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Integrating ALOS-PALSAR and ground based observations 
for forest biomass estimation for REDD+ in Cambodia

Forest cover change is an important aspect of global environmental change 
because of rapid deforestation in tropical areas. Anthropogenic activities 
and natural phenomena can cause deforestation and forest degradation that 
adversely impacts biodiversity and ecosystem services. In 2008, the United 
Nations Convention on Climate Change (UNFCCC) programme on Reduc-
ing Emissions from Deforestation and forest Degradation (REDD+) was 
launched to curb deforestation and forest degradation in tropical countries. 
The UNFCCC COP21 Paris Agreement highlighted “encouragement for Parties 
to implement existing frameworks for a REDD+ mechanism”. For effectively 
implementing a REDD+ mechanism, a robust cost-effective Measurement, 
Reporting and Verification (MRV) system should be developed. Geospatial 
data has been key for the implementation of REDD+ MRV system. In this 
research, aboveground biomass (AGB) of forests in Cambodia was estimated 
using a bottom-up approach based on field estimated biomass and PALSAR 
backscattering (σo) properties. The relationship between the PALSAR σo HV 
and HH/HV with field-based biomass was strong with adjusted R squared 
(R2

adj) = 0.66 and 0.54, respectively as compared with HH polarization. 
PALSAR estimated biomass shows better results in deciduous forests as 
compared with evergreen forests of Cambodia because of less saturation of 
L-band SAR data in deciduous forests.
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HIGHLIGHTS

 » PALSAR is effective in 
monitoring biomass and its 
changes without limitations 
of clouds

 » National level biomass 
information is useful in 
implementing sustainable 
forest management practices 
required for REDD+

 » Empirical, remote sensing 
and modelling studies can 
be useful for generating 
biomass information for 
REDD+ MRV implementation
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1. INTRODUCTION

Forests play an important role in global carbon 
cycling as they are potential carbon sinks and sources 
to the atmosphere CO2 (Muukkonen & Heiskanen, 2007; 
Pachauri et al., 2014). Tropical forests store about 40% 
of terrestrial carbon (Page et al., 2009). According to the 
FAO (2015), total forest area declined by 3% from 4128 M 
ha to 3999 M ha in 1990 and 2015, respectively. Natural 
forest area declined from 3961 M ha to 3721 M ha between 
1990 and 2015, while planted forest increased from 168 M 
ha to 278 M ha. The Intergovernmental Panel on Climate 
Change (IPCC) has pointed out that reducing or pre-

venting deforestation is a mitigation option for climate 
change (Angelsen A., 2010; Pachauri et al., 2014). The 
Clean Development Mechanism (CDM) under the Kyoto 
Protocol is not sufficient to mitigate climate change 
by adopting afforestation and reforestation because 
deforestation releases more greenhouse gases (GHGs) 
than afforestation and reforestation (Schoene, 2005). 
Forest conservation is only one of many possible options 
by which permanent land-use change may be avoided 
(Skutsch et al., 2007). REDD+ prevents carbon emissions 
being released into the atmosphere by conserving exist-
ing carbon stocks. The basic idea of REDD+ is to reward 
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individuals, communities, projects, and countries that 
reduce GHG emissions from forests (Angelsen, 2008). 
Implementation of REDD+ policies require effective 
biomass and deforestation monitoring systems that are 
reproducible, provide consistent results, meet standards 
for mapping accuracy, and can be implemented at the 
national level (DeFries et al., 2007).

There are various methodologies for biomass esti-
mation but, currently, no methodology gives a clear view 
on how to report carbon pools and their fluxes and the 
resulting accuracy and uncertainty of biomass moni-
toring. Therefore, the need for biomass mapping has 
become urgent in order to assess and produce data on 
forest carbon stocks and change in stocks on a national 
level (Maniatis & Mollicone, 2010). Van der Sande et al. 
(2017) studied the strength of empirical, remote sensing 
and ecosystem modelling approaches in evaluating 
biodiversity effects on carbon storage in a case study 
in lowland Bolivia. They proposed the integration of all 
three approaches to climate change mitigation. Global 
biomass map (Saatchi et al., 2011) shows uncertainties of 
about 30-50% in Indo-China countries. Therefore, there 
is a need to develop a regional or national level biomass 
map to overcome limitations of global biomass map. 
National or regional biomass information can be useful 
to design policies for a particular region based on coun-
try-specific information.

The most accurate way of calculating biomass is 
destructive sampling and forest inventory data using 
allometric equations (Anitha K. et al., 2015). However, 
these traditional techniques are often time-consuming, 
labour intensive, and difficult to implement, especially 
in remote areas, and they cannot provide the spatial 
distribution of biomass in large areas (Avtar, Takeuchi, 
& Sawada, 2013). Moreover, forest inventory databased 
methods cannot give historical information about forest 
biomass if there were no existing forest inventory data. 
To overcome this limitation most of the scientists suggest 
using remote sensing satellite supplemented with low 
forest inventory data. This can provide a cheap and 
fast estimation as well as historical information about 
forest biomass at regional or local scale (Avtar, Suzuki, 
Takeuchi, & Sawada, 2013). Most remote sensing tech-
niques are based on optical and synthetic aperture radar 
(SAR) systems. Gizachew et al. (2016) used Landsat-8 to 
estimate living biomass in low woodlands of Tanzania 
and concluded that Landsat-8 based NDVI is a useful 
parameter to estimate biomass in low biomass regions. 
The disadvantages of optical sensors are not related to 
plants’ structural parameters, acquisition of cloud-free 
images in tropical countries, the low saturation level of 
spectral bands and various indices (Gibbs, Brown, Niles, 
& Foley, 2007). Therefore, dependency on SAR sensors 

has increased because SAR can provide data without 
limitation of clouds and solar illumination. Penetration 
capability of SAR allows the extraction of information 
about plants’ structural parameters and hence has the 
ability to measure biomass (Lu, 2006).

The successful launch of the Advanced Land Observ-
ing Satellite (ALOS) PALSAR in 2006 has increased the 
potential to use radar to measure biomass. This is the 
first long-wavelength (L-band, 23-cm wavelength) SAR 
satellite sensor to have the capability of collecting single, 
dual, full and Scan-SAR mode with cross-polarized (HV, 
horizontal-transmit, vertical receive) and co-polarized 
(HH, horizontal-transmit, horizontal receive; VV, verti-
cal-transmit, vertical receive) data. The HV polarization 
is useful because it interacts with trees and produces a 
strong response (Mitchard et al., 2011).

Various studies have analyzed the retrieval of 
Above Ground Biomass (AGB) using radar data in trop-
ical regions (Mitchard et al., 2009; Gama, Dos Santos, 
& Mura, 2010; Englhart, Keuck, & Siegert, 2011). Longer 
wavelength SAR systems have proven to be more useful 
because of an increasing backscatter range with chang-
ing biomass (Dobson et al., 1992; Luckman et al., 1997; 
Castro, Sanchez-Azofeifa, & Rivardastro, 2003; Lu, 
2006). These biomass estimations are valid up to a 
certain threshold where saturation occurs, (Lucas et al., 
2007; Mitchard et al., 2009). In general, the saturation 
level of SAR depends on the frequency of SAR systems 
as well as forests structure (Imhoff, 1995). The sensi-
tivity of SAR decreases with the increase of biomass in 
the dense forests (Kasischke, Melack, & Dobson, 1997). 
In recent studies use of airborne laser scanning is also 
one of the effective methods to monitor above ground 
biomass precisely, however, use of airborne laser scan-
ning is expensive and can’t cover global data (Chen, 
McRoberts, Wang, & Radtke, 2016; Ene et al., 2017). This 
study is an attempt to overcome the saturation problem 
of PALSAR appropriately. The main aim of this study is 
to estimate national level biomass using PALSAR mosaic 
data based on a bottom-up approach to support REDD+ 
and forest management practices in Cambodia.

2. METHODOLOGY

2.1 Field data

The study area was visited in November 2010 and 
January 2011 to collect forest inventory data (Diameter at 
Breast Height (DBH), tree height, species, tree density, 
and forest types). Seventy-nine sampling plots were 
selected based on analysis of forest cover map, Landsat 
data, and SRTM-DEM data. We selected homogeneous 
forests for in-situ data collection. During the selection 
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of sampling plots spatial homogeneity, eco-climatic 
conditions and forest types were considered. Most of the 
sampling plots were selected in the plane area to mini-
mize the topographic effects of SAR data. 30×60 m and 
30×30 m sampling plots were used in deciduous and ever-
green forests respectively depend on the homogeneity of 
the site. The sampling plots were identified using GPS 
(Garmin 62s) in the field. We used the Cambodia-based 
allometric equation developed by Kiyono et al. (2010) as 
previous studies mentioned that a country-specific allo-
metric equation is better than a global allometric equa-
tion (Angelsen, 2008). To check the accuracy of biomass 
estimation, we compared the allometric equation-based 
biomass of Kiyono et al. (2010) with that of Brown (1997) 
and Kenzo et al. (2009) allometric equations-based 
biomass. The comparison indicates that the allometric 
equation-based biomass estimation by Brown (1997) 
shows over-estimation and that by Kenzo et al. (2009) 
shows under-estimation. Therefore, we decided to use 
the allometric equation by Kiyono et al. (2010) allomet-
ric equation. The biomass value obtained from each tree 
were summed and normalized algebraically to calculate 
the total biomass of each plot in t/ha. In the estima-
tion, we considered trees ≥ 10 cm DBH, which are likely 
to comprise of most of the woody biomass of the plots. 
The common plant species in Cambodia are Aporusa fil-
icifolia (Bail Krong), Dipterocarpus tuberculatus (Roxb 
Khlong), Swietenia macrophylla (Krobaek), Garcinia 
schomburgkiana (Tro-moung/Tro-meng), Ardisia 
helferiana (Chhom pou prey), Cananga latifolia (Chke 
sraeng), Dacrydium elatum (Srol kraham). Table 1. Sows 
the major tree species in Cambodia and their inventory 
parameters in some of the field plots. The following allo-
metric equations were used (Kiyono et al., 2010):

Leaf biomass (kg) = 173 × (BA0.938)                (1)

Branch biomass (kg) = 0.217 × (BA1.26) × (D1.48)     (2)

Stem biomass (kg) = 2.69 × (BA1.29) × (D1.35)             (3)

where BA stands for Basal area and D is stem density.

2.2 Satellite data

Forest cover map based on ASTER 2005 data, SRTM-
DEM data, Landsat ETM+ 2009, 2010 data were used to 
select the sampling sites. PALSAR FBD 50 m mosaic data 
was downloaded from the Japan Aerospace Exploration 
Agency (JAXA). The processing of PALSAR data was 
started with the terrain corrections using methodology 
by Akatsuka, Takeuchi, Rakwatin and Sawada (2009) 
and Shimada (2010) in order to minimize the topo-

graphic effects of PALSAR in a mountainous area. The 
digital number (DN) was converted to the normalized 
radar cross section (NRSC, or σº). The backscattering 
coefficient was calculated using the following equation 
(Shimada, Isoguchi, Tadono, & Isono, 2009).

σº = 10 × log10 (DN2) – 83                                   (4)

The PALSAR data was co-registered with Landsat 
ETM+ orthorectified data. We did not consider the cli-
matic conditions of PALSAR 50 m mosaic data because 
the information was not available.

Major species Max DBH (cm) Max Height (m)

Dipterocarpus costatus 128.0 41.4

Dipterocarpus intricatus 87.2 26.2

Melaleuca cajuputi 30.0 17.2

Irvingia malayana 117.5 26.5

Shorea siamensis 34.0 16.2

Lagerstroemia calyculata 108.4 45.6

Dalbergia cochinchinensis 66.8 28.1

Shorea obtusa 53.6 24.5

Schima wallichlii 67.5 27.1

Peltophorum dasyrrhachis 77.3 31.6

Terminalia mucronata 78.2 32.1

Irvingia malayana 157.2 42.8

Dipterocarpus obtusifolius 42.8 26.9

TABLE 1. Major species in the field plots and their maximum height and DBH.

FIGURE 1. Flowchart of the methodology.
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2.3 Statistical Analysis

Multi-linear regression (MLR) method was applied 
relating the field calculated biomass with the backs-
cattering properties of PALSAR. We consider biomass 
as a dependent variable and PALSAR backscattering 
(HV, HH/HV) as an independent variable. We used 3×3 
pixels window size analysis for MLR model development 
and this MLR model was applied to the  PALSAR 50 m 
mosaic data to estimate biomass of forests for Cambodia. 
Finally, validation was used to evaluate the accuracy of 
the model by comparing PALSAR estimated to the field 
derived AGB. The methodology is shown in Figure 1.

3. RESULTS AND DISCUSSION

Statistical analysis was undertaken to correlate the 
forest inventory data. Figures 2a and 2b show the rela-
tionship of biomass with the stem density and basal area, 
respectively. Figure 2a does not show good correlation 
(R2 = 0.2) between biomass and tree density because 

tree density depends on tree species, site conditions, 
and forest type. Figure 2b shows strong correlation (R2 
= 0.9) between biomass and basal area because the basal 
area is a function of tree density and DBH. Data from a 
total of 79 plots were analyzed. Fifty-one plots were used 
for the MLR model development and 23 plots were used 
for model validation. Five plots were excluded from the 
analysis because their locations were either too near to 
roads or there were some degraded trees.

Figure 3a shows the relationship between PALSAR 
σº (HH) and (HV) and biomass. Field measured biomass 
shows a significant relationship with the σº HV (R2

adj = 
0.66) as compared with σº HH (R2

adj = 0.05). High σº HH 
in low biomass region has been observed because of the 
high surface scattering from the plots covered by dry 
leaves and grass, which increases surface roughness. The 
reason why σº HV polarization produces a better corre-
lation than HH is due to the volume scattering in forest 
areas, which enhances the cross-polarization returns as 
an increase in biomass. Other studies also reveal that the 

FIGURE 2A. Scatter plot 

and equation between 

Biomass for the field plots 

against stem density

FIGURE 2B. Scatter plot 

and equation between 

Biomass for the field plots 

against basal area.

FIGURE 3. PALSAR 2009 

σº HH, HV, and HH/HV 

plotted against biomass (a, 

b) and stem density (c, d).
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σº HV is more sensitive to forest biomass compared to σº 
HH (Le Toan, Beaudoin, Riom, & Guyon, 1992; Harrell et 
al., 1995). We observed different backscattering proper-
ties from the same biomass region (Figure 3a at biomass 
100-150 t/ha) because of the difference in canopy and 
their distribution. Evergreen forest, having a multi-sto-
rey tree structure, shows high backscattering as com-
pared to deciduous forests of the same biomass class. A 
loss in sensitivity of the PALSAR signal appeared to occur 
at approximately 150-200 t/ha biomass (Figure 3a). 
Figure 3b shows a strong relationship between PALSAR 
σº HH/HV with biomass (R2

adj = 0.54). Therefore, the 
polarization ratio is a useful parameter for biomass esti-
mation. Figure 3c shows a poorer relationship between 
PALSAR σº HH and HV with the stem density (R2 = 0.06 
and 0.32, respectively). This is mainly because tree 
density depends on the forest types, tree species, and site 
conditions, etc. Figure 3d also shows a poor relationship 
between σº HH/HV with tree density (R2 = 0.3).

We have used PALSAR σº HV and HH/HV to generate 
MLR model because HV and HH/HV shows a strong cor-
relation with biomass as compared to HH polarization. 
PALSAR σº HV is dominated by volume scattering from 
woody elements of trees so that HV is strongly related to 
AGB (Le Toan et al., 2011). The MLR model was developed 
using dependent (biomass) and independent (HV, HH/
HV backscattering) variables. The model was applied 
to the PALSAR 50 m mosaic data to generate a nation-
al-level biomass map. Figure 4a shows the biomass map 
with 8 classes of biomass for Cambodia. The deforested 
area shows a very low value of biomass. Figure 4b shows 
the forest cover map of the same biomass region. If we 
compare the biomass map (Figure 4a) with the forest 
cover map (Figure 4b) then the high biomass region 
(>200 t/ha) mostly falls into the illustrated categories 
of evergreen high and medium-low class in forest cover 
map. However, in the mountainous area (northern part) 
the biomass map shows variation because of the topog-

raphy. The results from this study show the potential of 
PALSAR 50 m mosaic data that is freely available.

Figure 5 shows the validation results of PALSAR 
derived biomass. The accuracy of PALSAR predicted 
AGB decreases as the biomass increases because of sat-
uration of the PALSAR signal. The result shows a sig-
nificant coefficient of correlation R2 = 0.61. The overall 
root means square error (RMSE) for the data is 63 t/ha, 
however, this decreases to 19 t/ha if values only below 
100 t/ha are considered and to 21 t/ha using values up 
to 200 t/ha. The high variation in errors are present in 
the high biomass region i.e. >200 t/ha. We predicted two 
types of uncertainties: a) calculating biomass from field 
data using allometric equation because we have not used 
species-specific allometry as well as small plot size and 
trees having DBH < 10 cm was not considered, and b) sat-
uration of PALSAR signal at high biomass region as well 
as topographic effects. Essentially, this study shows the 
importance of PALSAR backscattering and its interaction 
with vegetation to estimate various biophysical param-
eter estimation. High penetration capability of L-band 
SAR data can be effective to monitor forest volume.

4. CONCLUSION

Spatial information about forest biomass is useful 
to calculate the total amount of forest carbon in specific 
areas at a specific time. Biomass information is useful 
to calculate CO2 emissions due to deforestation. This 
study demonstrates that a combination of PALSAR data 
and field data is useful to generate biomass maps that 
show the importance of forest inventory data. However, 
in high biomass regions, the PALSAR data become sat-
urated. Biomass maps are not precise but can provide 
information about biomass distribution, which is needed 
for forest management practices. This methodology can 
be used to estimate biomass of other tropical countries 
using PALSAR and PALSAR-2 data more precisely. Cam-
bodia biomass map is a vital data source for national 

FIGURE 4. (a) PALSAR derived biomass map of Cambodia (b) Forest 

Cover map of the area.

FIGURE 5. Relationship between PALSAR predicted biomass plotted 

against field measured biomass.
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level REDD+ mechanism implementation. The informa-
tion will not only help enhance carbon stock in forests by 
implementing sustainable forest management practices 
but also enhance the livelihoods of the local communities 
as they depend on forests and their products. National 
level biomass maps will be useful for establishing effec-
tive national-level forest management plans and poli-
cies for REDD+ implementation.
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