APN Scoping Workshop Enhancing Actions of Developing Countries on Adaptation in the Asia-Pacific Region

Two Approaches in CC Adaptation

20 August 2012

Nobuo Mimura Institute for Global Change Adaptation Science (ICAS) Ibaraki University

Contents of Presentation

- 1. Premises for Adaptation Planning
- 2. Approaches in two directions
- 3.How to combine the risk information with responses -Wise adaptation approach
- 4. Summary

1. Premises for Adaptation Planning

Occurring impacts

Effects of climate change has been experienced in the world. Proceeding of CC to a certain extent will be inevitable.

Adaptation deficit

Many developing countries are not safe even for today's climate risks, such as floods, droughts, landslides etc.

Adaptation in local scale

Requested is assessment of impacts/vulnerability and adaptation planning in national, sub-national and local scales.

Decision-making under uncertainty

Uncertainty is inevitably involved in the CC projection. How to deal with the uncertainty is a major issue in decision-making for adaptation.

2. Approaches in Two Directions

Science for Adaptation

GCMs(Climate Models)

Downscaling

- 1) Downscaling
- 2) Statistical downscaling
- 3) Data assimilation

Impact assessment

- 1) Models for physical impacts
- 2) Estimate economic impacts
- 3) Incorporate socioeconomic changes to the assessment

<Gaps>

Method development Data observation, collection, and mining/ Calibration of RCMs Data distribution/ interface with downstream

Impact models Current/ future impacts Compound impacts

Adaptation planning

- 1) Strategy and sectoral options
- 2) Effects of adaption
- 3) Capacity building

Communication and awareness

Present response/ long-term adaptation Recognition of politicians and decisionmakers Range of capacity building

People's acceptance

Merits and Limitations

Science-driven approach:

- projections needed for proactive adaptation
- but too complicated for local governments and communities.

Society need-based approach:

- effective for <u>responses to "today's problems"</u> based on the needs on the ground
- but long-term CC risk may diffuse in the sea of problems

<Gaps>

How to incorporate the scientific results to the today's

<u>decision-making?</u>

What capacity is needed for this?

Comprehensive Assessment in S-4 and S-8

- Distribution of damages
- Damage costs for different emission pathways
- Foundation for national CC policy

Japan and other countries

Distribution of Disaster Risks

Changes in Precipitation In 2030

- 1/50 present becomes 1/30

Increased land slide probability in 2050

Range of Impacts due to Climate Models -Japanese Beech and Heat Disorder

3.How to combine the risk information with responses - Wise adaptation approach

- How to plan adaptation under uncertainties in climate projection, effects of mitigation, social changes etc?
- Introduce effective, efficient, flexible adaptation.
- Short-term and long-term planning
- 1) Short-term adaptation
 - respond to occurring climatic extremes e.g. DRM
 - monitoring/early warning, evacuation, rehabilitation
 - strengthen the existing policies and institutions
 - → "real time adaptation"
- 2) Long-term adaptation
 - flexible adjustment of adaptation planning
 - no/low regret policy
 - incorporate the latest scientific information and GPs
 - \rightarrow "adaptive adaptation"

Summary

- Four premises for adaptation planning; 1) occurring CC impacts, 2) adaptation deficit, 3) adaptation planning in local scale, and decision-making under uncertainty.
- 2. Two approaches for adaptation; 1) science-driven approach and 2) society's needs-based approach.
- 3. Wise adaptation; 1) short-term (real time adaptation) and2) long-term (adaptive adaptation)

Thank you very much.