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ABSTRACT

Agriculture production largely depends on weather conditions and
is extremely prone to natural hazards. A more frequent and severe
occurrence of natural hazards such as storms and floods has put
food security at increased risk in recent decades. Evaluating the true
impact (loss and damage) of disaster in the agriculture sector is
very challenging. The present study focuses on using a randomized
fieldexperimental approachatbothdistrict andmicroagricultural-
plot levels to investigate the impact of floods on agricultural
yields in Sri Lanka and its effect on farmers who are averse to
taking risks and those who are willing to take risks. A detailed site
selection technique has been used in the study. The dissimilarity
in difference estimates indicates that flood-affected households
have experienced the loss of paddy and non-paddy crops. However,
the net loss of non-paddy is higher than that in paddy. Farmers
offset this loss by expanding crop cultivated areas that utilize
soaked fields after the flood, though there are risks of pest attack
and diseases. The results are not driven by household-specific
characteristics and are robust to several specifications, different
crop types and alternative flood-severity measures.
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HIGHLIGHTS

■ The study investigated the effect of floods on agriculture production and farmers’

copingmechanisms to loss.

■ An econometric model is a robust method to assess loss and damage in different

flood incidents and at different intensities.

■ The study utilized micro-plot level data to understand the actual effect of flood

hazard on farmers’ livelihoods.

1. INTRODUCTION
Climate change is inevitable and impacts critical

functions that are vulnerable to climate change,

such as the agriculture and water sectors. Recent

studies revealed that, due to climate change, the

world is moving towards scenarios of either too

much or too little water. Agriculture is an open

system and provides livelihoods for 60% of the

world’s population. Eighty-six percent (86%) of

production loss in Asia’s agriculture sector is due

to floods (FAO, 2017). More than 2.2 billion peo-

ple depend on agriculture for their livelihoods in

Asia (ADB, 2009). Thus, climate-induced natural

hazards, especially floods, are likely to considerably

affect the agriculture sector and the livelihoods of

the dependent population.

Due to the distinct climatic variability across the

Asian continent and its geophysical setting, most

countrieson theAsiancontinent are subject tonatu-

ral disasters. The frequencyof these extremeevents,

especially the hydro-meteorological events, has

shown an increasing trend (Thomas & López, 2015).

Amongst various hydro-meteorological hazards,

floodhazards are oneof the consequences of climate

change-induced extreme events. Considering the

effects of climate change-induced floods, South

Asia is one of the world’s most vulnerable regions

to floods (Mirza, 2011). Floods frequently occur

in these places, which were hit by higher mon-

soon precipitation levels. They can cause significant

damages to animal andhuman lives, property, crops

and infrastructure. The frequency, magnitude and

extent of extreme floods have been increasing in

South Asian countries. In the context of cropping

patterns, Asia accounts formore than 80%of global

rice production (Sekhar, 2018). Therefore, flooding

during themonsoonseasoncancausemajordamage

to crop yields, especially rice, which may have

secondary implications on several socio-economic

indicators, including food security of vulnerable

groups and public health in the flood plains.

From a disaster management perspective post-

disaster evaluation is carried out for damage and

loss, while from a climate change adaptation per-

spective, evaluation or assessment is carried out of

loss and damage. The basic difference between the

two is the former looks into estimating the dam-

age to economic and social infrastructure, human

lives etc. (Mckenzie, Prasad, & Kaloumaira, 2005),

focussing on the strategic impacts immediately

after a disaster strikes, while the latter focusses

on the potential of loss of economic flow and

possible damage to life and property that may

occur in areas vulnerable to disasters (OML Center,

2017) . In both cases, evaluation for the agriculture

sector is very challenging. Damage in the agricul-

ture sector accounts for the effects on standing

crop, farm machinery, irrigation systems, live-

stock shelters, fishing vessels, pens and ponds and

the economic cost to replace or repair. On the

other hand, loss, is caused by changes in economic

flow arising out of the decline in crop production,

decline in income from livestock product, increase

of input prices, reduction in overall agriculture
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revenue and unexpected immediate needs in post-

disaster events (Conforti, Markova, & Tochkov,

2020). Most of the studies or methodology devel-

oped so far for the agriculture sector concentrates

on post-disaster damage and loss evaluation. One

of the recent FAO methodologies looks into dam-

age and loss to production and damage to assets.

However, it has someboundary conditions (Conforti

et al., 2020) and applicable to post-disaster events.

The methodology considers damage and loss to

all the components of the agriculture landscape

and looks into damage into annual and perennial

crops. A number of other studies mainly carried

out in Europe looked into damage functions for

agriculture within the framework of an economic

appraisal of flood management projects. However,

the methods have concentrated mainly towards

damage to crops and less towards assets (Brémond,

Grelot, & Agenais, 2013). Some remote-based stud-

ies also evaluate post-disaster damage and loss to

the agriculture sector (Torbick, Chowdhury, Salas,

& Qi, 2017; Jin, Xiao, Dong, Qin, & Wang, 2015;

Ahmed,Rahaman,Kok,&Hassan, 2017; Singha,Wu,

& Zhang, 2016; Shrestha et al., 2017).

The present study aims to test the econometric

methodology for estimating loss and damage due

to floods in the agricultural sector to strengthen

early warning systems for floods and improve the

methodology for flood risk assessment considering

climate change. Thepresent study is part of research

conducted in three countries in Asia, namely Sri

Lanka, Nepal and Thailand. The paper presents the

outcome of the study carried out in Sri Lanka. The

key objective of this study is to investigate the effect

offloodsonagriculture production andhow farmers

cope with the losses caused by floods.

1.1. Study area background

Sri Lanka is an island located at the tip of

the Indian sub-continent surrounded by the Indian

Ocean. 77.4% of the Sri Lanka rural population of

Sri Lanka depends on agriculture as their major

livelihoodoption (Marambe, Silva, &Athauda, 2017)

and are frequently hit by natural disasters. Sri Lanka

has seen a steady rise in the frequency of floods over

thepast twodecades (IWMI,2018). Floodoccurrence

in Sri Lanka is almost regular in the recent decade

(every year over the last ten years),with an apparent

increase in the affected areas. Based on observation,

on average, fewer than five districts were affected

by floods during the period 1991 to 2000, which

doubles in the last decade. Studies on the effect of

floods on agricultural production in Sri Lanka is

limited. Thus, understanding the effect of floods on

agricultural production and how farmers respond to

the losses causedbyfloods is vital for policy-makers

and government institutions. The uniqueness of

the present study is that it utilizes natural field

experiment data at a micro-plot level that is less

likely to be disturbed by other factors, allowing

identification of the hazard’s actual effect on the

farmers’ livelihood.

2. METHODOLOGY
2.1. Flood hazard zonation

To develop a comprehensive flood model,

accurate topographic data with all land use,

elevations, stream cross-sections, dimensions,

and stream network levels are necessary. However,

during data collection, it was found that most

of the required data set was not available. Thus,

instead of a flood hazard mapping of the individual

districts, we considered the plot-wise water level

to measure severity. For the study, we employed

a water surface elevation calculation method

recommended by FEMA (2018). This method

calculates flood-water height at a resolution of

0.0002 arc degrees (i.e. around 22 meters) using

earth surface elevation data sourced from ASTER

Global Digital ElevationModel Version 2 (GDEM v2)

and the flood inundation extent map available from

the Disaster Management Centre, Government of

Sri Lanka.

2.2. Future precipitation projection

Future climate change scenarios can play a

vital role in preventing and mitigating hydro-

meteorological disasters (Islam, Rafiuddin, Ahmed,

&Kolli, 2008).Thedatageneratedbyclimatemodels

can be used as inputs for a number of physical,
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hydrological and agricultural models to predict

future climate change impacts. Using these models,

policy-makers can better develop evidence-based

and rigorous strategies and reduce the impact

of these disasters on communities Stainforth,

Downing, Washington, Lopez, and New (2007).

A thorough review was conducted to acquire

future climate change data with an acceptable

horizontal resolution toanalyze futureprecipitation

projection of Sri Lanka. NASA Earth Exchange

(NEX) models, which have future climate change

scenarios from21 Global CirculationModels (GMCs)

under two emission scenarios (RCP 4.5 and 8.5)

with 25 x 25 km2 resolution were identified. The

NASA Earth Exchange Global Daily Downscaled

Projections (NEX-GDDP) dataset comprised of

downscaled climate scenarios for the globe were

derived from the General Circulation Model (GCM)

runs conducted under the Coupled Model Inter-

comparison Project Phase 5 (CMIP5) (Taylor,

Stouffer, & Meehl, 2012) and across two of

the four greenhouse gas emissions scenarios

known as Representative Concentration Pathways

(RCPs) (Meinshausen et al., 2011). Out of the NASA

Earth Exchange (NEX) 21 models (CMIP5 models)

with RCP4.5 and RCP8.5 emission scenarios, 12

GCMs were found to be suitable for understanding

future change of annual mean temperature (∆T)

and percentage (%) chance of annual precipitation

(∆P%) over South Asia and especially Sri Lanka.

As the present study dealt with flood, identifying

extremewettest events in the future was important.

The models closest to the 10th and 90th percentile

of the change of annual mean temperature (∆T)

and% change of annual precipitation (∆P%) during

the 2030s, 2050s and 2080s in the two RCPs were

considered for the study as they represent extreme

conditions. The plots of projected changes in annual

average temperature and precipitation by 2080 are

given in Figure 1.

A similar analysis to identify the suitable

model depicting the wettest/ hottest extreme for

the northeast monsoon season and south-west

monsoon season for 2080 time period as well

annual, south-west monsoon season and north-

eastmonsoon season for 2030 and 2050 time period

was carried out. The three-time periods’ analysis

results identified that the CSIRO-Mk3-6-0 model

shows extreme conditions (wettest/hottest) over

Sri Lanka during all time horizons with RCP4.5 and

RCP8.5 scenarios.

2.3. Pilot site selection

A standard randomized sampling technique

developed by Deakin University in Australia was

employed to select the pilot sites, including flood-

affected areas (treatment site) and non-flood

affected areas (control site). The project team used

an experimental design to conduct the two surveys:

one baseline survey and another endline survey in

areas affectedby climate-inducedfloods (treatment

site) and non-affected areas (control site). Based on

historical climate information, the project team

identified climate-induced flood hazard regions

termed as ‘treatment areas’ and the other part of

the country as ‘comparison areas’. Sri Lanka has

25 districts in total, which can be categorized into

three zones: wet, intermediate, and dry regions.

Based on the previous 25 years of flood history,

districts are divided into more-likely-affected-

group, which comprise those with more than four

years of flood incidents and the other group, namely

less-likely-affected-group for the districts with

less than four years of flood experience. Based on

this categorization, 11 districts fall into the affected

group leaving 14 remaining districts in the non-

affected group. The research design randomly

chose two potential treatment districts from the

affected group and two control districts from the

non-affected group. The two districts selected for

the affected group were from the wet zone as all

the 11 affected districts were from the wet zone,

while the two districts selected from the control

group was one from the wet zone and one from

the intermediate zone as the 14 unaffected districts

were from all the three zones. The districts from

the dry zone were not considered as they had an

ancient irrigation system in place to compensate

for rainfall deficit. All four districts thus had only

40 Basnayake et al.
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FIGURE 1. Identification of model depicting the extreme projected annual average temperature and precipitation by 2080 over Sri Lanka

(10th and 90th percentile).

FIGURE 2. Projected Change in annual average precipitation over Sri Lanka for 2030, 2050 and 2080 time period derived from

CSIRO-Mk3-6-0 for the RCP4.5 scenario.
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rainfall dependency for agriculture.

The unit of areas was defined at the polygon

level and spatially clustered based on its potential

for paddy crop arability along with its level of

climate-induced flood hazard risks. The general

delineation of polygons into treated and control

cohorts was also identified in a similar way. In par-

ticular, the following stepswere taken in identifying

the study area:

1. Collecting district level historical flood

data (affected area and timeline of flood

events, number of casualties, and damage

and losses);

2. Selecting four districts in each country and

dividing all of the four districts into two

groups: experiencing floods (treated dis-

tricts) and never exposed to floods (control

districts);

3. Collecting the land use/landcover data in GIS

format (shapefiles) that includes informa-

tion such as arable/farmland, type of crops

cultivated in each unit of land, etc.

4. Overlaying district administrative boundary

on the land use map;

5. Within the list of treated districts (referring

to selection criterion 2) in the zone, two

districts were picked randomly;

6. For each of the two districts selected as per

criterion 5, it was ensured that:

(a) The number of rice plots is equal;

(b) Those rice plots’ total area should sum

up to a similar figure even though there

could be variations.

7. Information was also collected on the char-

acteristics for each of the randomly selected

rice plots in criterion 6 on the size of cul-

tivated land, proximity to water body, for-

est land, elevation/ruggedness, rainfall and

temperature statistics, socio-economic sta-

tus of the households, and on the whole,

paddy-related data.

Another two districts were also randomly selected

as control districts tomeet the criteria asmentioned

below:

1. Two districts were selected as non-flooded

districts (control);

2. The selection of the rice plots should be such

that they resemble approximately the size of

the treatment plots;

3. The number of selected rice plots for

treatment and control is kept equal and

considers the geographic, topographic,

demographic, economic, and socio-

economic attributes the same for all the

districts.

Based on the above, 125 rice plots were considered

from each district randomly covering both control

and treatment groups. Two surveyswere carried out

(baseline survey and end-line survey) between 2016

and 2017. Based on the number of plots affected,

the treatment group included 251 plots affected by

floods, while the control group comprised 697 plots

that were not affected by floods in any of the two

years. Galle and Gampaha were the two affected

districts, while Kegalle and Monaragala were the

two unaffected districts (Figure 3).

FIGURE 3.Maps showing the pilot sites in Sri Lanka.
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2.4. Econometric model on loss and damage in the
agriculture sector

The econometric model used difference-in-

difference (DD) framework (Ashenfelter & Card,

1985; Bertrand, Duflo, &Mullainathan, 2004;Wing,

Simon, & Bello-Gomez, 2018) to evaluate the effect

of the flood on crop production (Merz, Kreibich,

Schwarze, & Thieken, 2010). The DD framework

compares the average changes in the outcome

variables for the treatment group and the control

group before and after flood. The Standard DD

equation is as follows:

Yit = αTreatmentit + βAftert+

γTreatmentitAftert + ϵit
(1)

where subscript i indicates individual (household/-

plot) and subscript t denotes year. Yit is the out-

come of interest of individual i at time t. Our pri-

mary outcomes of interest include crop production

indicators: crop yield, crop output, and crop area.

Treatmentit is an indicator equal to 1 for individuals

that belong to the treatment group in year t and

0 otherwise. Aftert is an indicator for timing of

the treatment, β is the difference in the outcome

between the two periods, before and after floods,

the coefficient of interaction between these two

variables (Treatmentit and Aftert), γ, measures the

effect of floods and ϵit is a composite measurement

error. As districts were chosen randomly, it is likely

that several indicators such as paddy yield or cov-

erage area significantly differ between treatment

and control plots before floods. To reduce the bias,

district fixed effect was introduced in the model

modifying the Standard DD equation

Yit = ad + αTreatmentit + βAftert+

γTreatmentitAftert + ϵit
(2)

where ad is the district fixed effect. Similarly, we

incorporate covariates representing household/plot

characteristics and inputs for production function

into the model by considering the farmer’s reaction

to flood where they may adjust the production

inputs to offset the negative effect of floods. Thus,

the equation was modified to

Yit = ad + αTreatmentit + βAftert+

γTreatmentitAftert + Zit + ϵit
(3)

where Zit is a set of household/plot characteristics

and inputs that are appropriate for each of the out-

comes. Thus, for the yield equation, we controlled

the household’s endowment, including total land

area owned (in log), household size (total household

members), crop cultivation period (inmonths), and

fertilizer use (in log). Crop cultivated area is an

additional control when the outcome is crop output.

For theoutcomebeingcroparea, cropoutput (in log)

is added along with the set of controls in the yield

equation. A variation of equation 3 is also usedwhen

we include flood fixed effect in the model whenever

the coefficient of flood-water height or log (flood-

water height) is statistically different from zero,

suggesting that the two groups are permanently

different. The coefficientwith floodfixed effect is as

follows:

Yit = ad + bf + αTreatmentit + βAftert+

γTreatmentitAftert + Zit + ϵit
(3’)

where bf is the coefficient with flood fixed effect.

Finally, standard errors are clustered at the house-

hold/plot level in our estimation.

3. RESULTS AND DISCUSSION
A number of components were considered for

the present study. The flood inundation extent and

flood height were measured for each plot using the

flood extentmap available from the Sri Lankan Dis-

aster Management Department and ASTER GDEM

v2. Historical climate data analysis enabled us to

select the pilot districts (treatment and control) in

the three zones. The future precipitation projection

using the NEX-GDDP model shows that these areas

are likely to be affected in the future. Thus, the

econometric model tested in the project area can

effectively be used to estimate loss and damage.

A number of scenarios were considered for

loss and damage assessment using the econometric

model. The descriptive statistics and the changes in

households/plots’ characteristics before and after

the flood hazard for treatment plots and control

plots are given in Table 1 . Farmers were grouped

into two (a) group averse to risk-taking and (b)

farmers who show a willingness to take risk.
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Treatment plots Control plots Treatment-

control

Before (2015) After (2017) Differences

(2)-(1)

Before (2015) After (2017) Differences

(5)-(4)

Before

(1)-(4)

(1) (2) (3) (4) (5) (6) (7)

Panel A: Whole sample

Demographic characteristics:

Household size 4.29 4.31 0.02 4.41 4.45 0.04 -0.12

Household head age 54.51 56.77 2.26 55.78 57.77 1.99∗∗ -1.27

Number of males in household 2.08 2.07 -0.01 2.23 2.26 0.03 -0.15

Household members aged 50+ 1.75 1.73 -0.02 1.75 1.73 -0.02 0

Literate 1.00 1.00 0 1.00 1.00 0 0

Economic characteristics:

Land area own (m2) 8960.80 8677.38 -283.42 7949.55 8496.24 546.69 1011.25

Weekly income (USD) 48.23 51.07 2.84 49.48 49.45 -0.03 -1.25

Agriculture-related characteristics:

Paddy production (m2) 2443.82 2299.69 -144.13 2748.64 2876.45 127.81 - 304.82

Paddy production area (m2) 6881.7 7071.4 189.7 5770 6576.6 806.6 1111.70

Paddy yield (kg/m2) 0.37 0.34 -0.03 0.55 0.54 -0.01 - 0.18∗∗∗

Non-paddy production (kg/m2) 4540.47 5514.93 974.46 4044.69 4994.54 949.85 495.78

Non-paddy production area (m2) 3524.88 5600.78 2075.9 5803.17 6300.60 497.43 - 2278.29

Non-paddy yield (kg/m2) 1.89 0.99 -0.9 1.84 1.84 0 0.05

Cultivation duration (month) 7.10 7.12 0.02 7.33 6.79 -0.54 - 0.23

Volume of fertilizer (kg) 632.57 791.80 159.23 558.32 754.42 196.1 74.25

Number of crops produced (kg) 1.31 1.40 0.09 1.36 1.25 -0.11∗∗∗ - 0.05

Behavioural characteristics:

Willingness to take risk 5.82 5.98 0.16 7.23 7.03 -0.2 -1.41∗∗∗

Flood-related characteristics:

Flood exposure dummy 1.00 1.00

Flood water height in plots (m2) 3.69 4.35∗∗∗

Panel B: For DD Equation – Averse to risk-taking sample

Paddy production (kg/m2) 2142.40 1694.70 -447.70 1498.30 1865.10 366.80 644.10

Paddy production area (m2) 6964.50 5342.80 -1621.70 4118.40 4244 125.60 2846.10∗∗∗

Continued on next page
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Table 1 continued

Paddy yield (kg/m2) 0.326 0.331 0.005 0.432 0.455 0.023 -0.106∗∗∗

Non-paddy production (kg/m2) 3441.75 2739.12 -702.63 2637.29 3135.41 498.12 306.34

Non-paddy production area (m2) 3598.86 4079.78 480.92 4092.60 3801.76 -290.84 -202.90

Non-paddy yield (kg/m2) 1.09 0.58 -0.51 1.33 2.29 0.96 -1.20

Flood water height in plots (m) 3.58 4.28∗∗∗

Panel C: For DD Equation -Willing to take risk sample

Paddy production (kg/m2) 2865.80 2711.40 -154.40 2995.90 3063.90 68 -130.10

Paddy production area (m2) 6765.80 8247.90 1482.10 6096.80 7009 912.20 669

Paddy yield (kg/m2) 0.441 0.343 -0.098∗∗∗ 0.573 0.558 -0.015 -0.132∗∗

Non-paddy production (kg/m2) 5686.96 7262.67 1575.71 4256.56 5357.82 1101.26 1430.40

Non-paddy production area (m2) 3447.69 6614.78 3167.09 6055.25 6772.60 717.35 -2607.56

Non-paddy yield (kg/m2) 2.73 1.26 -1.47 1.92 1.75 -0.17 0.81

Flood water height in plots (m) 3.82 4.39∗∗

TABLE 1. Descriptive statistics of treatment plots and control plots.

Notes: Panel A shows the average characteristics and the change in the mean value of the treatment and control households before and after the flood (the baseline survey was conducted just before the 2016 flood

while the end line survey collected data of the same plots/households one year after flood occurrence). It also provides the differences before the flood strikes for treatment and control plots (column (7)). Household

size is the number of householdmembers; literacy variable equals 1 if the household head is literate and zero otherwise. Panel B and C shows statistics of paddy and non-paddy production variables before and after

a flood for two sub-samples, risk-taker vs. risk-averse groups. Panel B is the treatment group comprises of flood-affected plots with households’ willingness-to-take-risk at least 6 (risk-taker) while the control

group includes those not affected by floods and are risk-taker. Panel C is the treatment group of farmers who are flood-affected and are risk-averse (willingness-to-take-risk is below 6). Non-affected farmerswith

willingness-to-take-risk less than 6make up the control group in this case. Statistical differences are marked as ‘*’ (*p<0.1, **p<0.05, ***p<0.01).

https://doi.org/10.30852/sb.2021.1499
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3.1. Effect of the flood on paddy yield (whole
sample

The first model run was for the entire sample,

including both groups. The first regression in each

block (corresponding to Equation (1)) controls for

only flood shock variables. In the second regression

of each block (corresponding to Equation (2)), dis-

trict fixed effect is added to eliminate the variation

from permanent differences between control and

treatment districts that may bias the estimate. The

third regression in each block (corresponding to

Equation (3)) includes a set of household character-

istics and paddy production inputs. It is important

to highlight that since the district fixed effect is

controlled for all three blocks, there is no difference

between the control and treatment groups. It was

found that on average if all else is equal, 1 meter of

flood-water height in plots causes 2.2% yield loss

which is equivalent to a loss of 44,220 kg paddy

output for 1 km2 of paddy production area (see

Table 2).

3.2. Effect of flood on non-paddy yield

When considering the effect on non-paddy

yield, the two groups were considered separately.

It was observed that a considerable loss of non-

paddy yield of about 84% for farmers averse to

risk-taking using our preferred measure of floods

(flood-water height in plots). The estimate of yield

loss is significant at 5% level for all three flood

measures. On the other hand, the loss is around

half for the farmers willing to take the risk though

yield loss estimate is not significant for all three

flood measures. Thus, it can be inferred from our

results that farmers who are averse to risk-taking

give priority to paddy while cultivating non-paddy

crops on riskier plots. Hence, they can avoid yield

loss for paddy, which comes at the expense of a

large loss for non-paddy crops. On the other hand,

farmers willing to take a risk tend to be more open

to growing non-paddy crops in less risky plots and

paddy crops in riskier plots.

3.3. Effect of flood on paddy and non-paddy
production

The study also looked into the production of

paddy and non-paddy crop besides the yield. It

was found that if the estimate includes all the

three conditions, district fixed effect, household

characteristics and production inputs and effect

of the flood on crop output is evaluated with the

assumption that crop production area is kept the

same as without flood incidents. The effect of the

flood on production output is very similar to the

effect on yield function. Flood has a negative and

significant effect on both paddy output and non-

paddy output in the whole sample. While consider-

ing farmers averse to risk-taking, there is no effect

on paddy output while it is huge for non-paddy

output. In contrast, for farmers willing to take a

risk, a large and significant adverse effect on paddy

output is observed, while the effect on non-paddy

output is large though insignificant.

The present study shows that the flood causes

output loss for both paddy and non-paddy crops.

Farmers who are reluctant to take risk shoulder the

loss of both paddy and non-paddy crop production,

while farmers willing to take risk incur the loss

of paddy production. They all respond to the loss

by expanding production area, with the former

pursuing non-paddy production while the latter

favouring paddy crop production. On the one hand,

though post-flood high soil moisture content is a

good pre-condition for cultivating crops, the risk

of pest, diseases, and crop failure is more likely to

occur due to changes in soil biotic conditions caused

by the flood.

Post-disaster damage and loss evaluation is

generally carried out using remote sensing data due

to wide coverage and shorter temporal resolution.

Still, the data used in the studies so far are mainly

RADAR data or MODIS Data or Landsat data, which

have a very coarse resolution. As a result, the

damage and loss can be analyzed up to a certain

scale. On the other hand, review of a number of

other studies onflooddamage toagriculture showed

that damage and loss assessments have been carried
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Floodmeasures I: Flood dummies II: Flood-water height in plots

Equations (1) (2) (3) (1) (2) (3)

Flood dummy -

0.33***

0.056 0.053

(5.81) (0.84) (0.80)

After -0.023 0.031 0.046 -0.024 0.025 0.038

(0.67) (0.93) (1.47) (0.74) (0.77) (1.23)

Flood dummy× After -0.035 -0.092* -0.13**

(0.70) (1.84) (2.50)

Paddy cultivation duration 0.021 0.021

(1.64) (1.63)

Log (Fertilizer use) 0.065** 0.066**

(2.22) (2.23)

Log (Land area owned) -0.16*** -0.17***

(5.03) (5.08)

Household size -0.026 -0.027

(1.49) (1.55)

Flood-water height -0.085*** -0.00085 -0.0023

(6.05) (0.05) (0.15)

Flood-water height× After 0.0063 -0.016 -0.022*

(0.52) (1.28) (1.75)

r2 0.069 0.22 0.27 0.070 0.22 0.27

N 863 863 796 863 863 796

Equation includes

District Fixed Effect No Yes Yes No Yes Yes

Plot Level Controls No No Yes No No Yes

Notes: This table reports regression result with outcome being log of paddy yield using a different set of controls for each of the flood

measures. In the first column of each block, only flood-related variables are controlled. The second column adds a district fixed effect,

while the last column incorporates a set of household characteristics and paddy production inputs. Standard error is clustered at the

plot level. T-statistics is in parenthesis. Statistical differences are marked as ‘*’(*p<0.1, **p<0.05, ***p<0.01).

TABLE 2. Effect of floods on paddy yield

out to evaluate direct instantaneous, direct induced

and indirect damage to agriculture (Brémond et al.,

2013). The analysis of studies by Brémond et al.

(2013) found that damage function of crops need

to be improved and vegetative growth stage of

crops require consideration as damage to crops and

resulting loss are likely to be different at different

stages thus influencing the crop damage function.

The presentmethodology is not applicable for post-

disaster damage and loss. Rather, it estimates the

potential loss and likely damage in the future based

on past events. The loss and damage assessment

carried out in the present study also took a hybrid

approachwhere flood inundation has been analyzed

from satellite sensor data (SRTM), but the potential

loss and damage assessment was carried out at

the household level based on the exposure of the

plot owned by the farmer to flood. The present

study is a panel-based statistical approach where

the challenge of unobserved omitted variables in

identifying a causative relationship betweennatural

disasters and agricultural outcomes are taken care

of by using a panel-based dataset. As the data

used is at the micro-plot level, it is less likely

to be disturbed by other factors allowing for the

identification of the true effect of flood damage

on production. The present study also looked at

the farmers’ behavioural and demographic charac-

teristics as part of the panel data set, which has

not been considered in other studies. Uncertainty

is an integral part of any model technique. In the

DD Framework, the major source of uncertainty is

sampling error. The standard randomized sample

technique was thus used to reduce the uncertainty

in sampling. Additionally, the current study did not

consider other agriculture components except the
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paddy and non-paddy crops.

4. CONCLUSION
Agriculture production largely depends on the

weather condition and is extremely prone to natural

disasters and hazards. A more frequent and severe

occurrence of natural disasters such as storms and

floods in recent decades has put food security

at an increased risk and undermine farmers’ life

satisfaction. Farmers in less developed countries are

most vulnerable to natural disasters and hazards

due to lack of support from the government and

limited resources to overcome the losses. Sri Lanka,

a developing country with the majority of the rural

population (77.4%) dependent on agriculture, is hit

by annual flood with an increase in the affected

area in the recent decade. This study investigates

the effect of floods on agriculture production and

farmers’ response toflood incident using data at the

plot level. Our research design applies the removal

of potential bias caused by the difference between

treatment and control group at the district level,

generated a sample equivalent to that from a ran-

domized control trial. This allows us to quantify the

causal effect of floods using the DD framework. The

research concluded the following: 1) The estimate

shows a significant loss in paddy yield of 44,000

kg/km2 owning to floods in the studied years; 2)

the farmers who are averse to risk-taking give

priority to paddywhile cultivating non-paddy crops

on riskier plots; and 3) in contrast, farmers willing

to take a risk, tend to bemore open to growing non-

paddy crops in less risky plots.

Farmers offset this loss by expanding crop

cultivated area utilizing the soaked field after the

flood though there are chances of pest attack and

disease. The study also shows that historical climate

information, plot-level flood-water height estima-

tion using GDEM v2, and flood extent information

can be useful as an input to the econometric model

to estimate potential loss and damage. The study

opens an opportunity for future research on the

usage of future precipitation projection information

in estimating future floods and using the informa-

tion to estimate likely loss and damage to enable

better adaptation and mitigation measures as well

as include other components of the agriculture

sector suchas livestock,fisheries, etc. As thepresent

model is robust enough to different flood incident

measures/intensity, it may also be tested in other

flood-prone agriculture dominant economies.
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