Institute had provided professional support, the Ministry of Environmental Protection of China, Japan Oceanographic Data Center, Chinese Research Academy of Environmental Science, the Marine Ecology Research Center of the First Institute of Oceanography of State Oceanic Administration and other research institutes had also provided great help. I would like to say that, without you, it will be much more difficult for us to organize such an event. Thank you all very much for the help. Finally, I wish you all a very nice stay in Qingdao during the workshop.

Thank you!
Opening Remarks by Mr. Yi Li, Deputy Director of the Marine Division of the Ministry of Environmental Protection of China

Distinguished experts and colleagues,

Today, this Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region is being held here in Qingdao. As one of those that have been working many years on marine environmental protection, I am very glad to see that the experts from Northwest Pacific countries are gathering here to have this workshop and discuss the problem of invasion of alien marine species. Hereby, please allow me to express congratulation to the successful holding of the workshop, and welcome the experts from Japan, Korea and Russia. Meanwhile, I would like to express my appreciation to the participation of the officials and experts from Shandong Maritime Safety Administration, Liaoning Maritime Safety Administration, National Marine Environmental Monitoring Center, and Dalian Maritime University, etc.

As we all know, with the development of international trade and exchange of people, the scale and speed of the movement of species across regions and boarders are increasing, and the possibility of harmful invasion of alien species are also getting higher and higher. The invasion of alien species could damage the stability and balance of marine ecosystem, incur huge economic losses, and pose a potential threat to the stable social and economic development in coastal areas. However, our knowledge about the invasion of alien marine species is very inadequate, reliable research and statistics of the type, distribution and impacts of marine invasive species are lacking, and measures to prevent the invasion of alien marine species are also very insufficient. These are among the problems that are in urgent need of research. I noticed that thematic presentations and discussions on these issues have been arranged during this workshop. I believe that, through our exchange and discussion, we will further improve our understanding about these issues and related policies and measures, which I think will contribute to the prevention and control of marine invasive species in the Northwest Pacific area.

As I know, the Regional Coordination Unit and the Data and Information Network Regional Activity Center have made a lot of efforts for this workshop. I thank you for your work. Asian-Pacific Network for Global Change Research has provided generous financial support to this workshop; I also thank them for their precious support.

Finally, I wish this workshop will have the expected results and realize its objectives.

Thank you for your attention.
Announcement of the Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region

1 Background

The problem of marine invasive species (MIS) is one of the major threats to marine biological diversity, which plays a critical role in overall sustainable development and poverty eradication, and is essential to our planet, human well-being and to the livelihood and cultural integrity of people. Marine invasive species have serious negative impacts on marine biodiversity, including damage to ecosystems, change of ecosystem functions, and cause of genetic changes in coastal organisms. It also has impacts on economy. Article 8 (h) of the Convention on Biological Diversity states that each Contracting Party shall, as far as possible and as appropriate, prevent the introduction of, control or eradicate those alien species which threaten ecosystems, habitats or species. The Agenda 21 called on the International Maritime Organization (IMO) and other international bodies to take action to address the transfer of harmful organisms by ships. The Johannesburg Plan of Implementation adopted at the WSSD in Johannesburg in 2002 urged all countries to strengthen national, regional and international efforts to control invasive alien species, and encourage the development of effective work programme on invasive alien species at all levels.

With the support and cooperation from all members of the Northwest Pacific Action Plan (NOWPAP), the Data and Information Network Regional Activity Center (DINRAC) of NOWPAP carried out a joint research on MIS and its potential damage in Northwest Pacific region in 2009, which produced national reports by China, Japan, Republic of Korea and Russia, and a regional overview. This work provided basic scientific information on MIS for the policy-makers, academics, general public and other stakeholders, and will be a major contribution toward addressing MIS in the NOWPAP region. Among others, the regional overview found out that the problems related to the MIS in the NOWPAP region are among the most important issues with regard to biodiversity changes and management. However, there is insufficient information about MIS at both national and international levels. There is a strong need to strengthen the data exchange and communication among relevant countries to share available information and to discuss future activities in this field.

With financial support from the Asian-Pacific Network for Global Change Research (APN), DINRAC is now planning to hold a Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region to promote communication and exchange among the officials and experts of NOWPAP member states.

2 Objective

This regional workshop aims to promote exchange of information on MIS problems among officials and experts from NOWPAP member states, exchange of experiences on the prevention and control of MIS among officials and experts from NOWPAP member states, analysis of the needs for policies and measures on MIS and recommendations for NOWPAP member states.

3 Venue and Date

The workshop will be held at the Sophia (Qingdao) International Hotel in Qingdao, the People’s Republic of China, during October 23-24, 2012.
4 Expected Participants

Participants to this workshop will mainly involve invited officials and experts from China, Japan, Korean and Russia, and other interested officials/experts from relevant governmental organizations and relevant research institutions in China. The total number of participants of the regional workshop is suggested to be around 30-50 persons.

5 Language

The workshop will be conducted in English.

6 Registration, Travel and Funding

For all participants, please fill in the Registration Form attached to this announcement and return it to us before September 20, 2012.

For the specially invited participants, the workshop organizer will cover their travel costs, including flight, accommodation, food, and a nominal amount of allowance. For those participants funded by DINRAC, we very much appreciate your efforts to find the most economic and direct route and to arrange your transportation by yourself.

7 Contact

The meeting home page (http://dinrac.nowpap.org/MISworkshop/) will be open at DINRAC website soon with further details of the meeting including meeting documents. You can also contact DINRAC through the following way:

Contact Person: Ms. Hou Wenwen

NOWPAP DINRAC

Add: No.1 Yuhui Nanlu, Chaoyang District, Beijing 100029, China

Tel: +86-10-8466 5309

Fax: +86-10-8463 0849

Email: hou.wenwen@prcee.org
List of Participants

Experts of P. R. China

Mr. Yi LI
Deputy Director
Department of Pollution Prevention and Control, MEP
No. 115 Xizhimennei Nanxiaojie, Beijing 100035, China
Tel: 86-10-66555274
Fax: 86-10-66556236
E-mail: marine@sapa.gov.cn

Mr. Jie WANG
Director
Department of Nature and Ecology Conservation, MEP
No. 115 Xizhimennei Nanxiaojie, Beijing 100035, China
Tel: 86-10-66556325
Fax: 86-10-66556329
E-mail: wang.jie@mep.gov.cn

Mr. Xiaofeng PENG
Senior Engineer,
Shandong Maritime Safety Administration
No. 21 Wuxiao Road, Qingdao 266002, China
Tel: 86-532-86671126
E-mail: sdytpxf@yahoo.com.cn

Ms. Xiaoman XU
Senior Engineer,
Liaoning Maritime Safety Administration
No. 25 Changjiang Road, Dalian 116001, China
Tel: 86-411-82625031
E-mail: Xuxiaoman@lnmsa.gov.cn

Dr. Kun LEI
River and Coastal Environmental Research Center
Institute of Water Environment
Chinese Research Academy of Environmental Sciences
No. 8 Dayangfang, Chaoyang District, Beijing 100012, China
Tel: 86-10-8491-5305
Fax: 86-10-8491-5305
E-mail: leikun@craes.org.cn

Dr. Changyong WANG
Nanjing Institute of Environmental Sciences, MEP
No.8 Jiangwangmiao St, Nanjing 210042, China
Tel: 86-10-6650-3750 86-25-8528-7223
Fax: 86-25-88541161
E-mail: wcy@nies.org

Ms. Caiyun ZHAO
Chinese Research Academy of Environmental Sciences
No.8, Anwai Dayangfang Chaoyang District, Beijing 100012, China
Tel: 86-10-84931225
Fax: 86-10-84931225
E-mail: zhaocy@craes.org.cn

Dr. Nahui ZHANG
Environmental Engineering Institute
Dalian Maritime University
1 Linghai Road, Dalian, Liaoning, 116026, China
Tel: +86-15998689200
Fax: +86-411-84727681
E-mail: zhangnahui@gmail.com

Dr. Lijun WANG
National Marine Environmental Monitoring Center
1 Linghai Road, Dalian, Liaoning, 116026, China
Tel: +86-411-84782532
Fax: +86-411-84782532
E-mail: ljwang@nmemc.gov.cn

Dr. Yamin WANG
College of Ocean, Shandong University at Weihai
180 Wen Hua Xi Lu ,Weihai 264209, China
Tel: +86-15098149780
E-mail: wangyamin@sdu.edu.cn

Dr. Jiayu BAI
Law&Politics School, Ocean University of China
No. 238 Songling Rd., Laoshan District, Qingdao
Tel: +86-13730960930
E-mail: gracefulgl@hotmail.com

Dr. Qingjia MENG
River and Coastal Environmental Research Center
Chinese Research Academy of Environmental Sciences
No. 8 Dayangfang, Chaoyang District, Beijing China
Tel: 86-10-84915305
Fax: 86-10-84915305
Email: mengqj@craes.org.cn

Experts of Republic of Korea

Dr. Keun-Hyung Choi
Korea Institute of Ocean Science and Technology
1270 Haean-ro Ansan Gyeonggi-do KOREA
Tel: 82-31-400-7813
Fax: 82-31-400-6925
Email: keunhchoi@kiost.ac

Dr. Jae-Young Lee

23
Deputy Director
Marine Ecology Division, Ministry of Land, Transport and Maritime Affairs
2F, K-Water, 188 Jungang-Ro, Gwachen-City, Gyeonggi-Do, Korea 427-100
Tel: 82-02-504-5648
Fax: 82-02-503-7303
Email: jylee0403@korea.kr

Dr. SOOK SHIN
Professor, Sahmyook University
Hwarangro 815, Nowon-gu, Seoul, Korea
Tel: 82-2-3399-1717
Fax: 82-2-3399-1729
Email: shins@syu.ac.kr

Experts of Japan

Mr. MICHIO OTANI
Visiting Researcher
Osaka Museum of Natural History
Rokujo Midori-machi 3-9-10, Nara City
Tel: 81-742-48-8552
Fax: 81-742-48-8552
Email: Michio-otani@h5.dion.ne.jp

Dr. Takafumi YOSHIDA
Senior Researcher
Special Monitoring and Coastal Environmental Assessment Regional Activity Centre (CEARAC)
5-5 Ushijimashin-machi, Toyama 930-0856, Japan
Tel: 81-76-445-1571
Fax: 81-76-445-1581
E-mail: yoshida@npec.or.jp

Experts of Russian Federation

Dr. Konstantin LUTAENKO
A.V. Zhirmunsky Institute of Marine Biology
FEB Russian Academy of Science
Palchevsky Street, 17, Vladivostok 690059, Russia
Tel.: 7-423-2317111
Fax: 7-423-2310900
E-mail: lutaenko@mail.ru

Dr. Olga SEMENIKHINA
Far-Eastern Marine Research, Design and Technology institute
Fontannaya Street 40, VLADIVOSTOK 690091, Russia
Tel.: 7- (904) 6296423
Fax: 7- (423) 2401458
E-mail: oja@list.ru

NOWPAP of UNEP
Dr. Sang-Jin LEE
Scientific Affair Officer
NOWPAP Regional Coordinating Unit
152-1 Haean-ro, Gijang-up, Gijang-gun, Busan, 619-705, Republic of Korea
Tel: 82-51-720-3002
Fax: 82-51-720-3009
E-mail: sangjin.lee@nowpap.org

DINRAC

Mr. Hongbo SHANG
Director, DINRAC
Policy Research Center for Environment and Economy
Ministry of Environmental Protection (MEP)
Building C, No. 1 Yuhuinanlu, Chaoyang District
Beijing 100029, People’s Republic of China
Tel: 86-10-8466-5309
Fax: 86-10-8463-0849
E-mail: shang.hongbo@prcee.org

Ms. Tong AN
Senior Engineer, DINRAC
Policy Research Center for Environment and Economy
Ministry of Environmental Protection (MEP)
Building C, No. 1 Yuhuinanlu, Chaoyang District
Beijing 100029, People’s Republic of China
Tel: 86-10-8466-5309
Fax: 86-10-8463-0849
E-mail: an@mep.gov.cn

Ms. Wenwen HOU
Assistant, DINRAC
Policy Research Center for Environment and Economy
Ministry of Environmental Protection (MEP)
Building C, No. 1 Yuhuinanlu, Chaoyang District
Beijing 100029, People’s Republic of China
Tel: 86-10-8466-5309
Fax: 86-10-8463-0849
E-mail: hou.wenwen@prcee.org

Researchers of P. R. China

Ms. Luyan XU
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-15264297763
E-mail: xuluyan0720@126.com

Mr. Xinzi LIE
The First Institute of Oceanography, SOA
Tel: 86-13581991042
E-mail: seaangelbaby@sohu.com

Mr. Guorui GAO
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-15192543897
E-mail: gaoguoruily@163.com

Mr. Shuai ZHANG
Law&Politics School, Ocean University of China
No. 238 Songling Rd., Laoshan District, Qingdao
Tel: +86-15964910255
E-mail: yeah250812@gmail.com

Mr. Peng DING
Law&Politics School, Ocean University of China
No. 238 Songling Rd., Laoshan District, Qingdao
Tel: +86-15275217507
E-mail: 632213247@qq.com

Ms. Lingli WANG
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-13345017647
E-mail: 785994494@qq.com

Mr. Yijiang HUANG
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-13573893865

Mr. Kepeng LIANG
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-15166390760

Mr. Jinhu TIAN
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-18661846698

Ms. Yanyan YUE
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-18678469006

Ms. Chun WANG
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-18661656095

Ms. Lin LI
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-18906429679

Ms. Qian LI
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-13954290602

Mr. Shuai WANG
The First Institute of Oceanography, SOA
No. 6, Xianxialing Road, Laoshan District
Qingdao, 266061, People’s Republic of China
Tel: 86-13854206061
Presentation materials (see attachment)

Report of the “Regional Workshop on Marine Invasive Species Problems in Northwest Pacific Region”
(2 hard copies)
Introduced marine and brackish organisms in Japanese coastal waters, and the processes underlying their introduction

Visiting Researcher
Osaka Museum of Natural History
Michio Otani

- **Research history of Japanese marine invasive species (MIS)**
 - Arakawa (1980) reported 13 MIS unintentionally introduced to Japanese coastal waters
 - After Arakawa (1980),
 - I counted 38 MIS based on Furuta & Nakayama (2010) and Iwasaki (2007)
 - When I added Magnolepsiidae newly discovered last year, Japanese MIS became 39

Current record of MIS unintentionally introduced to Japan

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Class</th>
<th>Family/Genus</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platyhelminthes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platyhelmintia</td>
<td>Neobenedenia girellae</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Amphibia</td>
<td>Amphibalanus venustus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Amphibia</td>
<td>Heterobotrium hirame</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Amphibia</td>
<td>Amphibalanus zhujangensis</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Ficopomatus enigmaticus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Balanus glandula</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Hydroides elegans</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Megabalanus coccopoma</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Paracerceis sculpta</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mollusca</td>
<td>Crepidula onyx</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Mollusca</td>
<td>Carcinus aestuarii</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mollusca</td>
<td>Euspira fortunei</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Stenothyra sp.*</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Carcinus aestuarii</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Pyromaia tuberculata</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Rhisropanopeus harrisii</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bryozoa</td>
<td>Molgula manhattensis</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Bryozoa</td>
<td>Polyandrocarpa zorritensis</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Chordata</td>
<td>Callinectes sapidus</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Chordata</td>
<td>Trinchesia perca</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Chlorophyta</td>
<td>Bugula stolonifera</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Chlorophyta</td>
<td>Ascidiella aspersa</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Mytilus galloprovincialis</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Phacosoma gibba</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Mercenaria mercenaria</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Ulva fasciata</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Ulva armoricana</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Ulva californica</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Ulva scandinavica</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Arthropoda</td>
<td>Ulva japonica</td>
<td>39</td>
</tr>
</tbody>
</table>

(Species in red letters may have not been established)
Current record of MIS unintentionally introduced to Japan

- **Annelida**: 3 species
- **Mollusca**: 11 species (1 lacks photo)
- **Chlorophyta**: 3 species (1 lacks photo)
- **Arthropoda**: 11 species (1 lacks photo)
- **Magnoliophyta**: 1 species

Temporal changes of the number of MIS in Japanese waters

Cumulative number of MIS that were newly recorded in Japanese waters every decade:

<table>
<thead>
<tr>
<th>Decade</th>
<th>Cumulative Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 1940s</td>
<td>0</td>
</tr>
<tr>
<td>1940s</td>
<td>1</td>
</tr>
<tr>
<td>1950s</td>
<td>6</td>
</tr>
<tr>
<td>1960s</td>
<td>10</td>
</tr>
<tr>
<td>1970s</td>
<td>15</td>
</tr>
<tr>
<td>1980s</td>
<td>20</td>
</tr>
<tr>
<td>1990s</td>
<td>25</td>
</tr>
<tr>
<td>After 2000s</td>
<td>30</td>
</tr>
</tbody>
</table>

What is the vector most responsible for the introduction of Japanese MIS?

- **Ship accounts for about three-quarters**

Relative importance of various vectors responsible for the introduction of MIS in Japanese waters:

- Hull fouling: 13.0%
- Ballast water: 60.9%
- Fisheries: 8.7%
- Other: 15.2%
- Unknown: 2.2%

Temporal change of the number of ocean-going ships called at Japanese ports

(Number of ships is the mean every ten years)

(Modified from the data of Annual port statistics, Ministry of Land Infrastructure, Transport and Tourism)
Is the change of the number of MIS connected with that of ocean-going ships call at ports?

The change of both items seem to be related each other

This is supported by Spearman’s rank correlation: \(\rho = 0.87 \) (p<0.05)

Let’s back to this graph again

Among vectors related to a ship, which is more responsible for the introduction?

As a vector of MIS, we know the hull fouling is more responsible for the introduction than the ballast water in Japanese case.

This tendency is not unique to Japan

Now the hull fouling is getting widespread international attention

Why the hull fouling is more responsible for the introduction than the ballast water?

The answer is in ships’ types and in their way of the ballast water operation

These two types don’t discharge ballast water in Japanese port because they don’t carry much ballast water but are full load

Presentation funded by APN
Do these three discharge ballast (BW) water in Japanese ports?

Even if they discharge the ballast water, its amount is a little and accounts for only a small part of the ballast water kept in their tank. This means that almost all the ballast water in their tank is kept for a long time, so that their age becomes old.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

When the age of BW becomes old, what happens in the tank?

Judging from the case, we can presume that almost meroplankton also will die in aged ballast water.

This means that the more the keeping period of the ballast water in the tank is long, the less the introductions via ballast water get.

This is the reason why the introduction via ballast water is a small in Japanese waters.

Where were Japanese MIS introduced from?

Major source regions are the NW Pacific Ocean, the East Asian Sea and the NW Atlantic/Ocean.

What are the conditions that make the introduction of MIS possible?

There are two major conditions:

1. Similarity of the sea climate

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.

Similar climate between source and recipient regions may facilitate the introduction because many species live in the source region don't feel any stress to live in the recipient region.
What are the conditions that make the introduction of a MIS possible?

2. Amount of the sipping traffic (substituted by the amount of trade)

It seems that these two items are related each other

The correlation between the amount of trade and the number of MIS is significant (Spearman's rank correlation: \(\rho = 0.89 \) \(p < 0.05 \))

In addition to these two, geographic proximity is also responsible for the introduction of MIS because of the shrinking of time to expose ships' hulls to high saline water. The case of the East Asian Sea shows the geographic proximity is also important as another condition.

Especially, this may be important between China, Korea, Russia and Japan because they are neighboring countries each other. Among these countries, we should be careful that the introduction will also include secondary introduction (This means that we act a role of stepping stone each other).

Measures that we should take to prevent or to reduce the introduction of MIS

1. For the ballast water (BW)

Ballast water is about to be controlled by the Ballast Water Convention adopted at IMO in 2004, though it has not been come into effect.

Considering the responsibility that Japan has discharged a large amount of ballast water all over the world, Japan should ratify the convention to ensure its effectiveness as soon as possible.

The Japanese ratification of the convention may urge Panama and Liberia to ratify it. Because they are major shipping nations in the world, their ratification is important for the convention to come into effect.

The amount of exported BW from Japan accounts for more than 10% of that discharged all over the world.

Considering the responsibility that Japan has discharged a large amount of ballast water all over the world, Japan should ratify the convention to ensure its effectiveness as soon as possible.

The Japanese ratification of the convention may urge Panama and Liberia to ratify it. Because they are major shipping nations in the world, their ratification is important for the convention to come into effect.

2. For the hull fouling

After part of the hull

Propeller post

Propeller
Measures that we should take to prevent or to reduce the introduction of MIS

What is the in-water cleaning?
The cost for the in-water cleaning is about 38,000 US$.

How to use the cleaner in the water
This equipment is not always useful anywhere on the ship.
But unfortunately, there are many non flat areas in the ship.

Measures that we should take to prevent or to reduce the introduction of MIS

How has IMO worked on the hull fouling issue
- After the adoption of the Ballast Water Convention, under the tide of opinion, the argument for the prevention or the reduction of biofouling on the hull began at MEPC (Marine Environment Protection Committee) which is one of the committee of IMO in 2006.
- Three years later (in 2009), to develop the guidelines for the control and management of ships biofouling, based on the work in the correspondence group, the discussion of the issue began officially at BLG (sub-committee on Bulk Liquids and Gases) 13.
- After several discussions, the guidelines were adopted at MEPC62 in 2011.

The name is "Guidelines for the control and management of ships biofouling to minimize the transfer of invasive aquatic species."

Measures that we should take to prevent or to reduce the introduction of MIS

2. The case of the Hull fouling

In the guidelines, practical guidance were provided. They are:
1) Biofouling management plan and record book
2) Antifouling system
3) In-water inspection
4) Design and construction
5) Dissemination of information
6) Training and education

But we have no procedure for evaluating the enforcement of the guidelines.

Prospects for the future
Draft procedure for evaluation of the guidelines submitted by Australia, the Netherlands and New Zealand at BLG16/5/1 will be argued at BLG17 in 2013.
Conclusions

- There are 39 unintentionally introduced MIS in Japanese waters
- The number of MIS in Japan tends to be increased still now
- Many MIS were introduced to Japan by hull fouling from nearby countries which have a similar climate and a frequent shipping traffic with Japan
- To reduce the introduction via hull fouling, voluntary guidelines were adopted at MEPC in 2011
- To make the guidelines effective, draft procedure for evaluation of the guidelines is supposed to be argued at BLG17 in 2013 (I hope BLG17 will hold active discussions to apply the guidelines reconciling various conflicting interests)

Thank you very much for listening my presentation
Current situation of the MIS in Korea

Contents

I. MIS Research

II. Results of 2008-12 Study
- Monitoring of Major and Adjacent Harbors
- Plate Affixa Experiments
- Molecular Analysis of MIS
- Predator of MIS

III. Summary

Cause of MIS inflow

1. Import of live marine organisms
2. High dependence on ocean trade (70%)

Major cause

- Non-intentional inflow by ships:
 : fouling (36%), ballast water (20%), fouling + ballast water (44%)

Major taxa of research

- Porifera
- Echinodermata
- Chordata: Ascidacea
- Marine algae
- Arthropoda
- Mollusca
- Bryozoa

Molecular Analysis

Submarine Examination
1. Monitoring of Major and Adjacent Harbors

- Monitoring sites:
 - Major ports (12)
 - Adjacent harbors (11)

MIS from 10 major ports

<table>
<thead>
<tr>
<th>Year</th>
<th>Taxa</th>
<th>Species</th>
<th>Guryongpo</th>
<th>Ulsan</th>
<th>Busan</th>
<th>Tongyeong</th>
<th>Gwangyang</th>
<th>Jeju</th>
<th>Seogwipo</th>
<th>Gunsan</th>
<th>Incheon</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Porifera</td>
<td>Halichondria bowerbanki</td>
<td>●</td>
<td>☆</td>
<td>●</td>
<td>○</td>
<td>☆</td>
<td>●</td>
<td>☆</td>
<td>●</td>
<td>○</td>
<td>1</td>
</tr>
<tr>
<td>2010</td>
<td>Cnidaria</td>
<td>Tubularia mesembryanthemum</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>☆</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>Mollusca</td>
<td>Mytilus galloprovincialis</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>3</td>
</tr>
</tbody>
</table>

Seven Most outstanding MIS

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mollusca</td>
<td>Mytilus galloprovincialis</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Tubularia mesembryanthemum</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>Balanus amphitrite</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>Bugula californica</td>
</tr>
<tr>
<td>Chordata</td>
<td>Ciona intestinalis</td>
</tr>
<tr>
<td>Marine algae</td>
<td>Ulva armoricana</td>
</tr>
</tbody>
</table>

Collection, Photos, and Record

- Presentation funded by APN

Fixation

- Presentation funded by APN
No. of species according to taxa in 10 major harbors

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Status</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porifera</td>
<td>Porifera</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Cnidaria</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Mollusca</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>Arthropoda</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>Bryozoa</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Echinodermata</td>
<td>Echinodermata</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Chordata</td>
<td>Chordata</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
<tr>
<td>Marine algae</td>
<td>Marine algae</td>
<td>Attached to hard substratum or ship hull. Invasion was widespread in oyster beds on the coast of Korea.</td>
</tr>
</tbody>
</table>

Patterns of invasion

1. **Porifera**
 - Halichondriabowerbanki
 - Europe.
 - No records about invasion damage in Korea.
 - Invasive species.

2. **Cnidaria**
 - Obelia dichotoma
 - North Atlantic (UK).
 - Broadly distributed and invaded in the world.
 - Invasive species.
 - Bougainvillia ramosa
 - Europe, North-west Atlantic.
 - Broadly invaded in subtropical zone. Found in Korea and Japan.
 - Invasive species.

3. **Mollusca**
 - Mytilus galloprovincialis
 - Mediterranean Sea, Black Sea, Adriatic Sea.
 - Removal of native species in competition.
 - Dominant species in many regions as result of rapid growth.
 - Xenostrobus securis
 - Australia.
 - Color is dark brown and glossy.
 - Similar shape with freshwater mussels, Limnoperna fortunei.
 - Invasive species.
 - Crepidula onyx
 - Southern California, Chile, Market value decrease due to attachment to shells of marine farming products like an abalone.
 - Invasive species.
 - Balanus amphitrite
 - Attached to bottom of ships and docks of harbor. Corrosion occurred when attached to ship. Caused decrease in speed of ship.
 - Invasive species.
 - Balanus improvisus
 - Eastern North America.
 - Attached to rocks, woods, bottom of ships, and shells of mussel, etc.
 - Invasive species.
 - Bugula californica
 - California.
 - Attached to bottom of ships and fish farming structures.
 - Invasive species.

4. **Arthropoda**
 - Balanus eburneus
 - South America.
 - Competition with native species for habitat.
 - Invasive species.
 - Balanus perforatus
 - West Europe, Northwest Africa, Black Sea, Mediterranean Sea.
 - Competition with Thais bronnior oyster for habitat.
 - Invasive species.
 - Balanus improvisus
 - Eastern North America.
 - Attached to rocks, woods, bottom of ships, and shells of mussel, etc.
 - Invasive species.
 - Bugula californica
 - California.
 - Attached to bottom of ships and fish farming structures.
 - Invasive species.
<table>
<thead>
<tr>
<th>Taxa</th>
<th>Species</th>
<th>Photos</th>
<th>Situation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordata</td>
<td>Ascidiacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styela plicata</td>
<td></td>
<td>Sticking to oyster farming facilities, farming raft, fishing net, bottom of ships, and dock of harbors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciona intestinalis</td>
<td></td>
<td>Atlantic Ocean. Inhabit in bottom of vessels and oyster farming facilities, etc. In case of farm, attached to take a possession of living organisms or interrupting their development.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clavelina lepadiformis</td>
<td></td>
<td>Atlantic ocean, North Sea, Mediterranean Sea. Invaded by fouling. Damage due to invasion appeared to be minimal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mogula manhattensis</td>
<td></td>
<td>Atlantic ocean. Introduced by ballast water. Generally covered by mud like a dust.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulva armoricana</td>
<td></td>
<td>Atlantic (France). Blooming of green tides occurred in France Brittany coast of Atlantic. Increasing possibility of damage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulva fasciata</td>
<td></td>
<td>Mediterranean Sea. Attached to bedrock, cement wall, and rope, etc. If breeding increase a lot, there will be possibility to have an algae outbreak.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulva flexusa</td>
<td></td>
<td>Mediterranean Sea, Adriatic Sea. Attached to bedrock, rope, and hull, etc. Possibility to have an algae outbreak.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulva procera</td>
<td></td>
<td>Coast of Sweden. Very dangerous invasive species in the coast of Northeast Asia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antithamnionella ternifolia</td>
<td></td>
<td>Chile, Cape Horn. Similar to native species, A. spirographidis, but different shape in whole branch of twig.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulva procera</td>
<td></td>
<td>Mediterranean Sea. Attached to bedrock, cement wall, and rope, etc. If breeding increase a lot, there will be possibility to have an algae outbreak.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anithamnion kylinii</td>
<td></td>
<td>California. Introduced through fouling of ships. Reported for the first time in Northeast Asia.</td>
<td></td>
</tr>
</tbody>
</table>
MIS in Korea
: 18 species (April, 2010)

- Porifera
 - Halichondria bowerbanki
- Mollusca
 - Mitilus galloprovincialis
 - Crepidula (Crepidula) unga
- Arthropoda
 - Balanus amphitrite
 - Balanus eburneus
 - Balanus perforatus
 - Balanus improvisus
- Bryozoa
 - Bugula californica
 - Bugula neritina
 - Trichoceros americana
 - Schizoporella unicornis
- Chordata
 - Styela plicata
 - Ciona intestinalis
 - Clavelina lepadiformis
- Marine algae
 - Ulva armoricana
 - Ulva fasciata
 - Ulva flexuosa
 - Ulva procera

(7 most outstanding MIS)

2. Plates affixa experiments

Sites of experiments

Preparation of plates affixa for attachment of organisms

- Cross type
- Linear type

Procedures of study

Manufacture of plates affixa
Loading of plates
Analysis of data
Treatment of specimens
Investigation of quay wall in harbor
We examined the proportion of dominant species attached to plates at each harbor.

Step 1:
- IN
- OUT
- KEEP

Step 2:
- Step 1 line
- Step 2 line
- Step 3 line

Step 3:
- IN
- OUT
- KEEP

June – October
- Guryongpo
- Donghae
- Busan

Native sp.:
- Donghae: 87%
- Guryongpo: 39%
- Busan: 13%

Polychaeta:
- Donghae: 40.2%
- Guryongpo: 25.7%
- Busan: 30.5%

Ascidiacea:
- Donghae: 10.4%
- Guryongpo: 25.7%
- Busan: 5.2%

Bryozoa:
- Donghae: 13%
- Guryongpo: 61%
- Busan: 13%

C. intestinalis:
- Donghae: 32.5%
- Guryongpo: 12.5%
- Busan: 15.2%

M. galloprovincialis:
- Donghae: 18.5%
- Guryongpo: 32.5%
- Busan: 7.5%

Cirripedia:
- Donghae: 18.5%
- Guryongpo: 32.5%
- Busan: 7.5%

M. galloprovincialis:
- Donghae: 18.5%
- Guryongpo: 32.5%
- Busan: 7.5%
3. Molecular Analysis of MIS

Gene	Taxa	Species
mt-Cr | O. dichotoma, O. mesembryanthemum, O. dichelomma | O. dichotoma, O. mesembryanthemum
mt-Cr | M. galloprovincialis, C. onyx | M. galloprovincialis, C. onyx
mt-Cr | M. galloprovincialis, C. onyx | M. galloprovincialis, C. onyx
mt-Cr | B. perforatus, B. amphitrite, C. onyx | B. perforatus, B. amphitrite, C. onyx
18S rRNA | C. intestinalis, S. plicata | C. intestinalis, S. plicata
18S rRNA | M. manhattensis, A. aspersa | M. manhattensis, A. aspersa
plastid rbcL | Marine algae | L. americana, L. nodulosa, L. flaccida, L. jenneri, A. gigantea

Collection | Identification | DNA extraction | DNA amplification | DNA sequencing
Results of Molecular Analysis

Cnidaria Hydroida: Tubularia mesembryanthemum, Obelia dichotoma – mt-COI

No genetic variability among Korean populations. Mt-COI gene was useful to identify hydroid MIS.

Mollusca Pelecypoda: Mytilus galloprovincialis – mt-COI, ITS1

Although M. galloprovincialis and M. edulis are similar species, M. edulis included within the clade of M. galloprovincialis. Because of low resolution, ITS gene was not suitable as a gene marker of Mytilus. But mt-COI can be useful for gene marker because of no genetic variability among populations.

Mollusca Gastropoda: Crepidula onyx – mt-COI

There was genetic variability. Intraspecies variation was less than 1.2% in Korean populations. But between Korea and the US was about 4.7% - 5.3%. Intraspecies variation was 13-16%.

Arthropoda Cirripedia: Balanus amphitrite, B. perforatus – mt-COI, ITS2

Both barnacles showed genetic variabilities in mt-COI analysis. B. amphitrite was divided into two populations. It is possible that this has been multiply invaded in the past 30 years by many molecular studies. ITS2 was not suitable for analyzing population because of low resolution.
Bryozoa: *Bugula neritina*, *Bugula californica*, *Tricellaria occidentalis*, *Schizoporella unicornis*, *Celleporaria brunnea* - mt-COI

There were no genetic differences in 3 species such as *Bugula neritina*, *B. californica*, and *Celleporaria brunnea*

But *T. occidentalis* and *S. unicornis* had more than 2 existing populations. So we need additional research.

Chordata Ascidiacea: *Ciona intestinalis* - mt-COI, ITS2

Based on mt-COI, *C. intestinalis* was distinctly separated from *C. savignyi* which is very morphologically similar to *C. intestinalis*

ITS2 confirmed two Korean populations. Italian and Korean populations were closely related.

Chordata Ascidiacea: *Styela plicata* - mt-COI gene

Korean populations of *S. plicata* has no genetic differences, and coincided with Spain. This species distributed in the central part of Atlantic. And so it might be introduced from Spain.

Chordata Ascidiacea: *Molgula manhattensis* - 18S rRNA

The similarity between our specimens and Genbank's was 99%.

Chordata Ascidiacea: *Asciella aspersa* - 18S rRNA

A-C. External features of *A. aspersa*: D. right view, E. left view, F. sagittal view.

Intraspecies variation 0%.
Plastid rbcL data showed that all the sequences of each species were equal between Korean specimens and genbank of foreign country that might be the origin of each species.

Marine algae Rhodophyceae: Antithamnion kylinii – plastid rbcL gene

A. hanovioides (Italia)
A. pectinatum (New Zealand)
A. callocladum (Korea)
A. nipponicum (Korea; Japan)
A-B. Antithamnion kylinii (MIS)
A. nipponicum (Korea; Japan)
A. agaldum (Korea)
A. antithamnion (Yeou, Korea)
A. antithamnion (Busan harbour)
A. callocladum (Korea)
A. defectum (Alaska, USA)
A. sp. (San Francisco, USA)
A. phytoecia (Washington, USA)
A. crassum (Murfy Bay, Ireland)
Scagelia occidentalis (Washington, USA)

Presentation funded by APN

Busan in 2011.
First sequences of Korean specimens to US were have 1 base pair difference. And so, there were very likely to inflow from American pacific to South Korea.

4. Predator of MIS (Natural enemy)

Unlike land invasive species, it is very difficult to discover and remove MIS due to quick spread by the vessel and an ocean current.

Mollusca Gastrododa
Thais bronni (native sp.; predator) → Mytilus galloprovincialis (MIS; prey)

Gastropods usually predate bivalves by making a hole with radula. Holes in a center of shell were rarely seen on M. galloprovincialis.

Biological control method

Presentation funded by APN

Thais bronni usually attached to marginal area rather than shell surface of M. galloprovincialis.

Presentation funded by APN
1. Twenty-seven MIS were identified from the inside of 12 major and 11 adjacent harbors in Korea.

2. At the beginning of plates affixa submerged, the MIS were predominantly found to attach on plates, and as the time goes by the ratio of native species increased and was shown to change like the wharf wall of harbors.

3. Molecular analysis was done to make sure of the MIS. Mt-COI for animal MIS and plastid rbcL gene for marine algae were found to be valuable markers of species identification.

4. T. bronni, a native species of Gastropoda, Mollusca, was found to be a natural enemy of M. galloprovincialis, one of the most outstanding MIS. Biological control method is available to get rid of MIS.

Summary
Marine invasive species in the Russian Far East: an overview

Konstantin A. Lutaenko
A.V. Zhirmunsky Institute of Marine Biology
FEB RAS

Biological invasions in marine environment represent a serious ecological and economic menace leading to biodiversity loss, ecosystem unbalancing, fishery and tourism impairment; they are lesser known aspect of global change.

We are witnessing rapidly growing interest in the phenomenon of biological invasions as a result of an increasing number of unintentional invasions of marine organisms due to the release of ballast water through international shipping activities, and of increasing aquaculture purposes and for open sea fisheries enhancement.

Bioinvasions create so-called “novel” (or “emerging”) ecosystems containing new combinations of species that arise through human action, environmental change, and the impacts of the deliberate and inadvertent introductions of species from other regions.

NOWPAP region and the southern part of the Russian Far East

The Russian Federation’s part of the NOWPAP region is located in the North-West Pacific between the Asia coast, the Japanese Islands and the Sakhalin Island. It is situated between 34°26’ and 51°41’ N and between 127°20’ and 142°15’ E.

Peter the Great Bay is the most studied area with regard to marine invasive species in the Russian Far East.
Pathways (vectors and routes) of introduction of MIS in the Russian NOWPAP region

Shipping and ballast waters +

Aquaculture -

Intentional introductions -

Climatic changes +

In Peter the Great Bay, about 16000 ships enter ports and harbours every year, and among them about 8000 ships operate on international lines (Zvyagintsev, 2007). A majority of ships (more than 10000) go into the Vladivostok Port. Such an intensive traffic favours introductions of alien species through fouling communities and release of ballast waters.

In Russian waters of NOWPAP area, 37 species MIS were known by 2010 (The Regional Overview and National Reports..., 2010) but this number may increase up to 66 (Zvyagintsev et al., 2011).
More than 60 introduced species have been presently recorded for the Russian Far East seas. In Peter the Great Bay 51 species have been identified as non-indigenous; 17 of them are fouling species.

By its biological diversity, Peter the Great Bay can be considered among the richest and most productive regions of Russia:

- In the number of species of marine organisms, the bay significantly exceeds similar water areas in Russian Far-Eastern Seas;

- The bay is inhabited by more than 3800 species of microorganisms, fungi, plants and animals belonging to 1855 genera, more than 840 families, 104 classes and 52 phyla;

- Among the species inhabiting Peter the Great Bay, 68 species of fish and more than 40 species of invertebrates and plants are commercially important.
Among the species inhabiting Peter the Great Bay, 68 species of fish and more than 40 species of invertebrates and algae are commercially important.

17 subtropical species of marine invertebrates (hydroids, barnacles, amphipods, polychaetes, bryozoans, and ascidians) have been introduced to Peter the Great Bay in the last decade, and are now at different stages of acclimatization. All the above-listed animals constitute fouling communities of hydrotechnical structures.
During the regular inspection of the Center in the port of Vladivostok in the ballast water of just two vessels serving Russia-Japan (Sunrise Wisteria) and Russia-China (Minitaur) shipping routes the following organisms were found:

- 45 species of microalgae,
- 24 zooplankton species,
- 22 meroplankton species,
- 10 species of meiofauna,
- 24 species of marine fungi,
- strains of pathogenic bacteria.

Total: 165 species

Potentially toxic species

- Dinoflagellates
- Diatoms
- Penicillium, Aspergillus, Cladosporium, Acremonium fungi

Subtropical invasive species into north-western Sea of Japan

Aplysia parvula
Aplysia parvula

Subtropical and tropical species of the Opisthobranchia in Peter the Great Bay

Philinopsis giglioli

Alderia modesta

Trinchesia

Amphibalanus improvisus, a barnacle, was recorded for the first time in the fouling of hydrotechnical constructions of Peter the Great Bay in 1969 (Zevina, Gorin, 1971)

Balanus amphitrite is a subtidal widely distributed tropical-subtropical species. According to Zevina and Gorin (1975), this species occurred in the fouling of buoys in Nakhodka, Strelk, and Amursky bays only in warm years. In Peter the Great Bay, Zvyagintsev (2003) found *B. amphitrite* in the fouling of 46% of the examined active vessels.

Abalone *Haliotis discus* found in Peter the Great Bay (Rakov, Arhipov, 2004)

Invasive species of barnacle *Amphibalanus improvisus* in Amursky Bay
A successful naturalization of the invasive barnacle *Amphibalanus improvisus* led to displacement of indigenous cirripeds from dominating macrobenthic species of the local fauna (Ovsyannikova, 2008).

New immigrants – alien species of bivalve mollusks in north-western Sea of Japan/East Sea:

- **Mytilus galloprovincialis** (Mytilidae) introduced in 1970s
- **Gomphina aequilatera** (Veneridae) introduced in 1990s

Regional (A) and local (B) distributions of *Mytilus galloprovincialis* in the Russian Far Eastern seas.

Economic impact:

The mussel *M. galloprovincialis* which became an abundant component of biofouling in Peter the Great Bay in the 1990s (Ivanova, Lutaenko, 1998) may damage aquaculture installations but, at the same time, this mussel and its hybrids with local allied species *Mytilus trossulus* are perspective object of aquaculture.
Polychaetes (Polychaeta)

- *Hydroides elegans*. It dominates the fouling in Peter the Great Bay, and its biomass increases toward the innermost part of the bay.
- *Pseudopotamilla ocelata*. The greatest quantitative indices for the population density of this species were registered in the fouling in western Sakhalin; it was found also along the coasts of Primorye and the southern Kurile Islands on rocky coast.
- *Perinereis albuhiensis*.

PLANKTON

In Amursky Bay, long-term studies of the species composition of phytoplankton carried out during the period from 1991 to 2006 revealed a total of 357 species of planktonic microalgae from eight divisions: Cyanophyta (8 species), Chrysophyta (8), Bacillariophyta (157), Cryptophyta (5), Dinophyta (143), Raphidophyta (3), Euglenophyta (11), and Chlorophyta (22 species); some of them can be invasive species but it is difficult to prove as there was no long-term monitoring in the area (Orlova et al., 2009).

New records or invasive species?

- Appearance of the dinoflagellate *Scrippsiella spinifera* in Possjet Bay in 1999 might be related to the introduction with warm waters from the coast of Japan (Selina et al., 2009).
- A dinoflagellate *Gyrodinium instriatum*, new for Russian waters of Russia and found in Peter the Great Bay, probably, penetrated to the bay with ballast waters (Orlova et al., 2003).
- A diatom *Cerataulina dentata* was recorded for the first time in Peter the Great and previously was known in tropical-subtropical regions (Stonik, Orlova, 1998).
- A copepod crustacean, *Pseudocalanus inopinus* was found in ballast waters of the Timber-Star motorship (Russia-Japan shipping lines) which is rare or occasional component of plankton communities of Peter the Great Bay and a marker of the arrival of tropical warm waters (Zvyagintsev and Selifonova, 2008).
Harmful algal blooms in the Russian Far East seas in 1980-2005

Presentation funded by APN

Institute of Marine Biology Research Center
Far East Centre of Monitoring of HABs (Harmful Algal Bloom) and Biotoxins

Microalgal toxins and their impact on human health

<table>
<thead>
<tr>
<th>Type of poisoning</th>
<th>Producers</th>
<th>Major toxins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paralytic shellfish poisoning (PSP)</td>
<td>Alexandrium tamarense, M. adhaerens, P. aequalis, Cystoclonium</td>
<td>Saxitoxins (STXs), Okadaic acid, dinophysis toxins (DTXs), yessotoxins (YTXs) and pectenotoxins (PTXs)</td>
</tr>
<tr>
<td>Diarrhetic shellfish poisoning (DSP)</td>
<td>Gymnodinium catenatum, Pyrodinium bahamense var. compressus</td>
<td></td>
</tr>
<tr>
<td>Amnesic shellfish poisoning (ASP)</td>
<td>Pseudo-nitzschia australis, P. delicatissima, P. fraudulenta</td>
<td>Domoic acid</td>
</tr>
<tr>
<td>Neurotoxic shellfish poisoning (NSP)</td>
<td>Karenia brevis, K. brevisulkata, K. papilonacea, K. selliformis</td>
<td>Brevetoxins (PBTXs)</td>
</tr>
<tr>
<td>Ciguatera fish poisoning (CFP)</td>
<td>Gambierdiscus toxicus, L. polyedrum, Prorocentrum lima, P. concavum, P. hoffmannianum, P. mexicanum, P. rhathytum, Ostreopsis lenticularis, O. ovata, O. siamensis, Akashiwo sanguinea</td>
<td>Ciguatoxins (CTXs), maitotoxins (MTXs), palytoxin, gambierol</td>
</tr>
<tr>
<td>Azaspiracid shellfish poisoning (AZP)</td>
<td>Protoperidinium crassipes, Azaspiracids (AZAs)</td>
<td></td>
</tr>
</tbody>
</table>

30 species are bloom-forming
24 species are known to be harmful

Toxic plankton can be subdivided into three categories:

DSP – diarrhetic shellfish poisoning
ASP – amnesic shellfish poisoning
PSP – paralytic shellfish poisoning
Annual and seasonal long-time monitoring of phytoplankton, including toxic microalgae

Among 200 species of microalgae responsible for blooms about 50 species produce toxins. In Peter the Great Bay, 25 potentially toxic species have been found.

Number of cysts of A. tamarense varies from 100 to 60,000 per g of the bottom sediment.

Dinophysis (ocadaic acid) – DSP (50), diarrhoeic shellfish poisoning – acute gastroenteritis

Pseudo-nitzschia (domonic acid) – ASP (80), amnesiac shellfish poisoning (up to 760 ng/ml)
Alexandrium (saxitoxin) – PSP (1100) (paralytic shellfish poisoning)

Ichthyofauna of the Russian waters of the Sea of Japan/East Sea includes 365 species, 316 of which occur in Peter the Great Bay. 114 species are southern migrants. 17 species of tropical and subtropical fishes, new for the Russian waters, have been recorded in the Bay for the last decade (13 species for the 2001-2007) because of the warming of surface waters.

At the same time, some cold-water species valuable for fishery – walleye pollock, Pacific herring, saffron cod, plaices – often migrate from Peter the Great Bay to north for reproduction.

A.S. Sokolovsky, T.G. Sokolovskaya, Yu.M. Yakovlev

FISHES OF PETER THE GREAT BAY

Vladivostok, Dalnauka, 2009, 376 pp., 137 color illustr.
Jellyfish (Scyphozoa)

Rhopilema esculentum, a jellyfish was first recorded along the coast of Primorye in 1999 and became an object of commercial harvesting in 2001 (Borodin et al., 2003). Its natural distributional range is located in tropical and subtropical waters – South China, Yellow and East China seas. Borodin et al. (2003) explain its appearance in Peter the Great Bay by intensification of warm Tsushima and East Korean currents.

Sea reptiles (Chelonia and Serpentes)

Yellowbelly sea snake *Pelamis platura* – records in Peter the Great Bay in 1873 and 2007

Leatherback turtle *Dermochelys coriacea* (1936, 1972, 1979, 1984)

POTENTIAL (EXPECTED) MARINE INVASIVE SPECIES

Sokolovsky et al. (2004) predict appearance of more subtropical fish species in Peter the Great Bay with global warming and intensification of warm currents in the Sea of Japan/East Sea.

Zvyagintsev et al. (2009) believe that ascidian *Polyandrocarpa zorritensis*, barnacle *Balanus glandula*, polychaetes of the genus *Polydora* and bivalve mollusk *Perna viridis* are potential marine benthic invasive species into Peter the Great Bay. These species were introduced into the coastal waters of Japan (Otani, 2004).

Potential invasive species of mollusks due to migrations induced by global warming and current system modifications (Lutaenko, 1999)

<table>
<thead>
<tr>
<th>Species</th>
<th>Southern Sakhalin</th>
<th>Peter the Great Bay</th>
<th>Middle Primorye</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. inaequalvis</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. kagoshimensis</td>
<td>?</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Trapezium liratum</td>
<td>+</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Meretrix lusoria</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Taimi Lagoon, Russian – Korean border

Ancient beach ridge

Storm gravelly deposits with abundant shells of regionally extinct Anadara inaequivalvis

Presentation funded by APN
There are about 126 species introduced intentionally and unintentionally in China seas. Among which there are 9 species bacterium, 7 species algas, 8 species plants, 4 species echinoderm, 1 species polyplacohord, 17 species molluscs, 8 species crustacean, 4 species bryozoan, 4 species echinoderms, 45 species fishes, 4 species birds, and 8 species mammals.

1. Non-indigenous species in China seas

2. The main ways for marine alien species introduction

3. The invasive species in China seas

4. The problems caused by the invasive species
2. The main ways for marine alien species introduction

2.1 Introduction for marine aquaculture

As the country with the biggest mariculture industry in the world, China has introduced some 41 species of alien marine organisms for the purpose of mariculture until 2007. According inadequate statistic until 2007, there were:

- 5 species of algae
- 13 species of shellfish
- 7 species of crustaceans
- 1 species of sea urchin,
- 15 species of fishes, being introduced in recent years.

<table>
<thead>
<tr>
<th>Species</th>
<th>Introduction date</th>
<th>Source regions</th>
<th>Recipient regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scophthalmus maximus</td>
<td>1992</td>
<td>EU</td>
<td>Shan dong, Liao ning</td>
</tr>
<tr>
<td>Sciaenops ocellatus</td>
<td>1991</td>
<td>U.S.A</td>
<td>China coast</td>
</tr>
<tr>
<td>Salmo gairdnerri</td>
<td>1983</td>
<td>U.S.A</td>
<td>All China</td>
</tr>
<tr>
<td>Anguilla anguilla</td>
<td>1990</td>
<td>EU</td>
<td>South China coast</td>
</tr>
<tr>
<td>Fugu rubripes</td>
<td>1991</td>
<td>Japan</td>
<td>North China coast</td>
</tr>
<tr>
<td>Oreochromis mossambica</td>
<td>1957</td>
<td>Vietnam</td>
<td>China coast</td>
</tr>
<tr>
<td>Oreochromis niloticus</td>
<td>1978</td>
<td>Sudan</td>
<td>China coast</td>
</tr>
<tr>
<td>Oreochromis aureus</td>
<td>1983</td>
<td>U.S.A</td>
<td>China coast</td>
</tr>
<tr>
<td>Morone saxatilis</td>
<td>1990s</td>
<td>U.S.A</td>
<td>South China coast</td>
</tr>
<tr>
<td>Lates calcarifer</td>
<td>1990s</td>
<td>Australia</td>
<td>South China coast</td>
</tr>
<tr>
<td>Penaeus japonicus</td>
<td>1993</td>
<td>Japan</td>
<td>North China coast</td>
</tr>
<tr>
<td>Penaeus vannamei</td>
<td>1988</td>
<td>Ecuador</td>
<td>China coast</td>
</tr>
<tr>
<td>Argopecten irradians</td>
<td>1982</td>
<td>U.S.A</td>
<td>North China coast</td>
</tr>
<tr>
<td>Patinopecten yessoensis</td>
<td>1980s</td>
<td>Japan</td>
<td>North China coast</td>
</tr>
<tr>
<td>Crassostrea gigas</td>
<td>1980s</td>
<td>Japan</td>
<td>China coast</td>
</tr>
<tr>
<td>Haliotis rufescens</td>
<td>1980s</td>
<td>U.S.A</td>
<td>China coast</td>
</tr>
<tr>
<td>Haliotis fulgens</td>
<td>1980s</td>
<td>USA</td>
<td>China coast</td>
</tr>
<tr>
<td>Panopea abrupta</td>
<td>1990s</td>
<td>U.S.A</td>
<td>North China coast</td>
</tr>
<tr>
<td>Mercenaria mercenaria</td>
<td>1990s</td>
<td>U.S.A</td>
<td>North China coast</td>
</tr>
<tr>
<td>Pecten maxima</td>
<td>1990s</td>
<td>EU</td>
<td>China coast</td>
</tr>
<tr>
<td>Strongylocentratus intermedius</td>
<td>1989</td>
<td>Japan</td>
<td>North China coast</td>
</tr>
<tr>
<td>Laminaria japonica</td>
<td>1930</td>
<td>Japan</td>
<td>naturalization</td>
</tr>
<tr>
<td>Undaria Pinnatifida</td>
<td>1950s</td>
<td>Japan</td>
<td>naturalization</td>
</tr>
<tr>
<td>Macrocystis pyrifera</td>
<td>1980s</td>
<td>U.S.A</td>
<td>China coast</td>
</tr>
<tr>
<td>Eucheuma dminiens</td>
<td>1984</td>
<td>Guang dong</td>
<td>China coast</td>
</tr>
</tbody>
</table>

Some kinds of the introduced species were widely cultured:
- Argopecten irradians
- Patinopecten yessoensis
- Penaeus japonicus (Bate)
Some kinds of the introduced species were widely cultured.

2. The main ways for marine alien species introduction

2.2 Introduction for aquaria

Many aquaria have been built over Chinese mainland, in which 51 marine ornamental animals and plants were imported and exhibited.

- 7 species of Coelenterata
- 2 species of shellfish
- 1 species of crustaceans
- 1 species of echinoderms
- 26 species of fishes
- 6 species of birds
- 8 species of mammals

2.3 Introduction for ballast water

In recent years, sixteen cryptogenic HAB species have been found in China coast sea areas. Perhaps they were introduced by ballast water.

-
-
-
-

Presentation funded by APN.
Some kinds of the introduced species from ballast water

1. Some kinds of the introduced species from ballast water

- Alexandrium catenella
- Alexandrium tamarense

2. The main ways for marine alien species introduction

- Ballast water
- Ocean currents
-故意引种

3. The invasive species in China seas

- Spartina alterniflora
- Crepidula fornicata
- Mytilopsis sallei
- Some HAB species
- Some pathogens species

4. The problems caused by the invasive species

- Economic and ecological damages
- Genetic pollution
- Marine aquaculture disease
- Other ways
Impacts and Distribution of *Mytilosis sallei*

Mytilosis sallei, looks like small mussel, were found in some semi-closed bays and shallow water in southeast China coastal. They have strong spread ability, and even can grow in very polluted sea water. They came from tropic sea near south America, now have be common benthod species.

Impacts and Distribution of *Mytilosis sallei*

- *Mytilosis sallei* was found in Taiwan in 1977, found in Hongkong in 1980, and firstly found in Xiamen, Fujian province in 1990.
- It often clings to and cover with marine aquaculture establishments such as piscicultural cages, breeding rafts and ropes. According to monitoring, the density can reach to 5740-34360 ind. m$^{-2}$, so it seriously impacts the local marine aquaculture. Moreover, Mytilosis sallei can exclude the native species such as *Balanus sp.*, *Crassostrea sp.* etc., and makes local biodiversity loss.

Impacts and Distribution of *Crepidula onyx*

- *Crepidula onyx* was found in Kongkong in 1979. Now it has spread to Guangdong coast (figure 5, 6). It is a dominant species of the fouling organisms and often adheres to the shell of *Perna viridis* cultured and to piscicultural cages. The density can reach to 11-994 ind. m$^{-2}$.
- Guangdong, Hongkong

Impacts and Distribution of *Spartina alterniflora*

- *Spartina alterniflora* was introduced to protect beach from England and U.S.A in 1979.
- Its impacts:
 1. Destroying the habitat of inshore organisms, so as to impact beach breeding;
 2. Panuring the navigation way, thereby barring ships in and out;
 3. Impeding seawater exchanging, then causing the degradation of seawater quality, further inducing red tide;
 4. Threatening the native coastal ecosystem, thus bringing on the disappearing of mangrove;
 5. From north China to south China coasts
Impacts of some HAB

- There are many HABs found in China, including *Alexandrium catenella*, *A. coloreticulata*, *A. tamarense*, *Amphidinium carterae*, *A. Klebsii*, *Dinophysis fortii*, *D. acuminata*, *D. acuta*, *D. cingulata*, *D. rotunda*, *Guinardia fuscescens*, *Gymnodinium breve*, *G. rhomboides*, *Prorocentrum micans*, *P. minimum*, *Protogonyaulax tamarensis*, all of which many were transported from other seas.

Genetic impacts

- *Strongylocentrotus intermedius* lives natively in north Japan, north Korea, and the Pacific coast of Russia. This species was introduced to north China in 1989 for marine aquaculture by Dalian Fishery College. It is cultured in large scale in Liaoning and Shandong province north China now. But there are several native sea urchin species, such as *Strongylocentrotus nudus* and *Hemicentrotus pulcherrimus*, which have high phylogenetic relationships with *S. intermedius* in north China. These native species with high quality are very important sea urchin fishery resources in north China. However, there exists “genetic pollution” risk due to introducing *S. intermedius*. In order to assess this possible genetic impact, several experiments in laboratory were conducted to test whether there exists genetic hybridization between the native sea urchin species and the introduced species.
Dormant spores cultivated by FTM medium

Densities of spores amounts to one million per gram tissue

Shape and distribution of Perkinsus in *Ruditapes philippinarum*

① Dormant spores cultivated by FTM medium;
② Dormant spores of gill cultivated by FTM medium;
③ One cell nourishing spores of gill;
④ Double cell nourishing spores of gill;
⑤ Four cell nourishing spores of digestive gland;
⑥ Eight cell nourishing spores of digestive gland

Presentation funded by APN

Thank You!
Impacts, Risk Analysis, and Management of Marine Invasive Species in KOREA

Keun-Hyung Choi
Korea Institute of Ocean Science and Technology, Ansan, Korea

NOWPAP DINRAC, Oct 23 – 25, 2012

Outline

Impacts of MIS
Risk Analysis
PERAT
Habitat Niche modeling
Summary

MIS Impact Studies

- Park and Kang 2010 as a part of Westpac/IOC analysis - based on literature review
- MLTM (2010) – benthic survey rather than an impact study
- PERAT (Port Environmental Risk Assessment Technology) started in 2007 - focused on ballast water management

MIS Impact report

Most outstanding MIS in Korea

Species Interactions

<table>
<thead>
<tr>
<th>MIS</th>
<th>Vector</th>
<th>Impacts (1-5)</th>
<th>Origin</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halichondria bowerbanki</td>
<td>BW</td>
<td>1</td>
<td>Europe</td>
<td>Newly invaded</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>BW/aquaculture</td>
<td>5</td>
<td>Europe</td>
<td>Widely distributed</td>
</tr>
<tr>
<td>Dolichopteris anglica</td>
<td>seaweed</td>
<td>2</td>
<td>South America, CA</td>
<td>South</td>
</tr>
<tr>
<td>Balanus amphitrite</td>
<td>Hull fouling</td>
<td>3</td>
<td>Unknown</td>
<td>Widely distributed in ports and bays</td>
</tr>
<tr>
<td>Balanus fistuliformis</td>
<td>Hull fouling</td>
<td>1</td>
<td>North America, Caribbean</td>
<td>Spread on the East coast</td>
</tr>
<tr>
<td>Balanus improvisus</td>
<td>Hull fouling</td>
<td>3</td>
<td>competition with native species</td>
<td>Spread on the East coast</td>
</tr>
<tr>
<td>Bugula californica</td>
<td>BW</td>
<td>1</td>
<td>North America, Caribbean</td>
<td>Spreading</td>
</tr>
<tr>
<td>Bugula neritina</td>
<td>Linné</td>
<td>2</td>
<td>Mediterranean</td>
<td>Southern coast, Jeju</td>
</tr>
<tr>
<td>Tricelaria occidentalis</td>
<td>Hull fouling</td>
<td>1</td>
<td>aquaculture, navigation</td>
<td>CA Southern coast, Jeju</td>
</tr>
<tr>
<td>Schizoporella unicornis</td>
<td>BW</td>
<td>2</td>
<td>aquaculture, navigation</td>
<td>Britain Southern coast, Jeju</td>
</tr>
<tr>
<td>Styela plicata</td>
<td>BW/hull fouling</td>
<td>3</td>
<td>aquaculture</td>
<td>East coast of US, Caribbean Sea</td>
</tr>
<tr>
<td>Ciona intestinalis</td>
<td>BW/hull fouling</td>
<td>3</td>
<td>aquaculture</td>
<td>Atlantic coasts</td>
</tr>
<tr>
<td>Clavelina lepadiformis</td>
<td>BW/hull fouling</td>
<td>1</td>
<td>Atlantic coasts, Mediterranean</td>
<td>Norway-Spain</td>
</tr>
<tr>
<td>Ulva armoricana</td>
<td>Hull fouling</td>
<td>2</td>
<td>fisheries</td>
<td>France South, West coast</td>
</tr>
<tr>
<td>Ulva fasciata</td>
<td>Hull fouling</td>
<td>2</td>
<td>fisheries</td>
<td>Mediterranean South coast, Jeju</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>Hull fouling</td>
<td>1</td>
<td>green tide</td>
<td>Mediterranean South coast, Jeju</td>
</tr>
<tr>
<td>Ulva flexuosa</td>
<td>Hull fouling</td>
<td>1</td>
<td>green tide</td>
<td>Sweden Tongyoung, Incheon-limited distribution</td>
</tr>
</tbody>
</table>

* *Nearly all of impact studies are anecdotal or of literature review, and no systematic study has been conducted.*

Data source: MLTM 2010 report
PERAT - started in 2007, focused on ballast water management

IMO Approach

ROR (relative overall risk)

\[
\begin{align*}
&= \frac{C1 + C2 \times R1 + C3 + C4 \times R2}{4} & \text{Eq} 1 \\
&= \frac{C1 + C2 \times R1 + C4 \times R2}{3} & \text{Eq} 2
\end{align*}
\]

- \(C1 \): proportional discharge frequency
- \(C2 \): proportional discharge volume
- \(C3 \): environmental matching
- \(C4 \): relative risk species threat
- \(R1 \): effects on \(C2 \) by BW tank size
- \(R2 \): effects on \(C4 \) via duration of BW

Improvement on ROR

- Modified ROR: \(\frac{C1 + C2 \times R1 + C4 \times R2}{4} \)

Results
- all 4 parameters have relatively even effects
Species-specific risk analysis

- Synopsis
 - one of three IMO risk analyses applied to ports of similar environmental settings
 - useful for assessments among neighboring countries

- Method

 \[Risk_{species} = p(\omega) \cdot p(\phi) \cdot p(\psi) \cdot p(\upsilon) \]

 \[p(\omega) : \text{presence in the port of origin} \quad \text{(Level 0)} \]
 \[p(\phi) : \text{Entrainment} \quad \text{(Level 1)} \]
 \[p(\psi) : \text{Survival during transport} \quad \text{(Level 2)} \]
 \[p(\upsilon) : \text{Survival in receiving port} \quad \text{(Level 3)} \]

Potential threateners

- Phytoplankton

- Nativity

- Harmfulness

Species of high survival upon transport: 59 spp including
Skeletonema sp., Thalassiosira rotula, Heterocapsa triquetra, Prorocentrum minimum, Heterosigma akashiwo

Environmental monitoring

- Temperature
- Salinity
- Dissolved oxygen
- Nutrients
- Suspended solids
- Chl-a

Port Monitoring

- Port Baseline Surveys
- Port Monitoring
- Biological monitoring
Potential threatners

Potential risky species or taxon based on literature (Inner and outer ports)

Zooplankton

* AMF

Gwangyang

AMF

Incheon

AMF

Ulsan

AMF

Pusan

Strong invasive, Omnivorous

Ctenophore larvae

Stenohaline, Potentially international or intra-coastal transfer

Acartia hongi

Eurythermal and euryhaline

Potentially strong transfer ability by dormant eggs

Acartia omorii

Red-tide species

Noctiluca scintillans

Strong predator

Hydromedusae

Thaliacean larvae

Strong invasive, Omnivorous

Ballast Water Monitoring

Potential harmful plankton

Phytoplankton

Zooplankton

Phyttoplankton

Zooplankton

Taxa and abundance pattern in BW tanks during voyage

PING QUAN

BOW CHEETAH

DA ZHONG

SAGA JOURNEY

KMTC PUSAN

KUROSHIO EXPRESS

CAPE BYRON

YAYOI EXPRESS

ZHAO QING HE

PALANA

ARIAKE REEFER

HOHE WEG

DEWI PARWATI 1

HEUNG-A TOKYO

QUEEN ASIA

MIRAI BRIGHT

J-FORTUNE

MILLION T

GRAND WAY

DEWI PARWATI 2

BEAGLE II

SUCHADA NAREE

M.T.TASCOA MATA

OPALACE

M.V.RITA DEL MAR

CRVISER

SUNNY PALM

DP ORION

VICTORY OCEAN

PACIFIC VENUS

SUN INVESTOR

SUNRISE ROSA

SUN PRINCESS

ASPILOS

VOGE PAUL

WESTFIELD

HEUNG-A

BAOYANG

CHIPOLBROK SUN

XING GUANG

MT CSC FRIENDSHIP

ZI YU LAN

AFRICAN JAGUAR

SUN YOUNG

AQUILA

OCEAN ANGEL

YONG FA MEN

BEAGLE I

BJ ACE

EAGLE SYDNEY

EUSTOMA

SAMHO SPINEL

GOLDEN PHONIX

AKASHIO MARU

THAILINE 9

AESTATIS

KOMETA

STINA

TASMAN TRADER

SUNACE

JOOYOUNG

TEQUILA SUN RISE

SNKLUCKY

ALSTERGAS

NING HUA

SYRACUSE

C. S. CRANE

SAMHO TOPAZ

JIAODONG PEARL

SAMHO CORDELIA

VEGA TOPAS

ANGEL NO.6

SPRING LYRA

DAEWOO DIAMOND

ROYAL DIAMOND

CS CRANE

BARTIC

GOLDEN VOYAGE (TOKUYAMA)

GOLDEN VOYAGE (MOJI)

SORMOVS KIY

MERRY STAR

QUEEN Q

HAMILTON

HANYANG

MORDEN

ASISA

ELISABETH

SHUISHAN (NINGGO)

SHUISHAN (JINSHAN)

Abundance (cells)

0

1e+5

2e+5

3e+5
Survivalship in receiving ports: response to temperature

Royal Diamond = Ballast water

에서 낮은 영양염 검출 - 식물 플랑크톤의 성장 제한.

Baltic과 CS Crane은 평형 수의 영양염이 주변 수보다 높았음.

15-20도의 온도 조건에서 빠르게 증식 가능함.

모든 실험구에서 f/2 배지의 풍부

울산(온산) 항에 입항한 3척 (Royal, Baltic, CS Crane)의 선박을 대상으로 식물 플랑크톤 적응 능력 평가 (광조 건, 60 μmol m-2 S-1) 한 영양염 조건에서 성장 가능.

저온에서는 성장 저화

상기 3선박의 평형수에서 유입되는 종은 방출 후 4-10일의 광 조건에 노출되면 잠재적으로 성장이 가능하다고 판단됨.

Environmental Conditions (2004-2010)

Atlas of NIS in the N. Pacific

Grandidiell a japonica

Genetic Algorithm for Rule-set Prediction (GARP)

Atlas of NIS in the N. Pacific

Grandi diell a japonica

Genetic Algorithm for Rule-set Prediction (GARP)
Summary

• There must be species interactions, which may determine invasional success, and ecological approach is urgently needed to understand full impacts of MIS

• Regional cooperation of information sharing is essential for stemming spreading as well as introductions of MIS - qualitative information is not enough

• Distribution pattern of MIS backs up BW/hull fouling is a major route for their introductions.

Acknowledgements

• Drs. Hee-Dong Jeong, Kyung-soon Shin and other numerous colleagues involved in the projects

• Picture sources: MLTM, SERC and others

• Fundings from Ministry of Land, Transport and Maritime Affairs (K.S. Shin) and National Research Foundation (K.H. Choi)

Thank you!
Pros and Cons of Invasive Cordgrass *Spartina Spp.*

Pros and **Cons** of Invasive Cordgrass *Spartina Spp.*

Introduced into China from UK and USA over 30 Years Ago

WANG CHANGYONG

Nanjing Institute of Environmental Sciences
Under Ministry of Environmental Protection of China

Spartina anglica, commonly called *English cordgrass*, is an invasive, perennial salt marsh grass.

Spartina anglica was deliberately introduced into China from UK by Prof. Chung C.H. of Nanjing University in July 1963.

The first English cordgrass plantation, about 40 hectares, was created in the coastal mudflat of Yancheng city, Jiangsu province of China in 1965.

Spartina alterniflora, also called *smooth cordgrass*, was introduced by Prof. Chung, C.H. into Fujian province of China from USA in 1979.

The two cordgrass were successively planted in coastal salt flats of 10 provinces, such as Liaoning, Hebei, Zhejiang, Shandong, Fujian, Guangxi, Guangdong.

The primary purpose of introducing the two *Spartina* species is to reclaim arable land from the sea and mitigate the attack of strong storm to seawall

1. Introduction of Spartina anglica and S. alterniflora into China

Spartina anglica was introduced into China from UK and USA.

Spartina anglica was deliberately introduced into China from UK by Prof. Chung C.H. of Nanjing University in July 1963.

The first English cordgrass plantation, about 40 hectares, was created in the coastal mudflat of Yancheng city, Jiangsu province of China in 1965.

2. Distribution of Spartina anglica and S. alterniflora in China

The earliest center of *Spartina anglica* distribution is Sheyang County (33° 40' N), Jiangsu.

Three others are Wenling County (north of 28° N), Tianjin (39° N) and Qidong County (32° N) north of Yangze estuary.

S. anglica distribution extended in the past to approximately 90 cities and counties along Chinese coast. Its distribution sites are found in every province along the coastline from Dandong, at the mouth of the Yalu River to Hepu, Guangxi
East China contains more than four-fifths of the total *S. anglica* distribution. Jiangsu ranks highest, Zhejiang being next. North China has far fewer areas and South China has the least.

The record of its highest plantation area in China reached up to about 33,000 hectares in 1983. Since introduction of *Spartina alterniflora*, its distribution area started to decrease.

Table: *Spartina anglica* distribution in China (Chung C.H., 2003)

<table>
<thead>
<tr>
<th>County</th>
<th>Hectares (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiangsu</td>
<td>18,700-22,000</td>
</tr>
<tr>
<td>Shandong</td>
<td>5,993-5,800</td>
</tr>
<tr>
<td>Fujian</td>
<td>1,000</td>
</tr>
<tr>
<td>Hebei</td>
<td>970</td>
</tr>
<tr>
<td>Guangxi</td>
<td>133</td>
</tr>
<tr>
<td>Liaoning</td>
<td>10</td>
</tr>
<tr>
<td>Guangdong</td>
<td>10</td>
</tr>
</tbody>
</table>

Jiangsu was especially noticed. The chronological increase of *S. anglica* as surveyed was: 110 ha in 1966, 270 in 1973, 10,000 in 1978, 33,000 in 1983.

S. alterniflora is now distributed in nine of the 14 coastal provinces in East and South China, spanning from the sub-tropics to the temperate zone. (Source: Liu et al. 2007; Wang et al. 2008).

Mainly distributed in the salt flats of Fujian (40% in plantation area) and Jiangsu (38%), Zhejiang (20%).

The current distribution area of *S. alterniflora* in China is approximately 46,000-53,000 hectares.

Dr. Zhao will give detailed information in terms of its distribution in the provinces where it was planted.

3. Potential Ecological Risks resulting from *Spartina spp.* in China

3.1 Invade into the habitats of native plants in salt marshes and then replace them

- Reduce and eventually replace distribution of native marsh grass (e.g. *Suaeda salsa*, *S. mariqueter*, reed) in Jiangsu, Shangdong and Zhejiang provinces and Shanghai, resulting in their disappearance from original habitats (Zuo and Liu 2007, Tian et al. 2009, Li et al. 2009, Li et al. 2005).
- Invade into the habitat of mangroves in Guangxi (Li et al. 2009).
- Invade into Dayu Island Nature Reserve in Xiamen, Fujian province, southeast China (Zuo et al. 2008).

Main causes: *S. alterniflora* has a greater competitive ability than native salt marsh plants.

3.2 Decrease availability of native salt marsh habitats to migrant and shorebirds

- Lower numbers of red-crowned crane in *S. alterniflora* community of Yancheng Nature Reserve in Jiangsu province than the mudflats (Zuo and Liu, 2007).
- A decrease in species and number of waterfowl (e.g. White Egrets) in *S. alterniflora* stand in Yellow Sea delta, Shandong province and Fujian province (Tian et al. 2009; Yu et al. 2010).
- Most shorebirds (songbirds and breeding birds, waterbirds and migrants) preferred to select mudflats or native plant community (reed, *S. mariqueter*) in Yangtze River estuary, rather than *S. alterniflora* meadow (Li et al. 2009, Gan et al. 2009).

Main causes: (1) Dense and *S. alterniflora* stands which is difficult to make access to native birds; (2) Changes in food components in *S. alterniflora* community.
3.3 Effects of S. alterniflora on macrobenthic species

- Lower invertebrate species in S. alterniflora stand but higher individuals than that in adjacent mudflats in Yellow Sea delta, Shandong province (Tian et al. 2009).

- The mean density between S. alterniflora and S. mariqueter stand displayed no significant difference for 25 macrobenthic invertebrates sampled from Shanghai Congming Island, but abundance is lower for 4 out of 25 species in S. alterniflora stand and is higher for 1 species (Chen et al. 2005).

- The biodiversity index (e.g. Shannon index) and richness of macrobenthic species in the salt marsh of S. alterniflora were less than those in the mudflat in Jiangsu coast in every season. However, total individuals of the macrobenthic species was higher (Zhou et al. 2007).

3.4 Effects of S. alterniflora expansion along coastal areas on local aquaculture

- Rapid colonization of S. alterniflora compete with shellfish (e.g. oyster and several clams) for habitat room in costal mudflats of Fujian and Jiangsu provinces, resulting in a great loss of aquaculture production (Shang et al. 2008, Wan et al. 2009, Tian et al. 2009).

- Local fishermen thinks S. alterniflora may decrease the production of kelps and nori through competing with them for nutrients (Jin et al. 2002, Guo, 1996).

4. Ecological Benefits and Utilization Practices of Spartina spp. in China

4.1 Buffering against storm tide

In the past 26 years, Spartina spp. proved itself to be an excellent guard along the coast. For example, in 1990, when the 5th typhoon with huge wave of 6.27m came to Ouhai county of Zhejiang province, the seawall in the front of which no macrophytes were distributed, was completely destroyed, while the one with Spartina meadow was intact and only sprays of waves reached the dike; Another example from Wenzhou city, Zhejiang province showed Spartina spp. community can effectively prevent seawall from attack of strong typhoon (Lu and Wu, 1996).

4.2 Accelerating accretion and reclamation

In a report by Chung et al (2004), his study results showed that S. alterniflora meadow in Dongtai county, Jiangsu province brought out a greater accretion than the mudflat: 52.1cm vs 10.5cm, resulting in about 10,000ha. of newly formed land reclaimed from the smooth cordgrass accretion. In Zhejiang province, there are several similar example reports.

4.3 Providing important food source for salt marsh animals and saving as effective assimilator of Carbon dioxide (CO2) and as a agent of soil improvement

- Net primary production of S. alterniflora was estimated to be 3,412g (dry weight)/m2/yr and hence its organic detritus can supported sustainable development of offshore marine fish resources (Wan et al. 2009).

- A study showed that the total net primary production of the S. alterniflora salt marsh in China increased from 18,186 tons in 1981 to 1,706,126 ton in 2004 and CO2 fixed by the S. alterniflora vegetation per year increased from 29,619 ton to 2,778,707 tons (Wan et al. 2009).

- S. alterniflora can increase organic matter in soil. After enclosing S. alterniflora meadows, The S. alterniflora marsh can be used for farmland.
4.4 Some good practices from utilization of *S. alterniflora* in China

- Use *Spartina spp.* as green manure to increase crop production (by 33% for rice, 29% for cotton in Zhejiang).
- Use *Spartina spp.* as fodders for sheep, as feed for chicken, pig and fish or for grazing sheep, hence reducing production costs and rapidly increasing body of the domestic animals.
- Use *Spartina spp.* for fuel and paper-making material.
- The extracts from *Spartina spp.* have been developed as health-care products and drinks (e.g. beer and soft beverages).
- Use *Spartina spp.* to address the issues of pollutants (heavy metals, N, P) discharged from terrestrial and marine culture.

(1) Hand removal
Although hand removal of *Spartina spp.* can be an effective technique, its widespread use is severely limited by practicality.

(2) Removal by machinery
This technique appears to control *Spartina* infestations by reducing seed production and weakening the plant by depleting root and rhizome energy reserves.

(3) Herbicide
Use wide spectrum herbicide-glyphosate and BC-08 (developed by China) to kill *Spartina spp.*, but this method also produced negative effects on other organisms and environment. Hence this method was not recommended in China.

(4) Biological Control
The most promising biocontrol agent appears to be a Homopteran plant hopper (*Prokelasia marginata*) that feeds on the vascular fluids of *Spartina* species and proved to be effective biological agent for *Spartina* species in USA.

6. Management of *Spartina spp.* by Chinese Ministry of Environmental Protection (MEP)

(1) MEP has developed a regulation of invasive alien species and plan to issue it in this year
This regulation emphasized the necessity and procedures for risk assessment, monitoring, regular investigation, information collection, control and removal of invasive alien species which have been or will be introduced into natural ecosystems.

(2) MEP has issued a national invasive alien species list two times, including *Spartina* species, to provide guide for their investigation in natural ecosystem, especially in nature reserves.

(3) MEP funded related domestic organizations to conduct scientific researches into effects of *Spartina* species on local biodiversity.

(4) MEP conducted publicity activity and training workshops for the environmental protection authorities at provincial level to increase their awareness of and update knowledge for the risks associated with invasive alien species.

Thanks for Your Attention!
The influences of invasive alien species *Spartina alterniflora* on biodiversity in Chinese coastal wetland

Reporter: Caiyun Zhao
Chinese Research Academy of Environmental Sciences

The distribution of *Spartina alterniflora* in China.

The influences of invasive alien species *Spartina alterniflora* on biodiversity

1. The distribution of *Spartina alterniflora* in China

The *Spartina alterniflora* spread from the Yingkou, Liaoning Province to Beihai, Guangxi Province in China. And the areas of *Spartina alterniflora* increased from 8 hm2 in 1985 to 34178 hm2 in 2005.

Zhang et al. 2010
The distribution of *Spartina alterniflora* in north China

Zhang et al., 2010

Spartina alterniflora mainly distributed in Dagang in Tianjin, and mainly distributed in Huangye county in Hebei province, and mainly distributed in Dongying in Shandong province.

The distribution of *Spartina alterniflora* in Jiangsu

Zhang et al., 2005

More than half area of *Spartina alterniflora* distributed in Jiangsu province, after it was cultivated in 1982. *Spartina alterniflora* spread from Sheyang to Dongtai.

The distribution of *Spartina alterniflora* in Shanghai

Zhang et al., 2005

Spartina alterniflora was first found in Shanghai in 1995, and it distributed in the ChaomingDao and Jiuduansha, and the total areas were 5336 m².
The distribution of *Spartina alterniflora* in Zhejiang

In 1993, the *Spartina alterniflora* was introduced in Zhejiang province. It spread from Hangzhou bay to Aojiang, and after twenty years, the area of its increased to 5092hm². And the most *Spartina alterniflora* distributed in Leqing county, and almost occupied 77% in the all province.

Liu and Li, 2007

The distribution of *Spartina alterniflora* in Fujian

In 1979, *Spartina alterniflora* was introduced in Luoyuan coast, in Fujian province. And this site is the first introduce sites in China. Most *Spartina alterniflora* distribute in Luoyuan coast, Sandou coast and Funing coast in Fujian province. The areas of *Spartina alterniflora* increased to 3856.3 hm² in 2006, in Luoyuan coast Fujian Province.

Pan et al. 2009

The distribution of *Spartina alterniflora* in Guangdong

The areas of *Spartina alterniflora* in Guangdong province is 349hm², and mainly distributed in Qiaodao.

Zhang and Lu, 2010

The distribution of *Spartina alterniflora* in Guangxi

In 1979, *Spartina alterniflora* was introduced in Guangxi province, up to 2011, the area increased to 357.2hm², and mainly distributed in Dandouhai.

1999年、2008年、2011年广西丹兜海互花米草分布
Conclusion

Up to now, *Spartina alterniflora* distributed in most of the coastline in China, and rapidly spread in some region.

2. The influences of invasive alien species *Spartina alterniflora* on biodiversity

- The influences of invasive alien species *Spartina alterniflora* on microorganism
- The influences of invasive alien species *Spartina alterniflora* on macrobenthonic invertebrates
- The influences of invasive alien species *Spartina alterniflora* on plant

The impacts of *Spartina alterniflora* on the microorganism

The soil microbial biomass in inter-tidal zone increased more with the growth of *S. alterniflora* comparing with the barren tidal flat. The community components may be more complicated in *Spartina* salt marshes with the dominant components activities in microbial physiological function group.

Zhou et al., 2005
The impacts of *Spartina alterniflora* on the microorganism

Microbial functional groups related to nitrogen-cycle were more higher in *spartina* salt than in mudflat except for in February.

Zhou et al., 2007

The impacts of *Spartina alterniflora* on the microorganism

Microbial functional groups related to carbon-cycle were more higher in *spartina* salt than in mudflat in all season.

Presentation funded by APN

The impacts of *Spartina alterniflora* on the microorganism

Spartina alterniflora can increase the concentration of soil organic carbon as well as the soil microbial activities.

Xi et al., 2009

The impacts of *Spartina alterniflora* on the macrobenthonic invertebrates

Presentation funded by APN
The impacts of *Spartina alterniflora* on the macrobenthonic invertebrates

The density and biomass of macrobenthonic invertebrates was impacted by the *Spartina alterniflora* during different invaded stages in Beihai, Guangxi Province. And in the newest invaded stage, the abundance was highest.

The impacts of *Spartina alterniflora* on the macrobenthonic invertebrates

The *Spartina alterniflora* influence the community of macrobenthonic invertebrates in different invaded stages in Beihai, Guangxi Province. And the *glauconome chinensis* is the dominant species in the community of *Spartina alterniflora*.

The impacts of *Spartina alterniflora* on the macrobenthonic invertebrates

The study of Zhang found the abundance of *glauconome chinensis* increased in the *Scripus mariqueter* than *Spartina alterniflora* in all season, but in the high elevation area the density of *glauconome chinensis* is higher in *Spartina alterniflora*, but contrary in the lower elevation areas.
The impacts of *Spartina alterniflora* on the macrobenthonic invertebrates

The mean total density of macrobenthic invertebrates in *Scripus marqueter* and *Spartina alterniflora* communities was not significantly different between the two communities. However, the *S. alterniflora* change the abundance of five species.

Ten macrobenthos species were found in the *Spartina* salt marsh, and 36 species were found in the mudflat. And only three species were found both in the *Spartina* salt marsh and the mudflat. This suggested that the species composition has been obviously changed.

Table 2 - Five species of macrobenthic invertebrates that were significantly affected by *Spartina alterniflora* invasion, and their mean density in native *Scripus marqueter* and invaded communities.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Mean density (individual m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scripus</td>
</tr>
<tr>
<td>Gastrapagia</td>
<td>1395 ± 105</td>
</tr>
<tr>
<td>Austroderia</td>
<td>249 ± 57</td>
</tr>
<tr>
<td>Cirridia armata</td>
<td>211 ± 45</td>
</tr>
<tr>
<td>Scoloplos gafris</td>
<td>332 ± 83</td>
</tr>
<tr>
<td>Lunazoolixia</td>
<td>503 ± 45</td>
</tr>
</tbody>
</table>

All the differences between two plant communities are significant at P<0.01 level (data from Chen et al., 2005).

Table 3 - Components of macrobenthic community in the *Spartina* salt marsh and the mudflat.

<table>
<thead>
<tr>
<th></th>
<th>Spartina salt marsh</th>
<th>Mudflat</th>
<th>Marine species</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptodraco</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Glaucus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Boschungia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Scoloplos</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Oresunum</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Rhabdidae</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total no. of species</td>
<td>10</td>
<td>56</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

Zhou et al. 2009
The impacts of *Spartina alterniflora* on the plant - mangroves

Spartina alterniflora can impact the soil environment and change the community of microorganisms and macrobenthonic invertebrates, and then control the spread of aerial roots of mangroves.

![Image of mangroves]

Presentation funded by APN

The ratio of aerial roots and crown of mangroves can be distinguished impacted by the *Spartina alterniflora* (P=0.048) in Beihai, Guangxi.

![Graph showing root and crown ratio]

Presentation funded by APN

The impacts of *Spartina alterniflora* on the plant – native herbage

The competitive dominance of *S. alterniflora* was shown in the conditions with the highest salinity, sand and full immersion, whereas *Phragmites australis* showed competitive dominance under the conditions with lowest salinity and non-immersion.

![Graph showing competitive dominance]

Table 1 – Summary of competitive balance between *Spartina alterniflora* and *Phragmites australis* based on the values of R/S, as affected by the growing conditions (modified from Wang et al., 2006)

<table>
<thead>
<tr>
<th>Factor manipulated</th>
<th>Treatments</th>
<th>Competitive outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td>0%, 15%, 30%</td>
<td>Phragmites > Spartina, Spartina > Phragmites</td>
</tr>
<tr>
<td>Sediment type</td>
<td>Sand, Clay</td>
<td>Phragmites > Spartina</td>
</tr>
<tr>
<td>Waterlogging</td>
<td>Non-immersion, Half-immersion, Full-immersion</td>
<td>Phragmites > Spartina</td>
</tr>
</tbody>
</table>

Li et al. 2009

![Image of *Spartina alterniflora* and *Phragmites australis*]

Li et al. 2012
The impacts of *Spartina alterniflora* on the plant – native herbage

In July 2002, the abundance and coverage of *S. mariqueter* between Spartina–Scirpus transect and Scirpus transect were not significantly different (except the abundance at sites 1 and 2). In September 2002, the abundance of *S. mariqueter* on Spartina–Scirpus transect was significantly lower than that in Scirpus transect at all sites, but their coverage were not significantly different. As a result, the abundance and coverage of *S. mariqueter* significantly decreased on the Spartina–Scirpus transect, compared with those on the Scirpus transect at all sites.

Chen et al. 2004

Conclusions

- *Spartina alterniflora* had significantly larger sizes of carbon and nitrogen stocks, and so increased the microorganisms density and biomass.
- Density and biomass of macrobenthic invertebrates were different with the invaded time of *Spartina alterniflora*, and the species composition and dominant species of macrobenthic invertebrates can be altered by *Spartina alterniflora*.
- *Spartina alterniflora* invasion interrupted natural succession of plant communities, and especially the unstable ecosystems can be destroyed by *Spartina alterniflora*, such as mangroves.

Thanks for your attention
China’s Response to Marine Invasive Species from the Legal Perspective and Challenges Review

Speaker: BAI JIA-YU

Qingdao 2012-10-23

Outline

- Status of marine invasive species in China
- Management system to counter with marine invasive species in China
- China’s response to relevant international conventions and rules
- China’s legislation about marine invasive species prevention
- Legislation assessment in the field of marine invasive species prevention
- Challenges for marine invasive species legislation and management regime
- Suggestions for marine invasive species legislations and management regime reform

Status of marine invasive species in China(1)

China’s coastline: 18 000 km

3 semi-closed sea: Yellow Sea, East China sea, South China Sea

Invasive species: 400 categories (data from Ministry of Agriculture)

Most threatening species: 50 categories (from Global Invasive Species Database)

Marine invasive species: more than one hundred categories
Status of marine invasive species in China

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Name of Invasive Alien Species</th>
<th>Origins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prorocentrum minimum</td>
<td>From coastline of North America, carried by vessels’ ballast water</td>
</tr>
<tr>
<td>2</td>
<td>P. Sigmoides</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Perocentrum baltricum</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Alexandrum catenellum</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Scrippsiella trochoidea</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Peridinium perardiforme</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Chaetoceros Concavicornis</td>
<td>From North America</td>
</tr>
<tr>
<td>8</td>
<td>Cyclindrotheca closterium</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Melosira cancellate</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nitzshia Deicatissima</td>
<td>From North Carolina, Florida and Georgia in US.</td>
</tr>
<tr>
<td>11</td>
<td>Pinnularia</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Spartina alteriflora</td>
<td>From North Carolina, Florida and Georgia in US.</td>
</tr>
<tr>
<td>13</td>
<td>Spartina anglica</td>
<td>UK.</td>
</tr>
</tbody>
</table>

China’s response to relevant international conventions and rules (1)

<table>
<thead>
<tr>
<th>International conventions</th>
<th>Status</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Diversity Convention</td>
<td>In force</td>
<td>ratified</td>
</tr>
<tr>
<td>Cartagena Protocol on Biological Safety</td>
<td>In force</td>
<td>ratified</td>
</tr>
<tr>
<td>United Nations Convention on Law of the Sea</td>
<td>In force</td>
<td>ratified</td>
</tr>
<tr>
<td>Convention on Wetlands of International Importance, especially as Waterfowl Habitat</td>
<td>In force</td>
<td>ratified</td>
</tr>
<tr>
<td>International Convention on the Control of Harmful Anti-fouling Systems on Ships</td>
<td>In force</td>
<td>ratified</td>
</tr>
<tr>
<td>International Convention for the Control and management of Ships’ Ballast Water and Sediments</td>
<td>Yet in force</td>
<td>Not yet ratified</td>
</tr>
<tr>
<td>Convention on the Law of Non-Navigational Uses of International Watercourses</td>
<td>Yet in force</td>
<td>Not yet ratified</td>
</tr>
</tbody>
</table>

Management system to counter with marine invasive species in China

Ministry of Agriculture
State Oceanic Administration
General Administration of Quality Supervision, Inspection and Quarantine
General Administration of Customs
China’s response to relevant international conventions and rules (2)

Soft laws:
- Rio Declaration on Environment and Development (1992)
- Agenda 21 (1992)
- IMO Resolutions

China’s legislation about marine invasive species prevention (1)

Laws
- Frontier Health and Quarantine Law (2007)
- IMO Resolutions

Local regulations
- Regulations on the Prevention and Control of Vessel-induced Pollution to the Marine Environment (2009)

Divisional rules
- Rules for the Implementation of Frontier Health and Quarantine Law (2010)

Laws for the prevention of marine invasive species prevention (2)

- Frontier Health and Quarantine Law (2004)

Legislation assessment in the field of marine invasive species prevention (1)

Art. 25: The introduction of marine biological species shall subject to scientific assessment to avoid damages to marine ecosystems.

- Who is entitled to such an introduction?
- How is the effectiveness of the scientific assessment?
- Why is it important to conduct scientific assessment?
- How is the administration of fishery development managed?

Legislation assessment in the field of marine invasive species prevention (2)

Art. 6: The department of fishery administration under the State Council shall be in charge of the administration of fishery throughout the country. Quarantine must be executed for the import and export of aquatic species to prevent disease from passing into or out of the territory.

Department of fishery administration under the State Council manages the and controls invasive species on the premise of fishery development.
Legislation assessment in the field of marine invasive species prevention (3)

Frontier Health and Quarantine Law (2007)
Art. 1: This law is formulated in order to prevent infectious diseases from spreading into or out of the country, to carry out frontier health and quarantine inspection and to protect human health.

The management is from the perspective of health protection.

Legislation assessment in the field of marine invasive species prevention (4)

Regulation on the Prevention and Control of Vessel-induced Pollution to the Marine Environment (2009)
Art. 15 The ships that discharge ship garbage, daily sewage, oily sewage, sewage that contains poisonous substances, exhaust gas and other pollutants and ballast shall comply with laws, regulations and relevant standards and the relevant international conventions ratified or acceded by China.

Whether ballast water is considered as kind of pollution? If not, there is no detailed management provisions about ballast water.

Challenges for marine invasive species legislation and management regime (1)

- Lack of comprehensive legislation about prevention from marine invasive species.
- The management system in charge of prevention from marine invasive species is appointed from the perspective of industry development.
- Ecosystem-based management is not considered in management liability distribution.

Challenges for marine invasive species legislation and management regime (2)

- Prevention mechanism is not specific to different invasive channels.
- Lack of responsibility provisions.
- Lack of public attention on the issue.
Suggestions for marine invasive species legislations and management regime reform(1)

- Comprehensive legislation about prevention and control of marine invasive species is necessary.

- The aim of the legislation is not only the protection of industry development and human health, but also the protection about biological diversity and biological safety.

Suggestions for marine invasive species legislations and management regime reform(2)

- Management regime should be arranged in accordance with the features of marine ecosystem.

- Fund institution and other prevention tools could be considered along with responsibility provisions.

- Public awareness should be enhanced.

Thank you!
Basic Surveys for International Convention for the control and management of Ships' Ballast Water and Sediments

Regional Workshop on Marine Invasive Species Problems in the Northwest Pacific Region
25-24 Oct. 2012, Qingdao, China
Ministry of Environment
Office of Marine Environment
Presentation Revised by IHP

Exemption of the BWM Convention in the Japan-ROK route

BWM Convention Regulation A-4
A Party or Parties, in mutual consent, by bilateral agreement, may grant exemptions to any requirements or apply regulations B-1 to C-3, in addition to other exemptions or amendments to the Convention, but only when they are... granted by the Parties for the designated area, the risk assessment developed by the Parties, and the risk assessment developed by the Parties.

BWM Convention G7
1. Environmental matching risk assessment:
 - Compare environmental conditions between donor and recipient ports/regions
 - Species' geographic/depth risk assessment:
 - Compare the geographic and depth conditions between donor and recipient ports/regions
 - Compare the species' characteristics in the donor and recipient regions to determine the likelihood of invasion.

The organism(s) are basic surveys for the BWM Convention which are conducted in FF: Fraser and assistant has been handling the large amount of cargo at BOR.

<table>
<thead>
<tr>
<th>Target Port</th>
<th>Expert Team</th>
<th>Support Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiba</td>
<td>150 species</td>
<td>150 species</td>
</tr>
<tr>
<td>Tokyo</td>
<td>150 species</td>
<td>150 species</td>
</tr>
<tr>
<td>Osaka</td>
<td>150 species</td>
<td>150 species</td>
</tr>
<tr>
<td>Yokohama</td>
<td>150 species</td>
<td>150 species</td>
</tr>
<tr>
<td>Kansai</td>
<td>150 species</td>
<td>150 species</td>
</tr>
</tbody>
</table>

Prevention of Harmful Aquatic Organisms and Pathogen in Ballast Water
(International Convention for the control and management of Ships' Ballast Water and Sediments - BWM Convention)

What is Ballast Water?
- Ballast water is seawater to be mounted to ensure the safety and security of the ship after it enters its load. Ballast water is often pumped in at the departing place of the ship and discharged at the destination. In recent years, it has been suggested that ballast water may cause destruction of marine and coastal ecosystems and damage to fisheries. It has been reported that native species have been reduced by predatory behavior of alien species in Sagami Bay, Osaka Bay and Hakata Bay and others.

Adoption of the BWM Convention
- Following adoption of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM Convention) in 2004, which aims to prevent marine ecosystem disturbance by organisms in a ship's ballast water, basic information has been collected to effectuate the convention.

Risk Assessment based on the BWM Convention (G7)

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental matching risk assessment</td>
<td>Compare environmental conditions between donor and recipient ports/regions</td>
</tr>
<tr>
<td>Species' geographic/depth risk assessment</td>
<td>Compare geographic and depth conditions between donor and recipient ports/regions</td>
</tr>
<tr>
<td>Taxonomic and biological risk assessment</td>
<td>Compare the similarity between the two ports/regions</td>
</tr>
</tbody>
</table>

How charted risk assessment (descend)
- Baseline risk: a risk related to the natural port/region is judged as 'Lowest' if appropriate environmental conditions are satisfied.
Survey Method

Survey Item
- Water quality and bottom sediment quality (nutrient load, COD, etc.)
- Organisms (macrobenthos, meio-benthos, phyto/zoo-plankton)

Survey Method
- Water Quality: surface layer (0.5 m below the surface), intermediate layer (1/2 water depth), bottom layer (1 m above the bottom)
- Bottom Layer: Smith-McIntyre sampler
- Organisms:
 - Macro-benthos: >0.5 mm
 - Meio-benthos: 0.04 mm and bigger
 - Phytoplankton: sampling at 3 layers of water quality
 - Zooplankton (at Survey 2 layers): 1 m from the surface and 1 m above the seabed
 - Survey 3 layers: 1 m from the surface and just above the seabed

Basic Surveys for the BWM Convention

Survey in FY 2011
- Different organisms exist between quays next to each other

Survey in FY 2012
- Risk of organism introduction through ballast water
 - Importance of identifying biota at the front area of loading quays where ballast water is discharged
 - Increase of survey numbers at the front area of loading quays
 - Conducting seasonal surveys in consideration of seasonal variation of the biota
 - Conducting survey twice a day (at low and high tides) in consideration of the impacts of tides which significantly affect the water mass movement in the coastal area where ports are located

- Day/Night samplings
- Survey of biota at places in different distances from the quays

Preparing the regional report for conservation of marine biodiversity and sustainable use of marine ecosystem services in the NOWPAP region

CEARAC

Objective

To contribute to policy planning for marine biodiversity conservation in the NOWPAP member states

Regional Report:
- to provide useful information for policy planning on marine biodiversity conservation in each member state
- to contribute to promotion of the future marine biodiversity conservation in the NOWPAP region
Main Tasks

1. Collecting information on existing MPAs and other related issues in the NOWPAP region
2. Analyzing the status of MPAs in the NOWPAP region
3. Organizing a workshop to discuss possibility of applying other concepts for marine biodiversity conservation to the NOWPAP region
4. Preparing a regional report

1. Collecting information on existing MPAs and other related issues in the NOWPAP region

1.1 Collecting basic information on MPAs in the NOWPAP region
1.2 Collecting information on the monitoring and management status in selected MPAs in the member states

Number and Location of MPAs in the NOWPAP region

Total 278 MPAs are registered in the DINRAC MPA Database (China: 84 (2), Japan: 99 (34), Korea: 30, Russia: 65 (22))

Number and area of MPAs in the NOWPAP region (not including MPAs in inland and out of the NOWPAP region)

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of MPAs</th>
<th>Area (hectares) of MPAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>82</td>
<td>2,568,483</td>
</tr>
<tr>
<td>Japan</td>
<td>65</td>
<td>412,904</td>
</tr>
<tr>
<td>Korea</td>
<td>30</td>
<td>549,867</td>
</tr>
<tr>
<td>Russia</td>
<td>43</td>
<td>922,921</td>
</tr>
<tr>
<td>Total</td>
<td>220</td>
<td>4,454,139</td>
</tr>
</tbody>
</table>

2% of the entire NOWPAP region
1.1 Collecting data on information on MPAs in the NOWPAP region

The IUCN Protected Area Management Categories

<table>
<thead>
<tr>
<th>Category of protected area</th>
<th>Primary objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia Strict nature reserve</td>
<td>To conserve species, naturally or artificially occurring, scarce, unique or ecologically important, and to protect or restore natural ecosystems and landscapes.</td>
</tr>
<tr>
<td>Ib Wildness area</td>
<td>To protect the long-term ecological integrity of natural areas that are under threat from disturbances caused by human activities or other stresses, and to provide opportunities for all people to experience such ecosystems and landscapes.</td>
</tr>
<tr>
<td>I National park</td>
<td>To protect natural resources and ecosystems, their associated biodiversity, and values through traditional management practices.</td>
</tr>
<tr>
<td>II Natural monument of feature</td>
<td>To protect specific outstanding natural features and their associated biodiversity and habitat.</td>
</tr>
<tr>
<td>III Natural areas of historical and cultural importance</td>
<td>To protect areas of historical and cultural importance, including archaeological sites, historic sites, and cultural landscapes.</td>
</tr>
<tr>
<td>IV Protected area with sustainable use of natural resources</td>
<td>To protect and manage areas where natural resources are used in a manner that conserves and sustains the resource base.</td>
</tr>
<tr>
<td>V Protected landscape and seascape</td>
<td>To protect areas of geological, hydrological, or other natural features, and to conserve and manage these features for aesthetic, scientific, or cultural values.</td>
</tr>
<tr>
<td>VI Marine protected areas and habitats</td>
<td>To protect marine ecosystems and habitats, including coastal and offshore areas, and to conserve and manage these resources for ecological, scientific, and cultural values.</td>
</tr>
</tbody>
</table>

1.2 Collecting information on monitoring and management in the selected MPAs in the member states

Nominated experts are collecting following information:

- Hydrographic condition
- Ecological characteristics
- Presence/absence of regular monitoring
- Presence/absence of the management plan
- Presence/absence of specific protected species and their conditions

<table>
<thead>
<tr>
<th>IUCN categories</th>
<th>China</th>
<th>Japan</th>
<th>Korea</th>
<th>Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selected target MPAs in each member state

China (10 MPAs)
- Hailing Island Marine Ecosystem National Nature Reserve
- Zhuhai Archipelago National Marine Special Reserve
- Bongcheng Bay National Fisheries Genetic Resource Reserve
- Songlou Bay Marine Ecosystem National Nature Reserve
- Rushan National Marine Park
- Jiaozhou Bay National Marine Park
- Kongdong National Nature Reserve
- Haiyang Qianliyan Island Nature Reserve
- Zhifu Archipelago Marine National Nature Reserve
- Sanggou Bay Marine National Nature Reserve

Japan (10 MPAs)
- Danjyo guntou islands: Breeding habitat of Streaked Shearwater and Japanese Cranes in Awaizima island; Genkai Sea Chiru National Park
- Nisho-Shibarato Otsukikai Quasi National Park
- Saito in Katate National Park
- Daimon-oki National Park
- Komoreji-Kumojima National Wildlife Protected Area
- Rosado Toushi National Wildlife Protected Area

Korea
- TBD

Russia (8 MPAs)
- Far Eastern Marine, Kuril, Lazovsky, Sikhote-Alin, Land of the Leopard, Tiuminsky, Vostok Bay, Moneron Island
2. Analyzing the status of MPAs in the NOWPAP region

2.1 Analysis on the status of MPAs in the NOWPAP region
- Definition of MPA in each member state
- Current status of MPAs in the NOWPAP region
- Protected species in MPAs in the NOWPAP region

2.2 Analysis on the status of monitoring and management in the selected MPAs
- Hydrographic condition
- Ecological characteristic
- Implementing status of monitoring
- Management status on the marine environment and marine species
- Situation of protected species

3. Organizing a workshop

Objective:
- To discuss the possibility for application of a new concept to sea area for marine biodiversity conservation and sustainable use of marine ecosystem services

Timing: End of 2012 or Beginning of 2013

Expected participants
- Expert(s) of each member state
- Experts from relative international organizations

Discussion points
- Current status of MPAs in the NOWPAP region
- New concepts for marine biodiversity conservation
 - Ecologically and Biologically Significant Area
 - Marine Protected Area Network
- Self-assessment on management effectiveness

Expected outputs
- Potential new concepts for the NOWPAP region
- Possibility of self-assessment on management effectiveness

4. Preparation of regional report

Draft table of contents
1. Introduction
2. Regional overview on existing MPAs in the NOWPAP region
 2-1 Situation of existing MPAs in the NOWPAP region
 2-2 Criteria of MPAs in the NOWPAP member states
 2-3 Purposes of MPAs in the NOWPAP member states
3. Monitoring and management status in the selected MPAs in the NOWPAP region
 3-1 Oceanic condition
 3-2 Monitoring status of the marine environment and marine species
 3-3 Management status of the marine environment and marine species
 3-4 Situation of protected species
4. Preparation of regional report

Draft table of contents
4. New concept for marine biodiversity conservation and sustainable use of marine ecosystem services
 4-1 Possibility on applying a concept of ecologically and biologically significant sea areas to the NOWPAP region
 4-2 Possibility on establishing MPA networks for marine biodiversity conservation
 4-3 Possibility of self-assessment on the management effectiveness

5. Conclusion

Other information on marine biodiversity

Information on invasive species, endemic species and endangered species in MPAs of each member state

Common target species among the NOWPAP member states

New Concept
- MPA Network
- Common conserved sea area

Expected outcome
- Useful information for policy makers of the member states in order to enhance marine biodiversity conservation measures
- Basic concepts for marine biodiversity conservation in the NOWPAP region
- Regional Action Plan for marine biodiversity conservation

Potential partners
- NOWPAP DINRAC
 - Database on MPAs
 - Information on Invasive species
- OSPAR
 - Experiences on designing EBSAs
 - Self-assessment on management effectiveness
Aquaculture in China

China is largest aquaculture country in the world

56 million T in 2011

Marine: 29 million T

Aquatic AS in China
(Fresh and Marine species)

Total: about 129 species most from aquaculture introduction

Fish: 89 (15)
(65 from foreign country)

Crustacean: 10 (7)

Shellfish: 12 (12)

Aquatic plant: 18 (5)

other: 12

(2006 Y. WANG)

Aquatic species in China
(Fresh and Marine species)

Total: about 129 species most from aquaculture introduction

Fish: 89 (15)
(65 from foreign country)

Crustacean: 10 (7)

Shellfish: 12 (12)

Aquatic plant: 18 (5)

other: 12

(2006 Y. WANG)

Table: General characteristics of fish species introduced in Shandong Province

<table>
<thead>
<tr>
<th>Fish</th>
<th>Crustacean</th>
<th>Shallow:</th>
<th>Deep:</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish</td>
<td>crustacean</td>
<td>shelf</td>
<td>deep</td>
</tr>
</tbody>
</table>

Aquarium fish in China

Total: about 129 species most from aquaculture introduction

Fish: 89 (15)
(65 from foreign country)

Crustacean: 10 (7)

Shellfish: 12 (12)

Aquatic plant: 18 (5)

other: 12

(2006 Y. WANG)
Law and Regulation in China Related MIS Management

No special Law and Regulation on MIS or IS Management, but some articles related

“Law of Fisheries, China”
“Law of Marine Environment Protection,”
“Law of Wildlife Conservation”
“Regulation of Wild Plant Conservation”

Law of Fisheries, China

Article 16: Import and export aquatic seed, must be approved by Fisheries Agency, State Department or fisheries agency of province government.
Law of Marine Environment Protection, China

Article 25:
Introduce marine Fauna and Flora species, should implement scientific assessment, and avoid damage marine ecology system.

Law of Wildlife Conservation

Article 24:
The export of wildlife under special state protection or the products thereof, and the import or export of wildlife or the products thereof, whose import or export is restricted by international conventions to which China is a party, must be approved by the department of wildlife administration under the State Council or by the State Council (Fisheries or forestry Agency).

Regulation of Wild Plant Conservation

Article 20:
The export of wild plant under special state protection or the products thereof, and the import or export of wild plant or the products thereof, whose import or export is restricted by international conventions to which China is a party, must be approved by the department of wild plant administration under the State Council or by the State Council (Agriculture, Fisheries or Forestry Agency).

Who manage IS, AS and IAS in China?

At first, IAS, SEPA before 2002 (?) on bio-safety. Later, co-ordinate and adjust by State Council of China: Transfer IS duty from SEPA to Ministry of Agriculture. MOA draft a regulation “China Invasion Alien Species management” now and will Promulgate or action in end 2012 or 2013.
Who manage marine and aquatic species in China?

By law and regulation:

“Law of Fisheries, China”
“Law of Marine Environment Protection,”
“Law of Wildlife Conservation”
“Regulation of Wild Plant Conservation”

Central Government:
Ministry of Agriculture (fisheries Bureau)
Local Government:
Province (City, Country) Fisheries Agency

Why MOA, BOF

In China, According Law of fisheries and Law of Marine Environment Protection and other law:

“fisheries resources” means “aquatic biology resources (Marine and freshwater plant and animal)
So manage fisheries means manage aquatic species.

Key Management Authority of Aquatic and Marine IS in China

Central Government:
Bureau of Fisheries, MOA
Local Government:
Province (City, Country) Fisheries Agency
Related Management Authority:
Environment Agency, Marine Agency, Custom, Quarantine Agency

Who manage EIA in China

By Law of EIA, China
Ministry of Environment Protection.
How to co-ordinate EIA and aquaculture or MIS introduction?
Management and policy

Management?
No.

Action Plan?
Only plan,
No action

Recommendation

Cooperation of international and national level,

Coordination of MOA & MEP, China
Reinforce law and regulation on aquatic alien species management

Set up institution on risk evaluating for aquatic Alien invasive species

Recommendation

EIA on introduce alien aquatic species for aquaculture by MEP, and participate by SOA;

Strengthen animal and plant inspection and enforcement

Distinguish focal point and key management authority and responsibility in China, cooperation and dividing the work

Develop international cooperation, control aquatic alien invasive species

Process research input and enhance capability building

Develop education and public awareness.
Ballast Water Management (BWM) — An Approach to Combat MIS

Nahui Zhang, Zhitao Zhang
Institute of Environmental Engineering, Dalian Maritime University, China
Email: zhangnahui@gmail.com

OUTLINE
- Introduction – background issue
- International regulation – BWM Convention
- Ballast water treatment technology – current status
- Conclusion

INTRODUCTION
- Shipping transfers approximately 3 to 5 billion tons of ballast water internationally each year.
- An estimated 7,000 marine and coastal species travel across the world’s oceans via ship’s ballast water.

What is ballast water?
Ballast water is water carried by ships to ensure stability, trim and structural integrity.

The Issue
- The introduction of marine invasive species into new environments by ships’ ballast water has been identified as one of the four greatest threats to the world’s oceans.
- Non-native species, if they become established, can have a serious ecological, economic and public health impact on the receiving environment.
INTRODUCTION

Invasive marine alien species to the world’s oceans

- Chinese mitten crab in the coast of UK and America
- European Zebra Mussel infested in the Great Lake

OUTLINE

- Introduction – background issue
- International regulation – BWM Convention
- Ballast water treatment technology – current status
- Conclusions

INTERNATIONAL REGULATION

Status of 2004 BWM Convention

As of 5 October 2012

<table>
<thead>
<tr>
<th>Countries</th>
<th>% Tonnage</th>
<th>States to the Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needed: 30</td>
<td>Current: 36</td>
<td>Albania, Antigua and Barbuda, Barbados, Brazil, Canada, Cook Island, Croatia, Egypt, France, Iran, Kenya, Republic of Korea, etc.</td>
</tr>
<tr>
<td>Needed: 35</td>
<td>Current: 29.07</td>
<td></td>
</tr>
</tbody>
</table>
IMO BWM CONVENTION TREATMENT STANDARDS

- Regulation D-1 - the Ballast Water Exchange standard
- Regulation D-2 - the Ballast Water Treatment Performance standard

REGULATION D-2

<table>
<thead>
<tr>
<th>Organism group</th>
<th>Regulation D-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plankton, < 50 μm in unhindered dimension</td>
<td>< 30 cells/μL</td>
</tr>
<tr>
<td>Plankton, 10-50 μm</td>
<td>< 10 cells/μL</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>< 250 cells/100 mL</td>
</tr>
<tr>
<td>Intestinal enterococci</td>
<td>< 100 cells/100 mL</td>
</tr>
<tr>
<td>Vibri cholerae</td>
<td>< 1 cfu/100 mL</td>
</tr>
</tbody>
</table>

Note: cfu = colony forming unit

IMO BWM CONVENTION COMPLIANCE TIMEFRAME

<table>
<thead>
<tr>
<th>Ballast capacity (m³)</th>
<th>Build Date</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,500</td>
<td></td>
<td>D-1 or D-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1,500 or ≤ 5,000</td>
<td></td>
<td>D-1 or D-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5,000</td>
<td></td>
<td>D-1 or D-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: EIF = Entry into force; * First Intermediate or Renewal Survey, whichever occurs first, after the anniversary date of delivery in the respective year.

OUTLINE

- Introduction – background issue
- International regulation – BWM Convention
- Ballast water treatment technology – current status
- Conclusions
Two generic types of process technology used in ballast water treatment: SOLID-LIQUID SEPARATION and DISINFECTION.

Physical solid-liquid separation
- Treatment:
 - Hydrocyclone
 - Surface filtration
- Chemical enhancement:
 - Coagulation / Flocculation

Disinfection
- Chemical treatment:
 - Chlorination
 - Ozonation
 - AOP
 - Chlorine dioxide
- Residual control:
 - Chemical reduction
- Physical enhancement:
 - UV irradiation
 - Deoxygenation
 - Cavitation

Physical solid-liquid separation
- Treatment:
 - Hydrocyclone
 - Surface filtration
- Chemical enhancement:
 - Coagulation / Flocculation

Presentation funded by APN
13

Physical:
- UV irradiation
- Deoxygenation
- Cavitation

Chemical enhancement:
- Coagulation / Flocculation

AOP TECHNOLOGY
- Methods: Filtration + \(-\)OH (AOP)
- Approval Status: Basic Approval for Active Substances, March 2012
- Operational Notes:
 - During ballasting - 50 μm self-cleaning automatic filter + \(-\)OH unit
 - During de-ballasting: Neutralization
TECHNICAL INFORMATION FOR BWMS

ELECTROLYSIS TECHNOLOGY

Methods: Filtration + electrolysis (sodium hypochlorite)

Approval Status: Final Approval for Active Substances, October 2010
Type Approval, March 2011, China (BalClor™ System)

Operational Notes:
During ballasting - 50 μm filter + electrolysis
During de-ballasting - Neutralization

The status of installation of BWMS on ships

<table>
<thead>
<tr>
<th>Construction year</th>
<th>Number of ships</th>
<th>Ballast water capacity (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BWMS installed</td>
<td>< 1,500</td>
</tr>
<tr>
<td>≤ 2009</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BWMS not installed</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>465</td>
</tr>
<tr>
<td>≥ 2009 and ≤ 2011</td>
<td>BWMS installed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BWMS not installed</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>122</td>
</tr>
<tr>
<td>≥ 2012</td>
<td>BWMS installed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BWMS not installed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

* On order book (Source: CCS Database)

CONCLUSIONS

- The uncertainty of the sampling and analysis method on BWMS used during port state inspection discourages shipowners from early installation before the entry into force of BWM Convention.
- The uncertainty of entry into force of the BWM Convention still remains, an early installation of BWMS will mean additional cost. The shipowners would certainly prefer a product that meets the latest requirements with better performance at a lower price.
- Alternative methods of ballast water treatment are also under development now, such as storing fresh water in ballast tank or flow-through ballast water system, which provide the shipowners with other choices.

Thank You!

Nahui Zhang, Zhitao Zhang
Institute of Environmental Engineering, Dalian Maritime University, China

Qingdao, China, October 24, 2012
Current Policies, Measures and the Challenges on Preventing and Controlling MIS Problems in Korea

2012. 11

Jae-Young Lee
Marine Ecology Division, MLTM

Contents
I. Legislations for MIS
II. Baseline Monitoring System for Marine Ecosystem
III. Specific Study and Research on MIS
IV. Discussions

Legislations for MIS

- Conservation and Management of Marine Ecosystem Act
 - Chapter III. Protection of M. Organisms
 - Article 23 (Management of Organisms Disturbing Marine Ecosystems) / including LMO (Living Modified Organisms)

- Marine Environment Management Act
 - Chapter III. Regulations for Prevention on M. Pollution
 - Article 22 (Prohibition of Discharges, etc. of Pollutants)

- Ballast Water Management Act
 - (Purpose) To control of the infusion of harmful aquatic organisms in to the ROK / conservation of the marine ecosystem / treatment, exchange, uptake, and discharge

Baseline Monitoring for Marine Ecosystem

What are Marine Invasive Species?
- non-native (or exotic) to the ecosystem under consideration and whose introduction causes or is likely to cause economic or environmental harm or harm to human health

What are Native(Endemic) Species?
- Establishing National Monitoring System First
- Then Establishing Monitoring System for M.Invasive Species
Baseline Monitoring for Marine Ecosystem

Marine
- MLTM: Ministry of Land, Transport and Maritime Affairs
 - National Investigation on Marine Ecosystem
 - National Monitoring on Marine Ecosystem
 - Korea National Long-term Ecological Research
 - Oceanographic and Fisheries Monitoring System

Terrestrial
- MIFAFF: Ministry of Food, Agriculture, Forestry and Fisheries
 - National Investigation on Coastal Wet-lands
 - Long-term Marine Ecological Research (R&D)

Baseline Monitoring for Marine Ecosystem (1st Phase since 2006)

- National Investigation on Marine Ecosystem
 - General Environment Condition
 - Benthos (Sediment, Rock, etc.)
 - Sea-weeds, algae, plants
 - Phytoplankton
 - Zooplankton
 - Nekton (Fish, cephalopods, Crustacea, etc.)

Baseline Monitoring for Marine Ecosystem (2nd Phase since 2009)

- National Monitoring on Coastal Wet-lands
 - Taxonomy / Distribution
 - Sediment (tidal-flat) Quality Condition
 - Biomass, Diversity, Richness, etc

Baseline Monitoring for Marine Ecosystem (Since 1961)

- Oceanographic and Fisheries Monitoring System
 - Taxonomy / Distribution
 - Sediment (tidal-flat) Quality Condition
 - Biomass, Diversity, Richness, etc
Baseline Monitoring for Marine Ecosystem

- Changes in Fisheries
- Baseline Monitoring for Marine Ecosystem funded by APN
- Distribution Changes
- Increase of Surface Sea-water Temperature
- Issue of Climate Change (Global Warming) / Invasive Exotic Species

Specific Study and Research on MIS

- Development of Risk Assessment Tool
- Procedures for Designation of Disturbing Organisms to Marine Ecosystem
- Study on the monitoring and Management for Disturbing Organisms
- Designation of 7 Candidate Disturbing Organisms to Marine Ecosystem in 2009
- 27 candidates of invasive species
- Developing Management Tool
- Study on countermeasure against Disturbing Organisms

- Monitoring on invasive species
- Monitoring on Spreading of MIS
- Active Monitoring on Biofouling
- Environment Risk Assessment

- Monitoring on Invasive Species
- 10 Ports (Twice a year)
- 6 Ports (Twice a year)
- Key Area (Twice a year)
- Key Area (Twice a year)
- Key Area (Twice a year)
Discussions

Seven Candidates for Disturbing Organisms to M. Ecosystem in ROK

Mytilus galloprovincialis
Balanus amphitrite
Balanus perforatus
Styela plicata
Ciona intestinalis
Ulva armoricana
Ulva fasciata

Baseline Monitoring for Marine Ecosystem

Long-term Marine Ecological Study (R&D)
<Function and Structure of Marine Ecosystem>

Definition of Marine Organisms
<Conservation and Management of M. Ecosystem Act>
- Marine Organisms / Migratory Marine Animals / Marine Mammals
- Marine Organisms under Protection
- Organisms Disturbing M. Ecosystems
 (a) flowing in from abroad artificially or naturally, which cause or are likely to cause disturbance to the balance of marine ecosystems
 (b) cause or are likely to cause disturbance to the balance of marine ecosystems, from among genetically modified organisms produced through genetic modification
- Harmful Marine Organisms: harmful to the life or property of people

Implementing Environment Risk Assessment / Management Response

- Designating Disturbing Organisms(or MIS) in Different Category(Grade)
- Applying Different Countermeasures
 (a) Routine Monitoring: to detect MIS before they become spread
 (b) Rapid Response to Eradicate or Control MIS (prevent spreading)
 (c) Long-term Response to Mitigate Impacts of MIS (after spreading)
- Control of Pathways that lead to the introduction, spread and re-invasion
Discussions

- Joint Project in Regional Level (e.g. NOWPAP)
 - D/B of species based information on the physiological and ecological attributes
 - Sharing experience and outcomes of risk profiling activities for species

THANK YOU
Current policies and measures on preventing and controlling MIS problems in Russia

Olga Ya. Semenikhina
Far Eastern Marine Research, Design and Technology Institute Vladivostok, Russia

The Russian environmental legislation:
- is based on the Constitution of the Russian Federation
- includes Federal Laws, Presidential Decrees, Governmental Orders, acts of federal executive bodies etc.
- contains principles and provisions of ratified international conventions and agreements
- comprises provisions of other international treaties if they do not contradict the state policy and national environmental legislation

- Russia has not specific legislative acts aimed at solving the issue of invasion of alien species including marine and coastal ones
- A national strategy for alien species is lacking too

The list of base legal acts applicable to marine and coastal invasive species

prohibits production, raising and use of plants, animals and organisms, which are not peculiar to natural ecological systems or artificially made, without development of the effective measures for preventing their uncontrolled reproduction, positive decision of governmental ecological expertise, and permission of federal authorities performing functions in the sphere of the environmental protection

prohibits the introduction of living organisms for their acclimatization on the territory of the state wildlife reserved areas and national parks
The list of base legal acts applicable to marine and coastal invasive species

allows to acclimatize the objects of the fauna which are new to Russia’s fauna, to move the objects of the fauna to new habitats, and to perform the hybridization of the animal world’s objects only with the permission of special authorized governmental bodies in protecting, controlling, and regulating the use of objects of the animal world and habitats and in presence of resolution of competent scientific organization taking into consideration the requirements for environmental safety.

obliged the persons who catch fish in the exclusive economic zone to not disturb the habitat of water living resources, to not illegally acclimatize the water living resources and to comply with the requirements of the quarantine regime.

obliged the persons who catch fish on the continental shelf to not allow degradation of natural habitats of water living resources, to not illegally acclimatize the water living resources and to comply with the requirements of the quarantine regime.

determines the acclimatization of water living resources as an activity on placement of water living resources of valuable species into water bodies with fishery capabilities and in creation of stable populations of these species in the water bodies with fishery capabilities, which have not been inhabited before by these species or have lost its value.

The order of measures for acclimatization of water living resources is defined by the federal executive body in the field of fishery.

allows the acclimatization, relocation, and hybridization of game resources to settle them in new habitat and provide the conservation their specific diversity only in presence of the permissions and on the base of scientifically substantiated recommendations.

“Order of measures for acclimatization of water living resources” approved by Order of the Federal Agency for Fishery of the Russian Federation N 433, dated May 6, 2010:
defines the order of measures for acclimatization of water living resources in water bodies with fishery capabilities.

obliged the persons who catch fish on the continental shelf to not allow degradation of natural habitats of water living resources, to not illegally acclimatize the water living resources and to comply with the requirements of the quarantine regime.

determines the acclimatization of water living resources as an activity on placement of water living resources of valuable species into water bodies with fishery capabilities and in creation of stable populations of these species in the water bodies with fishery capabilities, which have not been inhabited before by these species or have lost its value.

The order of measures for acclimatization of water living resources is defined by the federal executive body in the field of fishery.

allows the acclimatization, relocation, and hybridization of game resources to settle them in new habitat and provide the conservation their specific diversity only in presence of the permissions and on the base of scientifically substantiated recommendations.

“Order of measures for acclimatization of water living resources” approved by Order of the Federal Agency for Fishery of the Russian Federation N 433, dated May 6, 2010:
defines the order of measures for acclimatization of water living resources in water bodies with fishery capabilities.
The list of base legal acts applicable to marine and coastal invasive species

includes into the list of powers of the Federal Supervisory Natural Resources Management Service the issuance of the license (permission) to aclimatize the objects of fauna which are new to the fauna of Russia, to relocate the objects of the animal world to new habitats, and to hybridize the objects of the animal world which are enlisted in the Red book of the Russian Federation

The National Strategy of Biodiversity Conservation in Russia

This considers the control of use and distribution of alien species and genetically modified organisms as one of the priority directions of activity in providing the environmental safety of Russia.

The Environmental Doctrine of the Russian Federation

It determines principles, priorities and main trends of the Russia policy related to the biodiversity conservation, main lines of elaboration of legislative and other normative and legal acts, a system of organizational, administrative, financial, and economic mechanisms to ensure conservation and sustainable use of biodiversity.

It is a basis of elaboration of strategies of biodiversity conservation of regional importance, conservation strategies for particular species and ecosystems, and action plans and strategies of governmental, public and commercial institutions to the same effect.

The Strategy for Conservation of Rare and Endangered Species of Animals, Plants, and Fungi

approved by Order of the Ministry of Natural Resources and Environmental Protection of the Russian Federation N 323, dated April 6, 2004
The Environmental Doctrine of the Russian Federation

It is necessary to solve the following issues:

- to ensure the effective work of quarantine services, to prevent the invasion and unauthorized import to the territory of the country of alien species and genetically modified organisms as well as pests, carriers, and agents of diseases
- to perform the control of domestic acclimatization activities
- to develop and fulfill the system of arrangements for prevention of uncontrolled distribution of alien species and genetically modified organisms in natural environment and for elimination of the consequences of these processes
- to perform control and support of safe use of alien species and genetically modified organisms in economical turnover

The Strategy for Conservation of Rare and Endangered Species of Animals, Plants, and Fungi

It determines the development and realization of measures for prevention of uncontrolled distribution of alien invasive species and elimination of the invasion consequences as well as for prevention of penetration of living genetically modified organisms in natural environment and their further hybridization with populations conserved as the main means of conservation of rare and endangered species in natural habitats at a population level.

The Strategy for Conservation of Rare and Endangered Species of Animals, Plants, and Fungi

The following measures should be taken to fulfill these tasks:

- to reveal the main transit ways of invasive alien species penetration
- to draw up an inventory and monitoring of alien species
- to prevent a hybridization of individuals in populations conserved with those of closely related alien species
- to forecast and assess a risk of potential alien species invasions because of increasing interstate exchange
- to carry out an environmental risk assessment of application of living genetically modified organisms related to their probable contagiousness and pathogenicity as well as ability to compete and transmit genes to other organisms

Russia’s leading authorities responsible for introduction of marine and coastal species

The Government of the Russian Federation
- The Ministry of Natural Resources and Environmental Protection of the Russian Federation
- The Federal Agency for Fishery
- The Federal Supervisory Natural Resources Management Service
Russia and International programmes on MIS problems

- Russia was not a member of international programme “Removal of Barriers to the Effective Implementation of Ballast Water Control and Management Measures in Developing Countries” (the GEF-UNDP-IMO GloBallast Programme)
- Russia does not take part in new project “Building Partnerships to Assist Developing Countries to Reduce the Transfer of Harmful Aquatic Organisms in Ships’ Ballast Water” (the GEF-UNDP-IMO GloBallast Partnerships Project)

Russia and International Treaties on MIS problems

- In 2012 Russia was acceded to the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004
- Russia is also a Party to the International Convention for the Prevention of Pollution from Ships, 1973/1978 (MARPOL 73/78).

The large Russian ports in NOWPAP region

Only two Russian ports in NOWPAP region take measures to prevent ballast water discharge in a harbour:
- Before calling at the Prigorodnoye Port (Sakhalin) tankers should exchange ballast water in an open sea
- There are ballast water reception facilities at the oil-loading terminal at the port of Nakhodka
The gas tanker “Grand Elena” bounding for the Prigorodnoye Port (Sakhalin)

The Prigorodnoye Port (Sakhalin)

The oil-loading terminal at the port of Nakhodka (the Primorsky Territory)

What should Russia do to prevent and control MIS problems?

To enact the specific national legal acts as well as subordinate acts, regulations, guidelines and standards in the development of the international Convention for the prevention and liquidation of transfer of harmful aquatic species by ships:

- to develop systems of control and management of ballast water aboard the ship including the recruitments on composition of ballast water and procedure of its analytic control
- to organize the system to control and manage ballast water in the ports including procedures to inform touching at a port ships about the requirements regarding the management of ship water ballast as well as regulations of control by specialized executive bodies
What should Russia do to prevent and control MIS problems?

To enact the specific national legal acts as well as subordinate acts, regulations, guidelines and standards in the development of the international Convention for the prevention and liquidation of transfer of harmful aquatic species by ships:

- to determine areas for exchanging the ballast water;
- to organize monitoring of the marine environment over the ballast's discharge and exchange areas as well as in the ports' waters for early detection of alien species brought with the ships' ballast water

To implement mechanisms of control of potential invasions transferring by means of the biological ships' fouling

- To develop new normative and legal documents and amend the existing ones in the field of introduction of marine and coastal species
- To train personnel adequately (managers, scientists, taxonomists, technical experts and enforcement officers) and purchase facilities

What should Russia do to prevent and control MIS problems?

To create awareness of marine invasive species and their impacts

Russian Journal of Biological Invasions appeared since 2008 publishes scientific papers dealing with biological invasions of alien species in both terrestrial and aquatic ecosystems.
What should Russia do to prevent and control MIS problems?

- To elaborate the National Strategy on preventing and controlling the invasion of alien species including the marine and coastal ones.