

Scientific Capacity Building for Climate Change Adaptation in Rural Coastal Zones of Vietnam

Assoc. Prof. Dr. Do Minh Duc

Hanoi University of Science E-mail: ducdm@vnu.edu.vn

We start with...a concluding remark

Climate change are normally considered as a long-term problem, and it is. We have seen that local people and decision makers would like to care about "in sight" or short-term problems rather than something last for decade or century.

Project (CIA2009-06-Duc): Capacity Building for Adaptation to Climate Change in the Rural Coastal Zone of Vietnam

CONTENT

- Brief introduction about natural disasters in Vietnam
- Lessons learned from an actual disaster: indigenous knowledge can be effective for CC adaptation at a local scale
- Introduction of activities for capacity building
- Conclusions

1. Natural Disasters in Vietnam

Natural Disasters in Vietnam & Southeast Asia: Material & Human Costs

No	Country	Material Cost (in US\$ thousands)		Human Cost (In Fatalities)	
		1985-1994	1995-2004	1985-1994	1995-2004
1	Philippine	3,642,287	1,715,180	15,608	6,549
2	Indonesia	454,063	22,760,547	5,608	171,503
3	Vietnam	411,100	2,291,645	4,528	7,863
4	Thailand	3,076,667	1,447,344	1,459	9,649
5	Malaysia	11,500	18,025	406	602
6	Cambodia	0	156,542	656	613
7	Singapore	0	0	0	36

Figure 1_ Total losses in terms of people caused by disaster from 1995-2006 3500 3000 612 2098 2500 Loss of lives during the 2000 161 period 1995-2006 1243 907 1500 901 544 1000 522 522 500 8 518 389 275 390 186 278 6 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Data in Figure 1 illustrate the regular recorded deaths fr natural disasters, with the two highest recorded in 1997

> Damage of infrastructure, especially in 2006 (18.566 bil. VND - \$01 bil.)

2. Traditional experiences in coping with natural disasters

- People believe on experiences
- Living harmony with the nature
 - Keep the forest
 - Knowing the nature: suitable land-use based on the natural evolution such as sandy bars, meandering rivers, etc
- Simple warnings on the hazards

Flying in the middle - Cool

Flying high - Sunny

Flying low - Rainy

Behavior of dragonfly

Simple traditional experiences

Ba Be (Three Oceans) lake, Bac Kan province

Limitations of traditional experience

- People only take care of the phenomenon, they can not care of the process
- Low quality of early warnings
- No monitoring
- Poor large spatial management

EXPERIENCES FROM A DISASTROUS TYPHOON IN THE NORTH VIETNAM

+ Storm No.7 (Damrey) (26/9/2005) caused:

- 63 persons dead -Property loss: 3,509 bill. VND (220 mill. US\$), including:

Namdinh: 1889 bill. VND;

Ninhbinh: 203 bill.; Thanhhoa: 747 bill.

Thaibinh: 178 bill.;

Yenbai: 162 bill.;

Phutho: 97 bill.;

Hai phong: 53 bill.;

and Hoabinh: 50 mill.

Wind in the storm

Waves in the storm

Seawater overflows seadyke causing inundation in Hai Hau

What happened at the coast

A seadyke segment was destroyed

Temporary reinforcement of the seadyke

Lessons learned

Success

- Storm forecast plays a very important role for disaster mitigation.
- Residents had good caution on the disaster.
- People (over 100,000) were immediately evacuated, there was no fatality. The determination of central and local authority are highly appreciated.

Lessons learned

Un-success

- Seadyke was not well built.
- The infrastructure was not strong enough to cope with such an extreme climate event.
- Poor spatial management

SEADYKE SYSTEM IN THE COAST

the 20th century Location of dykes in the 19th century

Safer

Location of dykes in

Community-based "4 in-situ" Approach

- In-situ command;
- In-situ human forces;
- In-situ means, materials
- In-situ logistics

"Four in-situ" for each household

3. Activities for Capacity building for local people and scientists

.... By poster

Meeting, training course and working on the field

International workshops on Climate change adaptation

Conclusions

- The rural coastal areas are the most vulnerable to CC in Vietnam because of poor infrastructure, lack of awareness/knowledge, and high density of population
- Adaptation capacity can be developed by improving awareness of the community: Communicate by "local language", contribute to solve their own problems, and working closely with local authority
- International co-operation is a sound way for capacity development of scientists in climate change adaptation.

Thank you for your attention!