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Part One: Overview of Project Work and Outcomes  

 

Non-Technical Summary 

Smoke haze from forest fires is among Southeast Asia’s most serious environmental 

problems and there is a clear need for a fire and haze early warning system (EWS) for the 

region. APCC has been collecting monthly dynamic prediction data produced by 16 

institutions and has been producing 6-month lead Multi-Model Ensemble (MME) climate 

forecasts every month. In this study, we developed 4 different statistical downscaling 

methods and assessed the forecast skill of each method over fire-prone regions in 

Southeast Asia. We developed a EWS prototype in which 3-month precipitation (August to 

October) is predicted during April to July and the forecasted precipitation amount is then 

translated into four fire danger ratings based on the relationship between precipitation 

amount and CO2 emission. A needs assessment for early warning Information was 

conducted through the field survey with resource managers at three provinces in Indonesia. 

A two day workshop was held at the Malaysian Meteorological Department (MMD) with 

financial and logistical support from MMD for the improvement of the EWS. Finally, the forest 

fire early warning information on Southeast Asia created using the EWS will be provided 

though the hosting server in APCC.  

Keywords 

Fire danger, seasonal forecasts, statistical downscaling, dynamical downscaling, and 

seasonal drought 

Objectives 

 To assess forecast skill and downscale seasonal forecasts over fire-prone regions in 
Southeast Asia 

 To develop new fire management decision triggers based on seasonal forecasts 
 To create a prototype fire danger early warning system for Southeast Asia 
 To formulate guidelines on integrating advance climate information into the standard 

operating procedures of fire management agencies 
 To train stakeholders on understanding seasonal forecasts, downscaling, and the early 

warning system prototype 

Amount Received and Number of Years Supported 

The Grant awarded to this project was:  

KRW23,547,176 for Year 1: to support dynamical and statistical downscaling experiments 

KRW18,990,167 for Year 2: to support field survey and training workshop 

 

Activity Undertaken  

 Downscaling Experiments 

- Conduct dynamical and statistical downscaling experiments and assess skill levels of 
prediction over fire-prone regions in Southeast Asia 
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 Early Warning Information Needs Assessment and Fieldwork  

- Determine early warning information requirements with partner agencies 
- Conduct interviews and group discussions with land and forest managers for input on 

mainstreaming downscaled seasonal climate forecasts to preparedness and mitigation 
measures 

 Prototype Development and Improvement 

- Develop the prototype early warning system at APCC 
- Amend the prototype early warning system according to test runs and feedback from 

training workshop participants 

 Training Workshop and Tabletop Exercises 

- Conduct a training workshop to provide lectures on seasonal climate forecasting and 
statistical downscaling techniques 

- Demonstrate the prototype early warning system to fire and land managers and other 
stakeholders 

 

Results  

For the first year of the project, activities focused almost exclusively on a skill assessment of 

the different forecasting approaches. First, we compared the region-average of the August to 

October (ASO) period precipitation between observation (APHRODITE) and models 

(including ensemble members of each individual model) without any bias correction. 

Individual models predicted reasonably the temporal anomaly trend of ASO precipitation but 

they failed to predict the absolute precipitation amount for a specific month. Among the four 

regions, South Kalimantan (SKAL) region showed the most reasonable forecast 

performance. We applied both dynamical and statistical downscaling approaches over the 

maritime continent for June to August. Even though both dynamic and statistical 

downscaling approaches did not add further prediction skill during JJA on Southeast Asia 

region, it can be said that statistical downscaling using the MME forecast will be more 

appropriate for a real-world application toward Southeast Asian haze problems compared to 

dynamical. However, the moving window regression (MWR) method using MME as a 

predictor over all Southeast Asia showed limitations in representing yearly variations of 3-

month total JJA precipitation. We also applied four different statistical downscaling methods 

over four regions in Southeast Asia for ASO period. Statistical downscaling methods 

including Simple Bias Correction (SBC), Moving Window Regression (MWR), Climate Index 

Regression (CIR), and Hidden Markov Chain (HMM) were compared. Temporal correlation 

coefficient (TCC) between observed precipitation and predicted precipitation using simple 

bias correction (SBC) increased within all regions as lead-time decrease. However, TCC 

value based on MWR and CIR downscaling methods did not always show the expected TCC 

trend by showing decrease in TCC as lead-time decrease. Comparison results showed the 

higher forecast skills within the Sumatra regions compared to the Kalimantan regions.  

For the second year of the project, a needs assessment for early warning information was 

conducted through a field survey with resource managers. The field survey was conducted 

at three provinces where frequent land and forest fire occurred in Indonesia. The survey was 

conducted on their information requirements and preferred methods and timing of 

information delivery. All three study areas used a weather/climate forecasting and fire 

danger rating system with four criteria (low, moderate, high, and extreme) as an early 
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warning system tool. The fire hot spot is the main indicator for fire occurrence that used 

widely from district, provincial to national level. All stakeholders need more reliable 

information related to weather conditions so they can have more anticipated prevention 

programs. For the development of the EWS prototype, we developed an integrated statistical 

downscaling package which uses Simple Bias Correction (SBC), Moving Window 

Regression (MWR), Climate Index Regression (CIR), and Integrated Time Regression (ITR) 

methods. The package is based on an open source license for further training workshops 

and free distribution of the developed prototype. The seasonal precipitation forecasts should 

be interpreted in terms of historical precipitation-fire relationships. Through the literature 

review and communication, we decide that methodology selected in the previous research 

by Field and Shen (2008) can be used for the interpretation of forecasted precipitation. 

Based on an earlier version of the prototype, APCC led a two day workshop in Petaling Jaya, 

Malaysia, June 9-10, 2015, which included hands-on training sessions on statistical 

downscaling and the prototype. The workshop had 32 participants including 12 participants 

from Indonesia and 17 participants from Malaysia. Finally, the EWS prototype was improved 

based on feedback from both field survey and training workshop participants. The forest fire 

early warning information on Southeast Asia created using the EWS will be provided though 

the hosting server in APCC. 

 

Relevance to the APN Goals, Science Agenda, and to Policy Processes 

Goals: The project supports the APN’s primary goals of regional cooperation by involving 

eight organizations in six APN Member Countries in addressing one of Southeast Asia’s 

most significant global change problems.  

Climate Change and Climate Variability: The fires are triggered by below-normal dry-season 

precipitation, the result of several modes of climate variability.  

Ecosystems, Biodiversity, and Land Use: One of the reasons for fire is the land use change, 

and have strictly negative impacts on Equatorial Southeast Asia’s ecosystems and 

biodiversity. 

Changes in the Atmospheric, Terrestrial and Marine Domains: Fires in the region rank 

among the single biggest contributors to inter-annual variability in global CO2 composition in 

the atmospheric domain, and have completely transformed the landscape in the terrestrial 

domain. 

Resources Utilisation and Pathways for Sustainable Development: Knowing in advance of 

severe burning conditions contributes directly to the appropriate use of fire in the region and 

sustainable development of these sectors. 

Policy Processes: The ASEAN Regional Haze Action Plan identifies early warning systems 

as a cornerstone of fire management policy.  

 

Self-Evaluation  

The kick-off meeting was held on August 15th, 2012, in Singapore. During the meeting, the 

overall direction of the project was adjusted and all the issues are appropriately treated 
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during the project period. A second meeting was held at Sapporo, Japan on August 1st, 

2014. At this meeting, we shared the research results derived from the previous period of 

the project and discussed future plans for the success of the project. 

 

Potential for Further Work  

The prototype of the project covers four regions in Borneo Island focusing on ASO 

precipitation. However, dry season and the threshold level can be different region by region. 

In the future, the project team may consider creating a more comprehensive fire and haze 

EWS that covers all spatial regions and temporal period. In addition, integrated statistical 

downscaling packages can be used for various applications in different areas. 

 

Publications  
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Part Two: Technical Report 

 

Preface 

Smoke haze from forest fires is among Southeast Asia’s most serious environmental 

problems. However, measures to prevent these fires and mitigate their impacts are limited 

by the absence of long-lead early warning systems. The project determined how seasonal 

forecasts can be used to predict drought conditions triggering forest fires. We evaluated the 

forecast skill of APCC’s seasonal forecast, dynamical downscaling using WRF, and four 

different statistical downscaling methods. The presented prototype of fire danger early 

warning system (EWS) for Borneo Island can be used for land and forest managers to 

prepare mitigation measures in advance. 
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1. Introduction 

Smoke haze from forest fires is among Southeast Asia’s most serious environmental 

problems and there is a clear need for a fire and haze early warning system (EWS) for the 

region. With industrial logging and agriculture as underlying causes, the trigger for severe 

fire and haze episodes in Southeast Asia is drought.  

Severe burning in Indonesia occurs only during years with anomalously low rainfall; there is 

usually enough rain during the dry season to prevent serious burning. Anticipating a severe 

fire season largely consists of anticipating dry seasons. Severe haze has occurred in 1982, 

1991, 1994, 1997 and 2006, with lesser events in 1987, 2002, 2004, 2009 and 2014. All 

events correspond to some combination of El Nino and positive Indian Ocean Dipole 

conditions and occur primarily between August and October. 

The drought levels at which severe fires occur have been robustly quantified, and this 

information is now used in Indonesia and Malaysia to monitor fire danger.  

Monitoring for these conditions is important, but has limited effectiveness because the 

burning is opportunistic; as soon as conditions are dry enough, burning will occur and cannot 

be prevented. When disturbed peat begins to burn, it cannot realistically be put out until the 

return of the monsoon rains. However, measures to prevent these fires and mitigate their 

impacts remains limited by the absence of long-lead EWSs. Severe burning conditions, 

therefore, need to be forecast weeks to months in advance for any prevention to be effective. 

In this context, little of the progress made in seasonal forecasting has been applied to fire 

early warning in Indonesia. Recently over southern Kalimantan, previous research showed 

that most major fire events since 1997 could have been anticipated three months in advance 

using ECMWF System 4 precipitation forecasts, demonstrating a necessary step in fire 

prediction and management over Indonesia. 

For simplicity, the focus of this project will be on the rainfall prediction during the primary 

August to September dry season by examining the precipitation forecast skill over the main 

fire prone regions of Indonesia using a multi-model ensemble maintained at the APEC 

Climate Center (APCC). The project builds upon current fire danger rating systems by 

providing forecasts at a longer lead-time, a time scale that is more relevant and useable for 

decision-makers. This two-year project consisted of two parts: 1) a forecast skill assessment 

of current and downscaled products supplied by the APCC, and 2) the development of a 

prototype fire danger EWS by considering field survey and workshop.  
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2. Methodology 

The overall research procedure for this project is shown in Figure 1. It consists of two main 

parts: 1) evaluating forecast skill of APCC’s MME and downscaling methods, and 2) 

assessing needs from forest fire managers and developing a prototype of early warning 

system (EWS).  

 

 

Figure 1. Overall research procedure 

 

2.1. Evaluating Forecast Skill of APCC’s MME and Downscaling Methods  

2.1.1. Evaluation of APCC’s Seasonal Forecasts 

In this research, we focused on connecting the downscaled seasonal forecasts and drought 

conditions that trigger forest fires. Previous research on biomass burning in Indonesia was 

reviewed. Field1 and Shen (2008) reported that 3-month total precipitation was determined to 

be the best predictor for predicting the severe biomass burning carbon emissions in 

equatorial Southeast Asia. As a result, we decided to analyse the predicted 3-month (August 

to October, AOS) total precipitation using APCC’s seasonal forecast. Figure 2 shows the 

regions used in the analysis, namely Southern Sumatra (SSUM), Central Sumatra (CSUM), 

Eastern Kalimantan (EKAL) and Southern Kalimantan (SKAL).  

 

                                                
1
 Dr. Robert Field is one of the team members for this project 
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Figure 2. Selected regions for assessing forecast skill 

 

APCC has been collecting monthly dynamic prediction data produced by 16 institutions and 

has been producing 3-month and 6-month lead Multi-Model Ensemble (MME) climate 

forecasts every month. In this study, 6-month lead seasonal forecast data which were 

regrided with 2.5°Ⅹ2.5° resolution based on 6 individual Global Climate Models (GCM) were 

used for the evaluation of forecast skill. Table 1 shows the description of 6 GCMs used in 

this study. 

Grid-to-grid temporal correlation coefficients (TCC) of ASO precipitation for the Indonesian 

regions are calculated between models (6 individual models and MME data forecasted at 

July with a 6 month lead-time) and GPCP monthly data. For evaluating the forecast skill for 

the four selected regions (CSUM, SSUM, EKAL, SKAL), the area-average of forecasted 

precipitation are compared to the area-average of monthly APHRODITE data. Temporal 

correlation coefficient (TCC, Spearman’s rank correlation coefficient) and normalized 

objective function (NOF, which is calculated by dividing RMSE by observation mean) were 

used as measures for trend and error analysis, respectively. The response of performance 

measures (TCC and NOF) according to the different lead-times are calculated for the 

regions. 
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Table 1. Description of dynamical seasonal prediction models used in the study. 

Model Institution Raw Resolution Ensemble 

size 

CANCM3 Meteorological Service of 

Canada (Canada) 

T63L31 (AGCM) 

1.41°Ⅹ0.94° L40 (OGCM) 

10 

CANCM4 Meteorological Service of 

Canada (Canada) 

T63L35 (AGCM) 

1.41°Ⅹ0.94° L40 (OGCM) 

10 

NASA National Aeronautics and 

Space Administration (USA) 
2°latⅩ2.5°lon, L34 

(AGCM) 

1/3 by 5/8, 27L (OGCM) 

10 

NCEP  Climate Prediction Center / 

NCEP/NWS/NOAA (USA) 

T62L64 17 

PNU Pusan National University (R. 

of Korea) 

T42L18 (AGCM) 

0.7/1.4/2.8°latⅩ2.815°lon, L29 

(OGCM) 

4 

POAMA Centre for Australian Weather 

and Climate Research/ Bureau 

of Meteorology (Australia) 

T47L17 (AGCM) 

0.5~1.5°latⅩ2°lon, L25 

(OGCM) 

30 

 

A TCC called a Pearson’s correlation coefficient is used to measure the strength of a linear 

relationship between two variables. A TCC of 1.0 (-1.0) denotes a perfect (inverse) linear 

relationship between the forecast and observation and that of zero means the absence of 

any linear association between them. The TCC between two variables is defined as the 

covariance of the two variables divided by the product of their standard deviations:  

 

Where, F and O are the forecast and observed variables.  ̅ and  ̅ are the climatological 

value for forecast and observed variables, respectively. 

 

2.1.2. Comparison of Dynamical and Statistical Downscaling Methods 

Dynamical Downscaling 

In this study, we employed the Weather Research and Forecasting (WRF) model for 

regional climate simulations over Southeast Asia at 45-km horizontal resolution with global 

climate fields used for initial and boundary conditions. The WRF model, developed by the 

National Center for Atmospheric Research (Skamarock et al., 2008), is an advanced 

mesoscale numerical weather prediction system designed to serve both operational 

forecasting and atmospheric research needs. The simulations were performed for five 

summers (June 1 to August 31) during the period from 2006 to 2010 using the GCM forcing 

data from CCSM3 to provide initial and lateral boundary conditions for the regional climate 
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model. The physics options used in this study include the WRF Single-Moment 6-Class 

Microphysics (WSM6) scheme, Kain-Frisch convective parameterization scheme, and the 

Yonsei University (YSU) planetary boundary layer (PBL) scheme. The WRF regional climate 

model was run using one-way nesting at 45-km grid spacing and 28 vertical levels covering 

the Southeast Asia region (Figure 3). To examine the skill of the downscaled simulations, we 

have compared downscaled results with observed data sets: GPCP satellite estimates for 

rainfall and NCEP/DOE reanalysis data for surface temperature.  

 

Table 2. Description of WRF model for regional climate simulations. 

 Domain 1 Domain 2 

Horizontal grid 138 × 112 283 × 145 

Horizontal resolution 45 km 15 km 

Vertical layers 28 

Physical options 
Kain-Frisch(new Eta) cumulus scheme, YSU scheme, 
CAM scheme, WSM 6-class graupel scheme, Noah land-
surface model 

Initial data CCSM3/APCC 

Time Period 2006/5/27 ~ 2010/8/31 (JJA) 

 

 

Figure 3. Research domain for both dynamic and statistical downscaling experiments. 

 

Statistical Downscaling 

The Moving Window Regression (MWR) downscaling scheme, which was developed by 

Kang and others (2009) and applied in Korea, was selected as a statistical approach.  It is 

based on a multi-predictor optimal selection method and the overall procedure of the 

selected scheme includes: 1) selection of best predictor and location using a moving window 

for each, considering the observation point (predictand), 2) derivation of simple linear 

regression between the best predictor and predictand, and 3) downscaling for a given 

forecast based on the regression equations.  
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This approach requires long-term data measurements. Monthly high-resolution grid 

(0.5°global) precipitation data (CRU TS3.10) for the period from 1901-2009 period were 

used as the observed datasets. The CRU data does not include ocean area and contains 

3294 grid points on lands for the selected research domain (lon: 80~130, lat: -12 ~30.5). 

Datasets for June to August and 3-month (JJA) total precipitation during the 27-year period 

from 1983-2009 were considered. 

APCC’s MME was used as predictor for comparison with the results of the dynamical 

downscaling. Variables such as wind at 850hPa (U850 and V850), temperature at 850hPa 

(T850), geopotential height at 500hPa (Z500), sea surface temperature (SST), mean sea 

level pressure (PSL) were considered as possible predictors in the process of selecting best 

predictor. The domain within latitudes from -45 and 45 for all longitude ranges was used in 

this study in order to decrease computational time. 

A movable optimal window finds the best predictor when the maximum temporal correlation 

coefficient between the predictand and predictors are estimated. As a result, each 

observation point (predictand) has different location of optimal windows and the best 

predictors. Finally each point can have a different slope and intercept of the predictor that is 

the best to describe the variation of the predictand. 

 

2.1.3. Comparison of Statistical Downscaling Methods 

Based on the result from comparison between dynamical and statistical downscaling 

methods, we decided to use statistical downscaling approach for further development of fire 

danger early warning system. As a result, we also developed and evaluated four different 

statistical downscaling methods including Simple Bias Correction (SBC), Moving Window 

Regression (MWR), Climate Index Regression (CIR), and Hidden Markov Chain (HMM) 

methods.  

 

Simple Bias Correction (SBC) approach 

Simple Bias Correction (SBC) is a forecast-based direct downscaling method which uses 

GCM’s prediction data after adjusting the monthly mean of predicted precipitation. For 

example, if the precipitation prediction data on a specific region is needed, SBC directly uses 

the grid values of precipitation variables which are produced from GCMs over the given area. 

The systematic bias is adjusted for precipitation by using the ratio, in order to make the 

monthly average of prediction same to the average of observation for the same period. 

Bias correction between the region-average of forecast data and observation (APHRODITE) 

was conducted by adding anomaly of forecasted data for each month to the mean of the 

observation as below equation.  

      (                   )                     for                     

      (                   )ⅹ                   for                     

Where, Py,m and P’y,m are the bias-corrected and forecast precipitation in a specific year(y) 

and month(m), respectively. Psyear-eyear,m and APHROsyear-eyear,m are the climatological value for 

a specific month (m) derived from forecast and observation(APHRODITE) based on specific 

periods of start year (syear) to end year (eyear). 
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Moving Window Regression (MWR) approach 

Moving Window Regression (MWR) is a forecast-based indirect statistical downscaling 

method, which uses the proxy variables produced by GCMs as predictors of regression 

model when high correlation exists between proxy variables and regional target variables. If 

there are limitations in directly predicting target variables such as precipitation in the target 

area, the MWR method uses the oceanic and atmospheric circulation variables as predictors 

to improve the seasonal prediction predictability in the target region.  

The overall procedure of the selected scheme is the same as the method used for the 

“comparison of dynamical and statistical downscaling methods” part and includes: 1) 

selecting best predictor and location which shows the highest correlation coefficient within a 

moving window between the predictand, 2) developing simple linear regression between the 

best predictor and predictand, and 3) downscaling for a given forecast data based on the 

regression equations. However, there are differences in predictand used: previous 

downscaling experiment used June to August (JJA) CRU precipitation on each 0.5°grid 

within the over the maritime continent while this experiment used August to October (ASO) 

region-average of APHRODITE precipitation within the four selected regions. In addition, this 

experiment used the individual models while the previous experiment used MME only. 

 

Climate Index Regression (CIR) approach 

Climate Index Regression (CIR) is an observation-based indirect statistical downscaling 

method that can be used when there is a high correlation between global climate indices and 

regional target variables with lag time. For real time operation of CIR in predicting monthly 

precipitation using climate indices, the lag time between the monthly precipitation and 

indices should be larger than the lead-time. The CIR method is similar to the MWR method 

in that both methods indirectly utilize the correlation between regional target variables and 

global scale climate variables related to oceanic and atmospheric circulation. There is a 

difference between the CIR and MWR methods when selecting predictors to forecast future 

seasonal target variable values. While the MWR method uses simultaneous proxy predictors 

that are predicted by GCMs, the CIR method uses the observed climate information from a 

few months ago by taking into account the lag time.  

Predefined 40 climate indices provided by Climate Prediction Center (CPC) for the hindcast 

period (1983~2005) were used as predictors in this study. The overall procedure of the 

selected scheme includes: 1) selecting N best predictors (we used 3 in this experiment) and 

lags which shows the highest correlation coefficient between the predictand (region-average 

of APHRODITE precipitation), 2) developing multivariate regression using the selected 

possible N indices (less than N indices can be selected through regression subset selection 

procedure), and 3) forecasting precipitation based on lagged climate indices. We changed 

the lag time from 0 to 12 months. The zero lag for an index means that the index should be 

derived from the forecasted data. Lag greater than the given lead-time means that the index 

can be derived from the observations.  
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Hidden Markov Chain Model (HMM) approach 

A Hidden Markov Chain Model (HMM) is a statistical Markov model in which the system 

being modeled is assumed to be a Markov process with unobserved hidden states. In a 

HMM, the state is not directly visible, but the output, dependent on the state, is visible. The 

hidden states of data Xt consist of a number of random variables K such as (Xt = {x1, x2, …, 

xk}), influence of previous state (Xt-1) and the rest of state are independent. The hidden state 

follows the first Markov model with transition between states only rely on previous state. 

HMM is simply shown in Figure 4. Using HMM, which was used rainfall simulation 

(Robertson et al., 2004; Kwon et al., 2013), region-average of ASO precipitation is predicted 

by the sea level pressure (SLP) anomalies in 6 hindcast models. Before HHM simulation, 

correlation coefficient between each region and global SLP data was calculated. 

 

Figure 4. Graphical Representation of HMM. 

 

2.2. Need Assessment and Development of EWS Prototype 

2.2.1. Need Assessment 

The needs assessment for early warning Information was conducted through the field survey 

with resource managers. The field survey was comprised of discussions and interviews in 

land and forest management sector of Indonesia on their information requirements and 

preferred methods and timing of information delivery. 

Three provinces that have frequent occurrences of land and forest fires in Indonesia were 

selected as study areas: Riau in Sumatra and Central and East Kalimantan. During the fire 

season Riau in Sumatra and Central Kalimantan produce smoke and haze and may affect 

the neighbourhood countries such as Malaysia and Singapore. The peak fire season in Riau 

usually occurs in Feb/March and August/Sept whilst in Central Kalimantan expected during 

August/Sept. The field survey conducted in May-June 2015 where the stakeholders are at 

readiness level. 

The structured questionnaires, which are provided in the Appendix, were translated into 

Bahasa Indonesia with two main focuses: existing climate used and fire danger ratings 

system. The questionnaires were distributed to stakeholders related to land and forest fire in 

three provinces. As formal written language in the field was a constraints for some 

stakeholders, we also performed informal discussions to gather all information as needed 

and converted the results into questionnaire forms. 
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2.2.2. Training Workshop 

The final prototype of the project does not cover overall regions in the maritime continent by 

focusing hot spot areas selected and the threshold level can be different region by region. It 

means that training workshop as a part of the capacity building will be important for actual 

application of the developed prototype EWS in other regions not included in this project. As 

a result, a two day workshop was held at the Malaysian Meteorological Department (MMD) 

in Petaling Jaya, Malaysia, June 9-10, 2015.   

 

2.2.3. Development of EWS Prototype 

We chose four provinces in Borneo Island as the target area of the EWS prototype as shown 

in Figure 5.  

 

 

Figure 5. Province boundary within Borneo Island for Early Warning System (EWS) 

prototype 

 

The overall procedures for development of EWS prototype include 1) construct statistical 

downscaling model for forecasting monthly area-average precipitation amount for each 

region, 2) determine number of categories and corresponding ranges of fire danger rating 

system based on the relationship between total ASO precipitation amount and CO2 emission, 

and 3) forecast probabilistic fire danger ratings based on the predicted precipitation amount. 

Figure 6 shows the overall schematic diagram of the EWS prototype. 

First, downscaling packages were programmed using the open-source statistical tool (R) in 

consideration of further training workshop and free distribution of developed prototype for 

local stand-alone application. The downscaling package was organized with a large number 

of functions which can be easily used when forest fire managers want to apply the 

downscaling methods to regions other than the selected four regions. 
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Figure 6. Schematic diagram of Early Warning System (EWS) prototype 

 

We focused on improving the predictability of the downscaling methods with the 

understanding that accurate long-term seasonal forecast information is the key factor for 

subsequent successful forest fire prediction. Without a high level of confidence in the quality 

of the downscaled seasonal climate forecasts, we cannot guarantee the efficacy of the 

prototype. As a result, the overall seasonal climate forecasting technique for the EWS 

combines four different downscaling methods according to the degree of using dynamic 

prediction data produced by global climate models (GCMs). These methods include: 1) the 

Simple Bias Correction (SBC) method, which directly uses APCC’s climate prediction data 

with 6 month lead time; 2) the Moving Window Regression (MWR) method, which indirectly 

utilizes the dynamic prediction data; 3) the Climate Index Regression (CIR) method, which 

predominantly uses the observation-based climate indices without using any prediction data; 

and 4) the Integrated Time Regression (ITR) method, which uses predictors selected from 

both CIR and MWR. Since predictability on the Borneo Island may differ depending on the 

target month and selected method, predictability was evaluated using the simple average of 

all available forecast information. 

In addition, another characteristic of the EWS is to predict real-time monthly precipitation on 

the target areas. As a result, instead of 40 climate indices which were used in the first year 

period, we used the 25 real-time climate indices as predictors: 16 climate indices that are 

updated on a monthly basis by NOAA through the webpage 

(http://www.esrl.noaa.gov/psd/data/climateindices/list/) and 9 indices that are extracted 

monthly at APCC using the NCEP/NCAR Reanalysis 1 data (Table 3).  

  

http://www.esrl.noaa.gov/psd/data/climateindices/list/
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Table 3. Monthly updated climate indices used for seasonal prediction. 

Abbreviation Full name Source 

PNA Pacific North American Index NOAA 

EP East Pacific/North Pacific Oscillation NOAA 

WP Western Pacific Index NOAA 

NAO North Atlantic Oscillation NOAA 

SOI Southern Oscillation Index NOAA 

NINO3 Eastern Tropical Pacific SST NOAA 

TNA Tropical Northern Atlantic Index NOAA 

TSA Tropical Southern Atlantic Index NOAA 

WHWP Western Hemisphere warm pool NOAA 

ONI Oceanic Nino Index APCC 

MEI Multivariate ENSO Index NOAA 

NINO12 Extreme Eastern Tropical Pacific SST NOAA 

NINO4 Central Tropical Pacific SST NOAA 

NINO34 East Central Tropical Pacific SST NOAA 

NOI Northern Oscillation Index APCC 

NP North Pacific pattern APCC 

TNI Trans-Niño Index APCC 

AO Antarctic Oscillation APCC 

AAO Antarctic Oscillation APCC 

PACWARM Pacific Warm Pool (1st EOF of SST (60e-170E, 15S-15N) SST EOF) APCC 

EOFPAC Tropical Pacific SST EOF APCC 

ATLTRI Atlantic Tripole SST EOF APCC 

AMO Atlantic multidecadal Oscillation NOAA 

QBO Quasi-Biennial Oscillation NOAA 

ESL Equatorial Eastern Pacific SLP NOAA 

 

While the SBC method developed during the first project year was integrated without 

improvement, the MWR and CIR methods were improved by strengthening predictor 

selection algorithm in order to avoid overfitting problem in real-time forecast. The concepts 

of both cross-validation and split-validation were applied in order to prevent overfitting 

problems, which can occur when constructing statistical forecasting models. The Leave-one-

out cross-validation (LOOCV) technique was applied to the observation period (1983-2013). 

In other words, when predicting target variables for a specific target period (year/month), all 

predictors for the same target period are removed from the model construction procedure in 

order to reproduce the same conditions as the real time forecasting. For example, when 

predicting for January 1983, only predictors from January 1984 to 2013 are utilized in 

constructing the regression model. Predictions are made in the same way for the rest of 

simulation period. For each cross-validation process, the split validation approach was 

applied, and then the best predictors that showed consistent performance for both training 

and verification periods were finally selected.  

In addition, the Integrated Time Regression (ITR) method was added into the prototype of 

early warning system. ITR is an indirect statistical downscaling method that uses both 

forecast and observation based predictors from the MWR and CIR methods, respectively. As 

a result, it can be used only when the MWR and CIR methods simultaneously select 
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predictors for a particular target period. From the best predictors determined by the MWR 

and CIR methods, a selection of final predictors for the multivariate regression model are 

finally selected through the Akaike Information Criterion (AIC) analysis.  

 

Second, an analysis of the threshold levels for the study regions was conducted in order to 

translate the predicted precipitation amount to the fire danger ratings. If the amount of 

precipitation dips below the threshold level, this predicts an increased risk for severe burning, 

carbon emissions, and transboundary haze. It is necessary to connect the forecasted 

precipitation to the possible EWS index based on region-specific threshold level. We used 

the relationship between region-average ASO precipitation amount and carbon emission 

amount which was derived from Global Fire Emissions Database 

(http://www.globalfiredata.org/).  

 

  

http://www.globalfiredata.org/
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3. Results & Discussion 

3.1. Evaluating Forecast Skill of APCC’s MME and Downscaling Methods 

3.1.1. Evaluation of APCC’s Seasonal Forecasts 

Figure 7 shows the temporal correlation coefficient (TCC) for ASO average precipitation 

between models (6 individual models and simple MME) and Observation (GPCP) for the 

hindcast period (1983~2005). MME and several individual models such as CANCM3, 

CANCM4, NCEP, and POAMA show TCC near 0.7 around central part of the domain 

including Kalimantan region. 

 

Figure 7. Temporal correlation coefficient between model and OBS(GPCP),  

period: 1983-2005 ASO, forecasted on July . 

 

We also compared the region-average of ASO precipitation between observation 

(APHRODITE) and models (including ensemble members of each individual model) without 

any bias correction. The model performance measures for each region are described in  

Figure 8. Individual ensemble members for each model and single model ensemble (SME) 

scattered with wide ranges in both NOF and TCC, which means the each data set shows the 

different forecast performance. In particular, model performance was worst within the CSUM 

region by showing the lowest TCC value. Within the SSUM and EKAL regions, individual 

model SME showed wide range of NOF even though the TCC values of SME are higher 

than 0.5 for the most of models. This means that individual models predicted the temporal 

anomaly trend of ASO precipitation reasonably well but they failed to predict the absolute 

precipitation amount for a specific month. Most individual models, except for NASA model, 

showed a similar forecast performance within the SKAL region by showing narrow ranges of 

NOF and TCC values around 0.6.  Among the four regions, the SKAL region showed the 

most reasonable forecast performance by showing rower NOF and higher TCC values. 

SKAL, for example, which was basically the area analysed in Spessa et al. looks to have the 

best skill of any of the regions. 
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Figure 8. Performance measures (TCC and NOF) of forecasted ASO total precipitation 

forecasted on July without bias correction within (a) CSUM, (b) SSUM, (c) EKAL, and (d) 

SKAL regions. Blue vertical line means the critical TCC value at 0.05 of significant level. 

 

A comparison of time-series of forecasted ASO total precipitation and performance 

measures, which derived based on MME are shown in Figure 9. It also should be noticed 

that absolute ASO precipitation amount for the driest year (1997) were closely predicted by 

all four downscaling methods within the EKAL and SKAL regions.  
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Figure 9. Comparison of time-series of forecasted ASO total precipitation forecasted on July 

(left) and performance measures (right) within (a) CSUM, (b) SSUM, (c) EKAL, and (d) 

SKAL regions. Shaded area represents the uncertainty range between MME ± 2Sigma 

based on every ensemble members of individual models. 
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Figure 10 shows the response of performance measures (TCC and NOF) according to the 

different lead-time. It shows the decrease in forecast performance caused by a decrease in 

TCC and an increase in NOF as lead-time increases within all the regions. 

 

 

Figure 10. Response of performance measures (TCC and NOF) of simple bias correction 

(SBC) downscaling method according to the different lead-time within (a) CSUM, (b) SSUM, 

(c) EKAL, and (d) SKAL regions. 

 

3.1.2. Comparison of Dynamical and Statistical Downscaling Methods 

An assessment of forecast skill over fire-prone regions in Southeast Asia was performed and 

both dynamic and statistical downscaling experiments were conducted for JJA precipitation 

using the WRF model and a Moving Window Regression (MWR) method, respectively. 

First, Figure 11 shows the 5-year average precipitation from the Global Precipitation 

Climatology Project (GPCP; Huffman et al., 2001) data, CCSM3, and WRF. GPCP showed 

local maxima over the coast of Myanmar and west of the Philippines for both individual 

months from June to August and the JJA average. The APCC/CCSM3 also shows maximum 

precipitation over the coast of Myanmar. However, the WRF simulates the precipitation 

center further southward than observation. In addition, the WRF simulated excessive 

precipitation over a large area of equatorial Indian Ocean. The GPCP analysis by Xie et al. 

(2003) with 1°x 1°resolution is much smoother than the simulation data and tends to 

produce higher estimates of precipitation over the oceans. The GPCP datasets also contain 

errors that can cause uncertainties in describing the local maximum. In addition, a typical 

WRF simulation is conducted in a series of well-defined steps including: domain definitions, 

geographic data preparations and preprocessing of data that forms the lateral, initial and 

lower boundary conditions. As a result, errors in any steps of the process may result in the 

spatial differences in the results.  

  

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Apr May Jun Jul

N
O

F

TC
C

Forecasting month

(a)

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Apr May Jun Jul

N
O

F

TC
C

Forecasting month

(b)

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Apr May Jun Jul

N
O

F

TC
C

Forecasting month

(c)

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Apr May Jun Jul

N
O

F

TC
C

Forecasting month

(d)

Temporal Correlation Coefficient (TCC) Normalized Objective Function (NOF)



Final Report: ARCP2013-10CMY-Yoo 23 

 

 

 
  

 
  

(a) June-GPCP (b) June-CCSM3 (c) June-WRF 

   
(d) July-GPCP (e) July -CCSM3 (f) July -WRF 

 
  

(g) August-GPCP (h) August -CCSM3 (i) August -WRF 

   
(j) JJA-GPCP (k) JJA -CCSM3 (l) JJA -WRF 

Figure 11. Mean precipitation (mm) from the GPCP observation (first column), CCSM3 

(second column), and WRF (third column) for June (first row), July (second row), August 

(third row), and JJA average (fourth row). 

 

Second, Figure 12 shows the temporal correlation coefficient between the CRU precipitation 

data and forecasts by MME. Only areas with TCC value greater than 0.352 are displayed 

(0.352 is the critical value of TCC at the 10% significance level). It shows that the areas with 
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TCC greater than 0.352 (significant areas) was larger when only 1-month lead time forecasts 

are used, compared to the TCC using different lead times. Significant areas also decreased 

during August by showing decreasing trends as lead time increased. The forecast skill of 

precipitation showed the highest value over Borneo Island, Indonesia while Sulawesi Island 

had the lowest predictability. Figure 13 shows the spatial distribution of the selected best 

predictors for precipitation. Spatial distribution of the best predictors show similar pattern 

among years when a downscaling experiment is decided based on variable and model. 

 

 

Figure 12. Temporal correlation coefficient for precipitation from the MME forecast. 

 

 

Figure 13. The spatial distribution of best predictors from CCSM3 (top) and MME (bottom) 

for precipitation forecast in specific years. 

 

We then focused on a preliminary analysis connecting the downscaled seasonal forecasts 

and drought conditions triggering forest fires. Previous research on biomass burning in 

Indonesia area was reviewed. Field and Shen (2008) reported that the 3-month total 

precipitation was determined to be the best predictor for predicting the severe biomass 
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burning carbon emissions in equatorial Southeast Asia. We compared the predicted 3-month 

(June to August) total precipitation, using both dynamical and statistical downscaling 

approaches, to the threshold values (below which extreme burning/C emissions become 

more likely) presented by Field and Shen for SSUM region.  

The following Figure 14 show the comparisons of the predicted 3-month total precipitation to 

the Global Precipitation Climatology Project (GPCP) data for Southern Sumatra. The GPCP 

data is a gridded dataset that interpolates global monthly rainfall based on observation data 

from rain gauge stations and remotely sensed data. The statistical downscaling method 

(SDM) underestimated the 3-month total precipitation and generated values close to the 

threshold value for the SSUM region. It also showed that SDM has limitations in 

representing yearly variations of 3-month total precipitation. For the dynamical downscaling 

method (DDM), the method mimics the yearly variations in 3-month total precipitation and it 

succeeds in predicting the several drought conditions in 1997 for the SSUM regions. 

However, it made incorrect predictions in generating values below the threshold value for the 

years 1999, 2001, and 2005.  
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Figure 14. Comparison of monthly carbon emissions and 3-month observed total 

precipitation for SSUM (up) and predicted 3-month total precipitation for SSUM using 

different downscaling methods (bottom). 

 

3.1.3. Comparison of Statistical Downscaling Methods 

Simple Bias Correction (SBC) approach 
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We also compared the region-average of ASO precipitation between observation and 

models using simple bias correction (SBC) downscaling method and the model performance 

measures are described in Figure 15 for each region. In comparison to the results in  

Figure 8 which does not have bias correction, the SBC method decreases the NOF by 

removing the difference in monthly mean precipitation between observed and forecasted 

data (Figure 15). However, the SBC method does not have impacts on TCC because the 

SBC keeps the anomaly for each month. As a result, maximum NOF ranges decreased from 

1.7 to 0.6, 2.2 to 1.0, 2.9 to 1.4, and 1.3 to 0.8 for CSUM, SSUM, EKAL, and SKAL, 

respectively. The SBC method can be used for the cases when the absolute precipitation 

amount is important for the management purpose. Among the four regions, SKAL region 

showed the most reasonable forecast performance by showing rower NOF and higher TCC 

values, while CSUM region shows the lowest values in both NOF and TCC. In the case of 

SSUM and EKAL regions, scattering of NOF and TCC values for single model ensemble 

(SME) in wider ranges shows that each model has significantly different forecast skill in 

these regions. It should be noted that NCEP-SME shows better forecast performance within 

SSUM, EKAL, and SKAL regions than the overall Grand-MME by showing lower NOF and 

higher TCC. Within the CSUM region, CANCM3-SME shows the higher performance 

compared to the Grand-MME. It agrees with the results in Figure 7 which shows the spatial 

distribution of TCC over the maritime continent. Figure 16 shows the response of 

performance measures (TCC and NOF) on the SBC method according to the different lead-

time. It shows the decrease in forecast performance caused by a decrease in TCC and an 

increase in NOF as lead-time increases within all the regions. 
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(a) CSUM (b) SSUM 

  
(c) EKAL (d) SKAL 

Figure 15. Performance measures (TCC and NOF) of forecasted ASO total precipitation 

using the simple bias correction (SBC) downscaling method. 

 

  
(a) CSUM (b) SSUM 

  
(c) EKAL (d) SKAL 

Figure 16. Response of performance measures (TCC and NOF) of simple bias correction 

(SBC) downscaling method according to the different lead-time within (a) CSUM, (b) SSUM, 

(c) EKAL, and (d) SKAL regions. 
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Moving Window Regression (MWR) approach 

The selected best predictors for each month and region are presented in Table 4. The most 

frequently selected predictor was SLP and followed by SST and T850. Performance 

measures (TCC and NOF) of forecasted ASO total precipitation using the Moving Window 

Regression (MWR) method are shown in Figure 17. In general, TCC and NOF values of 

individual model SME shows that increase in TCC leads to decrease in NOF. Compared to 

the results by SBC method in Figure 15, CSUM region showed the greatest increase in 

forecast performance through an increase in TCC of Grand-MME from 0.46 to 0.79 and a 

decrease of NOF from 0.76 to 0.19, while the other regions showed the similar ranges of 

TCC and NOF values. Grand-MME showed the best performance in both CSUM and SKAL 

regions, while NASA-SME and NCEP-SME showed the best performance within SSUM and 

EKAL regions, respectively. The response of performance measures (TCC and NOF) of 

forecasted ASO total precipitation according to the different lead-time are shown in Figure 

18. It is usually expected that forecast skill decreases as the lead-time increases. However, 

only CSUM region showed the expected trend with an increase in TCC as lead-time 

decreased.  

 

Table 4. Selected best predictors for each Single Model Ensemble (SME) and month within 

the selected regions. 

Model CSUM SSUM EKAL SKAL 

CANCM3 

Aug SST SLP SLP SLP 

Sep SLP T850 T850 T850 

Oct T850 SLP T2m T850 

CANCM4 

Aug SST SLP SLP SLP 

Sep T2m SPT T850 V850 

Oct T850 T850 SLP V850 

NASA 

Aug Z500 T850 SLP U200 

Sep T20 U200 SLP SLP 

Oct V850 U200 SLP SLP 

NCEP 

Aug SST SLP SLP SLP 

Sep SST SST SST SST 

Oct SLP V850 SST SLP 

PNU 

Aug SST SST SLP SLP 

Sep T2m SLP SLP SLP 

Oct SST SST SST SST 

POAMA 

Aug SLP Z500 SLP T850 

Sep SLP Z500 Z500 Z500 

Oct V850 V850 Z500 T2m 
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(a) CSUM (b) SSUM 

  
(c) EKAL (d) SKAL 

Figure 17. Performance measures (TCC and NOF) of forecasted ASO total precipitation 

using the Moving Window Regression (MWR) downscaling method. 

  
(a) CSUM (b) SSUM 

  
(c) EKAL (d) SKAL 

Figure 18. Response of performance measures (TCC and NOF) of Moving Window 

Regression (MWR) downscaling method according to the different lead-time within (a) 

CSUM, (b) SSUM, (c) EKAL, and (d) SKAL regions. 
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Climate Index Regression (CIR) approach 

The selected best predictors for each month and region are presented in Table 5. The most 

frequently selected predictor was SOI and followed by CENSO, AO, NINA34, NOI, EA, and 

WPO. Performance measures (TCC and NOF) of forecasted ASO total precipitation using 

the Climate Index Regression (CIR) method are shown in Figure 19. First, it should be noted 

that the forecast-based approach showed better performance within all regions except for 

SSUM region by showing higher TCC and lower NOF values. Even though the forecast-

based approach showed better forecast skill, it is not always guaranteed because selected 

climate index with zero lag-time, which is provided by CPC, is based on observation data. As 

a result, higher forecast skill can be guaranteed only if dynamic forecast models accurately 

predict the selected index. Performance measures of the forecast-based approach showed 

the similar ranges within all the regions by showing TCC and NOF values around 0.8 and 

0.3, respectively. Response of performance measures (TCC and NOF) of forecasted ASO 

total precipitation according to the different lead-time are shown in Figure 20. Only CSUM 

and SSUM regions showed the expected trend by an increase in TCC as lead-time decrease. 

 

Table 5. Selected best predictors lag-time for the observed-based and forecast-based 

climate index regression (CIR) approaches within the selected regions. 

Model CSUM SSUM EKAL SKAL 

Observed 

Aug TNA(1) 
CENSO(1), 

WPO(7) 
NINA34(1), 

ONI(1) 
NINA34(1), 

ONI(1) 

Sep AO(12), EA(12) 
AO(12), 
GML(3), 
AAO(6) 

SOI(4), 
NINA3(2) 

SOI(4), 
NINA3(2) 

Oct 
EA(7), 

AAO(12), 
PNA(8) 

WPO(7), 
TSA(8), NOI(3) 

SOI(5), 
WPO(11) 

NOI(3), 
NINA4(3) 

Forecast 

Aug 
PACWARM(0), 

NTA(0) 
CENSO(0) 

NINA34(1), 
ONI(1) 

SOI(0), 
NINA34(1), 
CENSO(0) 

Sep AO(12), EA(12) 
NOI(0), AO(12), 

GML(3) 

SOI(0), 
WHW(0), 

CENSO(0) 

WHW(0), 
SOI(0), 

CENSO(0) 

Oct NP(0), EA(7) 
AO(0),  

WPO(7), 
TSA(8) 

NINA1(0), 
CENSO(5) 

NOI(3), AO(0), 
SOI(0) 
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(a) CSUM (b) SSUM 

  

(c) EKAL (d) SKAL 

Figure 19. Performance measures (TCC and NOF) of forecasted ASO total precipitation 

using the Climate Index Regression (CIR) downscaling method. 

  
(a) CSUM (b) SSUM 

  
(c) EKAL (d) SKAL 

Figure 20. Response of performance measures (TCC and NOF) of Climate Index 

Regression (CIR) downscaling method according to the different lead-time within (a) CSUM, 

(b) SSUM, (c) EKAL, and (d) SKAL regions. 
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Hidden Markov Chain Model 

The model performance measures (NOF and TCC) of predicted ASO precipitation using 

HMM are shown in Figure 21 for each region. Among the four regions, TCC of MME was 

greater than 0.5 over SSUM, EKAL, and SKAL regions, while TCC value was low over 

SSUM region. In terms of NOF, NOF decreased as TCC increased within each region. 

Within the EKAL and SKAL regions, MME showed the best performance in both TCC and 

EOF, while NASA-SME and PNU-SME individual models showed the better performance 

than MME within the CSUM and SSUM regions, respectively.  

 

  

(a) CSUM (b) SSUM 

  

(c) EKAL (d) SKAL 

Figure 21. Performance measures (TCC and NOF) of forecasted ASO total precipitation 

using the Hidden Markov Chain Model (HMM) downscaling method. 

 

Comparison of statistical downscaling methods 

A comparison of time-series of forecasted ASO total precipitation and performance 

measures, derived based on Grand-MME using four SDMs including SBC, MWR, CIR-

Observation-based, and HMM, is shown in Figure 22.  The EKAL and SKAL regions showed 
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similar forecast skill regardless of statistical downscaling methods. However, MWR and CIR 

showed higher performance within the CSUM region compared to SBC, while only CIR 

showed the higher model performance within the SSUM region. As a result, CIR 

downscaling approach showed the most stable forecast skill within all selected regions. It 

should also be noted that the absolute ASO precipitation amount for the driest year (1997) 

was closely predicted by all four downscaling methods within the EKAL and SKAL regions.  

 

 
(a) CSUM 

 
(b) SSUM 

 
(c) EKAL 

 
(d) SKAL 

Figure 22. Comparison of time-series of forecasted ASO total precipitation (left) and 

performance measures (right) within the selected regions. 
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3.2. Needs Assessment and Development of EWS Prototype 

3.2.1. Needs Assessment 

All three study areas use a weather/climate forecasting and fire danger rating system with 4 

criteria (low, moderate, high, and extreme) as an early warning system tool. The fire hotspot 

is the main indicator for fire occurrence that is used widely on district, provincial, and 

national levels. All stakeholders need more reliable information related to weather conditions 

so they can have improved anticipation for their prevention program. Detailed information for 

each study area is provided below. 

Riau: The main agency at Riau province that handles land and forest fire is Regional Office 

for Nature Conservation, an agency under Ministry of Environment and Forestry which has 

four Fire Brigade Offices at Pekanbaru city, Siak Regency, Rengat Regency and Dumai city. 

Two offices, Pekanbaru city and Siak Regency, were visited. At Siak Regency we discussed 

with the Head of Office the climate information used and fire danger rating system. Another 

agency is Forestry Provincial Office, located at Riau University and Lancang Kuning 

University. We also sent the questionnaire to Siak Regency Disaster Agency. With 10 

questionnaire completed, input from a range of land and forest fire management 

stakeholders has been considered. Almost all stakeholders interviewed used hotspots as the 

indicator of fire occurrences. The Meteorology Agency issues weather information on 

quarterly basis as well as daily basis. However the coverage of the weather stations for the 

whole province still needs improvements. 

 

Central Kalimantan: This province has the highest hotspot almost every year. The soil is 

primarily peat, which may burn for several hours, days or weeks. Peatland fire is a ground 

fire type which spreads slowly underground and dominated by the smoldering process. 

Different from flaming combustion, which results in complete combustion, the smoldering 

process produces much higher carbon emissions. The fire brigades use climate information 

issued by BMKG as well as FDRS. Furthermore, the fire brigade office is also equipped with 

AWS and could generate more local FDRS. The total questionnaires completed is 8 forms 

where half of them came from head of fire brigades. Almost all fire managers need more 

accurate information for 6 and 3 months ahead, to increase preparedness. 

 

East Kalimantan: This province has a long story of land and forest fire. The 1982/83 fire in 

East Kalimantan destroyed about 3.5 million ha of forest. Forest fires occur almost every 

year, however each event is specific in intensity and extent. The 1997/98 fire was declared a 

national disaster, since it affected more than 5 million ha of forest in East Kalimantan alone. 

There are some agencies involved in fire management such as Provincial Forestry Office 

(Dinas Kehutanan), Provincial Nature Conservation, Provincial Agency for Disaster 

Management (Badan Daerah Penanggulangan Bencana/BPBD). Previously, the Forestry 

Office had a Technical Implementation Unit known as the Land and Forest Fire Control 

Agency and 11 Local Fire Centers, which were established by joint cooperation through the 

Integrated Forest Fire Mangement (IFFM) Project funded by GTZ Germany during 1994-

2000. This project developed the early warning systems based on several methods including 

Keytch Byram Drought Index (KBDI), hotspot monitoring, as well as the Fire Danger Rating 

Systems. A discussion with the Director of Provincial Disaster Management Authority, 
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illuminated the fact that they use all information available on weather, climate, hot spot and 

fire danger rating systems from various sources. This information is then reported to 

National HQ on daily basis as well as delivered to all agencies to inform them as early as 

possible. However, they still need more reliable and accurate data related to weather for 3 

and 6 months forward to predict the fire season at early stage. 

 

3.2.2. Training Workshop 

The APEC Climate Center (APCC) led a two day workshop at the Malaysian Meteorological 

Department (MMD) in Petaling Jaya, Malaysia, June 9-10, 2015 (Table 6). The workshop 

was done with financial and logistical support from MMD for APCC’s APN grant project 

regarding the development of a fire and haze early warning system in Southeast Asia. The 

workshop had 32 participants including 12 participants from Indonesia (predominantly from 

the Ministry Of Environment And Forestry and forest fire control officials from the provinces 

most impacted by forest fires) and 17 participants from Malaysia (predominantly from MMD 

and the Forestry Department). Dr. Jaepil Cho led hands-on training sessions on the Early 

Warning System computer program developed as a part of this project. Details are 

described in the Appendix. 

 

Table 6. Program of the workshop 

Day/Session Morning Afternoon 

Tue, Jun 9 
- Opening 

- Lecture on “Introduction to 

APCC” and “Seasonal Climate 

Forecasting” 

by Dr. JH Yoo, APCC 

Lectures and hands-on on 

“Statistical Downscaling 

Techniques” 

by Dr. JP Cho, APCC 

Wed, Jun 10 

 

- Lecture on “Bringing fire early 

warning system science to      

public policy management” 

by Dr. Raffles B Panjaitan 

Director of Forest Fire 

Control, Indonesia 

- Project Reports: Fieldwork 

Report & Project Results and 

Outcomes 

by Dr. Israr Albar, Indonesia DF 

Demonstration on “The Prototype   

Early Warning System (EWS)” 

by Dr. JP Cho, APCC 



3.2.3. Development of EWS Prototype 

Table 7 shows the results of prediction models that have been selected for each case 

(month and lead-time) in Selatan region. When using the Simple Bias Correction (SBC) 

method, a total of 115 models were selected for precipitation. The number of selected 

models decreased as the lead time increased by showing 26, 27, and 23 models for 1 to 3-

month lead-time while 14, 10, and 15 models for 4 to 6-month lead-time. The MWR method 
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selected 24 models for precipitation forecasting. When utilizing the Climate Index 

Regression (CIR) method, only 3 indices were selected for July and August. About the ITR 

method, 12 models were selected to forecast precipitation for Selatan region. Overall, the 

SBC method, which is based on dynamic prediction data, shows the highest model selection 

and is followed by statistical downscaling methods such as MWR, and CIR/ITR. Figure 23 

shows an example of spatial distribution of the predictors that have been selected by the 

MWR method for 4 to 6-month lead precipitation prediction for August.  

 

Table 7. Selected downscaling method and models for each month according to different 

lead time in Selatan region. 

month 1 month lead 2 month lead 3 month lead 4 month lead 5 month lead 6 month lead 

Jan 
 

B_NASA 
M_CANCM3 

M_PNU 
M_PNU M_PNU 

  

Feb 
B_CANCM3 

B_NASA 
B_CANCM4 B_CANCM3 

 
M_CANCM4 

 

Mar 
 

B_CANCM3 
M_NASA 

B_NCEP 
M_CANCM4 

M_NCEP 
 

M_NASA M_CANCM4 

Apr 
 

M_CANCM3 
    

May 
B_POAMA 

M_CANCM4 
B_PNU 

M_NCEP 
M_POAMA 

B_CANCM4 
 

B_CANCM4 

Jun 
 

M_PNU B_PNU 
   

Jul 

B_NASA 
B_POAMA 

B_CANCM4 
B_NCEP 
I_NASA 

B_NASA 
B_CANCM4 

B_NCEP 
C_Lag 

B_NCEP 
B_NASA 
C_Lag 

B_CANCM4 
B_POAMA 
M_POAMA 

 
B_NCEP 

B_POAMA 

Aug 

B_CANCM3 
B_NASA 

B_POAMA 
B_CANCM4 

B_NCEP 
I_CANCM4 

B_NASA 
B_CANCM4 
B_CANCM3 

B_PNU 
B_NCEP 

B_POAMA 
I_CANCM4 

I_NCEP 

B_CANCM3 
B_NCEP 
B_NASA 

B_CANCM4 
B_POAMA 

C_Lag 

B_CANCM4 
B_POAMA 
B_NASA 
B_NCEP 
I_POAMA 
I_NCEP 

B_CANCM4 
B_NASA 
B_NCEP 
B_PNU 

B_POAMA 
I_CANCM3 

I_NCEP 
I_POAMA 

B_NCEP 
B_POAMA 

B_CANCM3 
B_NASA 

I_CANCM4 
I_CANCM3 

I_NASA 
I_POAMA 

Sep 

B_CANCM3 
B_NASA 

B_POAMA 
B_CANCM4 

B_NCEP 
B_PNU 
M_PNU 

M_POAMA 

B_NASA 
B_CANCM3 

B_NCEP 
B_POAMA 

B_CANCM3 
B_NCEP 
B_NASA 

B_CANCM4 

B_NASA 
B_NASA 
B_NCEP 

B_NCEP 
B_POAMA 

 B_CANCM3 

Oct 

B_CANCM3 
B_NASA 

B_POAMA 
B_CANCM4 

B_NCEP 
B_PNU 
M_PNU 

B_NASA 
B_CANCM4 
B_CANCM3 

B_PNU 
B_NCEP 

B_POAMA 

B_CANCM3 
B_NCEP 
B_NASA 

B_CANCM4 
B_POAMA 
M_NCEP 

B_CANCM4 
B_NASA 
B_NCEP 

B_CANCM3 
B_PNU 

B_CANCM4 
B_NCEP 
B_PNU 

B_CANCM4 
 B_NCEP 
B_NASA 

Nov 
B_POAMA 
B_NCEP 

B_NASA 
B_CANCM4 

B_NCEP 
B_POAMA 

B_CANCM3 
B_NCEP 

B_CANCM4 
B_POAMA 
M_NCEP 

B_NCEP 
 

B_CANCM3 
B_PNU 

M_CANCM3 

Dec M_NASA 
   

M_PNU 
 

B_, M_, C_, I_ indicate SBC, MWR, CIR, ITR downscaling method, respectively. 

 

 



Final Report: ARCP2013-10CMY-Yoo 37 

 

 

Figure 23. Spatial distribution of selected variables by the POAMA models for 4 to 6-month 

lead precipitation predictions in August (yellow indicates most frequent selection through the 

cross-validation procedures from 1983 to 2015). 

 

Figure 24 and Table 8 show the temporal correlation coefficient for each month according to 

changes in lead time. The TCC values were calculated using MME within the condition that 

forecasts are issued every month. As a result, more forecast information were used for 

calculating MME when the lead-time is getting shorter. For example, when we predict 

precipitation levels in August during the month of July based on 3-month lead-time data, all 

three prediction results (including 1-month lead prediction issued in July, 2-month lead 

prediction issued in June, and 3-month lead prediction issued in May) can be used for 

estimating MME. The months of August shows Temporal Correlation Coefficient (TCC) 

values that are greater than 0.6 for all lead times. In most of the months, when the selected 

models are based on dynamic model predictions, there is a decreasing trend in TCC values 

as the lead times increase.  

 



38 Final Report: ARCP2013-10CMY-Yoo 

 

 

Figure 24. Temporal correlation coefficients (TCC) according to changes in lead time for 

predicting precipitation in Selatan region using multi-model ensemble (MME) average. 

 

Table 8. Temporal correlation coefficients (TCC) according to changes in lead time for 

predicting precipitation in Selatan region using multi-model ensemble (MME) average. 

Month 1 month 2 month 3 month 4 month 5 month 6 month 

JAN 0.69 0.69 0.63 0.49     

FEB 0.72 0.68 0.59 0.5 0.5   

MAR 0.82 0.82 0.76 0.55 0.55 0.45 

APR 0.49 0.49         

MAY 0.68 0.64 0.61 0.51 0.52 0.52 

JUN 0.58 0.58 0.41       

JUL 0.6 0.59 0.58 0.58 0.47 0.47 

AUG 0.76 0.76 0.75 0.75 0.74 0.7 

SEP 0.54 0.54 0.53 0.51 0.52 0.54 

OCT 0.62 0.59 0.55 0.51 0.51 0.5 

NOV 0.58 0.56 0.56 0.59 0.58 0.58 

DEC 0.69 0.62 0.62 0.62 0.62   

 

 

When we consider ASO precipitation amount as a trigger for forest fire, we can issue an 

ASO precipitation forecast from April to July because we are using 6-month lead forecast 

data in developing prototype EWS. Figure 25 shows the comparison of forecasted and 

observed monthly precipitation amount for August to October. The forecasted values in the 

graph are MME, which was estimated using multiple model output which is issued on April. 
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August precipitation predictions (4-month lead forecast) demonstrated the best predictability 

by showing 0.56 of R2 while predictability for September (5-month lead forecast) and 

October (6-month lead forecast) was lower at 0.25 and 0.24 of R2, respectively. As we 

mentioned previously, the number of available models decreased as lead-time increased by 

showing 22, 5, and 3 of individual forecast models for August, September, and October, 

respectively. The result also showed that lower precipitations were overestimated and higher 

precipitations were underestimated for all the cases. 

 

 

Figure 25. Timeseries (left) and scatter plot (right) of monthly precipitation for August (top), 

September (middle), and October (bottom) issued on April. 
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In order to translate forecasted precipitation into fire danger ratings, 4 categories (Extreme, 

High, Moderate, and Low) were established based on the results from the field survey. At 

first, we attempted to determine the ranges for each category using a segmented regression 

method. However, the resulting threshold precipitation was too low, which increased the 

likelihood of extreme carbon emissions being predicted due to scattered data. As a result, 

we set the threshold value manually based on Figure 26. The figure shows the time series of 

3-month accumulated monthly precipitation and carbon emission in Selatan region with the 

determined ranges for 4 fire danger ratings.  

 

 

Figure 26. Time series of 3-month accumulated monthly precipitation and carbon emission in 

Selatan region with the determined ranges for fire danger ratings. 

 

We designed a template for delivering forecast information on both precipitation and 

probability of forest fire for ASO period. Figure 27 shows the forecast summary for monthly 

precipitation and probability of forest fire in Selatan region for August to October in 1997 

which was issued on April, 1997. The graph shows the graphical information for previous 

and current years by providing climatology (blue), observed (red), and  forecasted 

precipitaion (black). The boxplot in the figure shows the variations of predicted values by 

individual models. The figure shows that severe dought during August to October, 1997 was 

closely predicted in Selatan region. The bottom-left table shows the overall summay of 1-

month lead forecast skill scores based on the long-term period with monitoring data. The 

used performance measures include TCC and NRMSE, which can be used for continous 

variables and Accuracy and Heidke Skill Score (HSS), which in turn can be used for 

category forecasts. For calculating Accuracy and HSS, we equally divided the observed 

monthly precipitation into 4 categories (25% for each). HSS measures the fraction of correct 

forecasts after eliminating those forecasts which would be correct due purely to random 

chance (http://www.cawcr.gov.au/projects/verification). In Selatan region,  August and April 

showed the highest (0.54) and lowest (-0.09) HSS values, respectively. Right-bottom table 

shows the information on probability of forest fire for each danger rating. During ASO in 

1997, probability fire danger was predicted high by showing 95% of forecasted precipitation 

belongs to High Range and 5% belongs to Extreme Range. 

http://www.cawcr.gov.au/projects/verification
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Figure 27. Forecast summary for monthly precipitation and probability of forest fire in 

Selatan region for August to October, in 1997 (issued on April, 1997) 

 

 

Finally, the forecast summary will be provided through the web hosting server in APC 

(http://www.apcc21.org/eng/html/apn.jsp). The forecast information will be issued on April to 

July and the forecast summary will be posted on the webpage shown in Figure 28.  

http://www.apcc21.org/eng/html/apn.jsp
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Figure 28. Webpage of prototype early warning system for delivering forecast information. 

 

4. Conclusions 

The APEC Climate Center (APCC) produces climate prediction information utilizing a multi-

climate model ensemble (MME) technique. First, we focused on skill assessment of the 

different forecasting approaches. We compared the region-average of ASO precipitation 

between observation (APHRODITE) and models (including ensemble members of each 

individual model) without any bias correction. Individual models predicted reasonably the 

temporal anomaly trend of ASO precipitation but they failed to predict the absolute 

precipitation amount for a specific month. We applied both dynamical and statistical 

downscaling approaches over the maritime continent for June to August. Even though both 

dynamic and statistical downscaling approaches did not add further prediction skill during 

JJA on Southeast Asia region, it can be said that statistical downscaling using the MME 

forecast will be more appropriate for a real-world application toward Southeast Asian haze 

problems compared to dynamic approaches. As a result, we applied four different statistical 

downscaling methods over four regions in Southeast Asia for August to October (ASO) 

period. Statistical downscaling methods including Simple Bias Correction (SBC), Moving 

Window Regression (MWR), Climate Index Regression (CIR), and Hidden Markov Chain 

(HMM) were compared. Comparison results showed the higher forecast skills within the 

Sumatra regions compared to the Kalimantan regions.  
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Based on the downscaling experiments, four different downscaling methods, in accordance 

with the degree of utilizing the seasonal climate prediction information, were developed and 

integrated into the prototype of Early Warning System (EWS) in order to improve 

predictability. These methods include: 1) the Simple Bias Correction (SBC) method, which 

directly uses APCC’s dynamic prediction data with a 3 to 6 month lead time; 2) the Moving 

Window Regression (MWR) method, which indirectly utilizes dynamic prediction data; 3) the 

Climate Index Regression (CIR) method, which predominantly uses observation-based 

climate indices; and 4) the Integrated Time Regression (ITR) method, which uses predictors 

selected from both CIR and MWR. The downscaling package is based on the open source 

license for further training workshop and free distribution of developed prototype. Long-term 

predictability of monthly precipitation for the 4 regions within Borneo Island was evaluated. 

Based on earlier version of the prototype, APCC led a two day workshop in Petaling Jaya, 

Malaysia, including hands on training sessions on statistical downscaling and prototype. 

Needs assessment for early warning Information was also conducted through the field 

survey with resource managers. Finally, EWS prototype was improved based on feedback 

from both field survey and training workshop participants. The forest fire early warning 

information on Southeast Asia created using the EWS will be provided though the hosting 

server in APCC. 

 

5. Future Directions 

The current South East Asia Fire Danger Rating System (FDRS) was developed and 

implemented in 1998 by ASEAN, in cooperation with the Canadian Forest Service. The 

FDRS is a system that monitors (as opposed to predicting) numerous meteorological 

variables, such as temperature, relative humidity, rainfall, and wind speed to 

comprehensively assess the current risk of forest fires. Seasonal FDRS forecasting would 

entail predicting all of these variables at a 3-month lead time in order to estimate the future 

risk of forest fires. This, however, would constitute a major research effort, and ultimately the 

suggestion was rejected with the thought that staying within the bounds of the originally 

planned proposal and predicting only seasonal precipitation would be a more realistic and 

achievable goal. In the future, the project team may consider creating a more 

comprehensive fire and haze EWS that incorporates all the variables included in the current 

Fire Danger Rating System. 
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Appendix 

 

A.1. Kick-off Meeting 

 Period: August 15th, 2012 

 Place: Singapore 

 Participants: 9 in total (Indonesia: 3, Malaysia: 1, Japan: 1, USA: 1, APCC: 3 

participants) 

 Program details 

Name Presentation Title 

Jaepil Cho 
Toward a fire and Haze Early Warning System for Southeast 
Asia 

Saji Hameed Downscaling strategies and skill assessment 

Robert Field 
Overview of the Fire Danger Rating System at the Malaysian 
Meteorological Department 

Orbita Roswintiarti 
Development and Operation of the Southeast Asia and 
Indonesian Fire Danger Rating System 

Antoyo 
Setyadipratikto 

The Operation of FDRS Development for Land and Forest 
Fire Prevention and Mitigation 

Jaepil Cho 
Overview of the Fire Danger Rating System at the Korea 
Forest Research Institute 

Israr Albar 
Forest Fire Management in Indonesia & Plan for Developing 
Needs from Managers 

 

 Participants’ list 

1. Jaepil Cho, APEC Climate Center, Busan, Korea 

2. Jin Ho You, APEC Climate Center, Busan, Korea 

3. Su-Chul Kang, APEC Climate Center, Busan, Korea 

4. Saji Hameed, The University of Aizu, Aizu, Japan 

5. Robert Field, NASA GISS & Columbia University, New York, USA 

6. Kwan Kok Foo, Malaysia Meteorological Department, Kuala Lumpur, Malaysia 

7. Orbita Roswintiarti, Indonesian National Institute of Aeronautics and Space, 

Jakarta, Indonesia 

8. Israr Albar, Indonesian Ministry of Forestry, Jakarta, Indonesia 

9. Antoyo Setyadipratikto, Indonesian Agency for Meteorology, Climatology and 

Geophysics, Jakarta, Indonesia 
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 Issues Discussed 

1. Activities during the first year will be focused almost exclusively on skill 

assessment of the different forecasting approaches. Outreach activities will be 

minimized during the first year. There was agreement that improved 

understanding of forecasting skill will translate into more useful operational 

products during the second year. 

2. The dynamical downscaled model will be run at APCC through the guidance of 

Saji. We will consider comparing downscaled WRF forecasts to those from 

RegCM and statistical downscaling. 

3. The APCC will be responsible for developing a specific work plan over the 

coming weeks (horizontal resolution, domain). 

4. Hindcast periods should include a mix of normal, moderate and severe fire 

seasons. 

5. The scope of the project will remain focused on seasonal precipitation 

forecasting. We discussed expanding activities to include seasonal FDRS 

forecasting, to capitalize on the adoption of the system in Indonesia and 

Malaysia. This was seen as too far beyond the scope of the current proposal, 

however, and constitutes a major research effort. We will consider seeking 

additional funds for such a project as the current project progresses.  

6. Seasonal precipitation forecasts will be interpreted in terms of historical 

precipitation-fire relationships. 

 

A.2. Project Meeting for Needs Assessment 

 Period: August 1st, 2014 (14:00~17:00) 

 Place: Sapporo (Gracery Hotel) 

 Participants: 5 in total (Indonesia: 2, Malaysia: 1, Japan: 1, APCC: 1) 

 Program details: Presentation by Jaepil Cho ( 

 Participants’ list 

1. Jaepil Cho, APEC Climate Center, Busan, Korea 

2. Saji Hameed, The University of Aizu, Aizu, Japan 

3. Kwan Kok Foo, Malaysia Meteorological Department, Kuala Lumpur, Malaysia 

4. Israr Albar, Indonesian Ministry of Forestry, Jakarta, Indonesia 

5. Ardhasena Sopaheluwakan, Indonesian Agency for Meteorology, Jakarta, 

Indonesia 

 Issues Discussed 

7. There is a need to provide probability-based information. 

8. The possibility of selecting one downscaling method instead of using multiple. 

9. The appropriate warning level will be 3 or 5. 
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10. Providing a regional graph without a map is desirable for increasing the 

understanding of local managers. These issues will be considered through needs 

assessment surveys and interviews by resource managers.  

11. Distribution of the final results via an email to the administrator of the region is 

desirable. 

12. Indonesian Ministry of Forestry will play a role as a focal point for the survey and 

interview of local administrators. 

13. The survey can be separately conducted for 2 or 3 different groups such as local 

government, fire manager, and public. 

14. Malaysia Meteorological Department will play a role as a focal point for the 

training workshop of local resource manager which is currently planned around 

March 2015 in Malaysia. 

 

A.3. APEC Climate Center (APCC) Workshop on “Toward a Fire and Haze Early Warning 

System for Southeast Asia” 

 Period: June 9-10, 2015 

 Venue: Malaysian Meteorological Department, Petaling Jaya, Malaysia 

 Participants: 32 in total (Indonesia: 12 participants, Malaysia: 17 participants, 

APCC: 3 participants) 

 Local Host: Mr. Kwan Kok Foo, Malaysian Meteorological Department 

 Program details 

Day 1: Tuesday, 9 June 2015 

0830 – 0900 Registration at Crystal Crown Hotel 

0900 – 1100 

- Opening Ceremony at Crystal Crown Hotel 

- Welcoming Remarks 

By Dato’ Che Gayah Ismail, Director General, Malaysian Meteorological 

Department  

By Dr. Jinho Yoo, APCC 

- Opening Address 

By H. E. Dato' Sri Dr. Noorul Ainur Mohd. Nur., The Ministry of Science, 

Technology and Innovation of Malaysia, Secretary-General,  

- Press Conference 

- Tea/Coffee Break 

1100 – 1130 Lecture on “Introduction to APCC” Dr. JH Yoo, APCC 

1130 – 1300 Lecture on “Seasonal Climate Forecasting” Dr. JH Yoo, APCC 

1300 – 1410 Lunch Break 

1410 – 1540  
Lectures and hands-on on “Statistical Downscaling Techniques” Dr. JP 

Cho, APCC 
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1540 – 1600 Tea/Coffee Break  

1600 – 1730  
Lectures and hands-on on “Statistical Downscaling Techniques” Dr. JP 

Cho, APCC 

2000 – 2200 
Reception Dinner Hosted by the Minister of Science, Technology and 

Innovation, Malaysia at Kuala Lumpur Tower 

Day 2: Wednesday, 10 June 2015 

0900 – 0930 

Lecture on “Bringing fire early warning system science to public policy 

management” 

Dr. Raffles B Panjaitan, Director of Forest Fire Control, Indonesia 

0930 – 1100  

Project Reports:  

- Fieldwork Report 

- Project Results and Outcomes 

Dr. Israr Albar, Indonesia DF 

1100 – 1120  Tea/Coffee Break 

1120 – 1250  
Demonstrate on “The Prototype Early Warning System (EWS)” Dr. JP 

Cho, APCC 

1250 – 1400  Lunch Break 

1400 – 1530 
Demonstration on “The Prototype Early Warning System (EWS)” Dr. JP 

Cho, APCC 

1530 – 1550 Tea/Coffee Break 

1550 – 1700   
Demonstration on “The Prototype Early Warning System (EWS)” Dr. JP 

Cho, APCC 

1700 – 1730 1.1. Wrap up and Closing Session 

2000 – 2200 1.2. Farewell Dinner Hosted by APCC at Saloma Theatre Restaurant 

 Participants’ list 

1. Dr. Jaepil Cho, APEC Climate Center, Climate Change Research Team. 

2. Dr. Jin Ho Yoo, APEC Climate Center, Climate Prediction Team Leader 

3. Mr. Joseph Patrick Larsen Climate Prediction Team Leader, Staff 

4. Mr. Binsar Oktavianus Togatorop, Forest Fire Extinction Operation, Ministry Of 

Environment and Forestry, Indonesia 

5. Mr. Deny Haryanto, Fire Hotspot Monitoring Data Analysis Officer, Directorate of 

Forest Fire Control, Ministry Of Environment and Forestry, Indonesia 

6. Ms. Eny Haryati, Forest Fire Data Analysis Officer, Directorate of Forest Fire 

Control, Ministry Of Environment and Forestry, Indonesia 

7. Ms. Eva Famurianty, Forest Fire Prevention Data Analysis Officer, Directorate of 

Forest Fire Control, Ministry Of Environment and Forestry, Indonesia 
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8. Mr. Heru Budianto, Secretary of Forest Fire Brigade East Kalimantan, Natural 

Resources Conservation Agency, Ministry of Environment and Forestry, 

Indonesia 

9. Dr. Israr Albar, Directorate of Forest Fire Control, Ministry of Environment and 

Forestry, Indonesia 

10. Mr. Jaya Dharwiniar Cipta, Staff-Suppression Analyst, Dir. Forest Fire Control, 

Ministry of Environment and Forestry, Indonesia 

11. Dr. Raffles Brotestes Panjaitan, Director, Directorate of Forest Fire Control, 

Ministry Of Environment and Forestry, Indonesia 

12. Mr. Ronanda Utama, Head of Forest Fire Brigade Sarolangun, Forest Fire 

Brigade of Sarolangun, Jambi Nature Resource Conservation Agency, Indonesia 

13. Mr. Sahat Irawan Manik, Secretary of Forest Fire Brigade, Forest Fire Control, 

Natural Resource Conservation Agency of West Kalimantan, Indonesia 

14. Mr. Syailendra Djawar, Regional Head of Operations Mangala Agni Pekanbaru, 

Ministry Of Environment and Forestry, Indonesia 

15. Mr. Taufikurohman Eli Karliman, Head of Forest Fire Brigade Pontianak, Forest 

Fire Control, Natural Resource Conservation Agency of West Kalimantan, 

Indonesia 

16. Ms. Aminah Ismail, Meteorological Officer, Atmospheric Science and Cloud 

Seeding Division, Malaysian Meteorological Department 

17. Mr. Jeffri Bin Abd. Rasid, Director, International Affairs Division, Forestry 

Department Peninsular Malaysia 

18. Mr. Mohd Khairi Deraman, Meteorological Officer, Atmospheric Science and 

Cloud Seeding Division, Malaysian Meteorological Department 

19. Mr. Mohd Rizuan Bin Razali, Fire Authority, Water Resources Management 

Branch, Fire and Rescue Operation 

20. Mr. Mohd Ridzuwan Endot, Forest Management Division, Forestry Department 

Peninsular, Malaysia 

21. Mr. Muhamad Azren Bin Abd. Aziz, Assistant Secretary, Disaster Management, 

National Security Council 

22. Mr. Muhamad Sofian Muhamad Yusof, Meteorological Officer, Weather and 

Climate Model Development Division, Malaysian Meteorological Department 

23. Ms. Noor Azura Ismail, Meteorological Officer, Climate and Hydrology Section, 

Malaysian Meteorological Department 

24. Ms. Norizan Binti Abdul Patah, Director, Geospatial Data Development and 

Analysis Division, Malaysian Remote Sensing Agency 

25. Ms. Nur Adira Mahmud, Meteorological Officer, National Weather Center, 

Malaysian Meteorological Department 

26. Ms. Nurul Athirah Ahmad Ezani, Meteorological Officer, Atmospheric Science 

and Cloud Seeding Division, Malaysian Meteorological Department 
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27. Mr. Pauzan Bin Ahmad, Chief Operations Management, Fire and Rescue 

Operation 

28. Mr. Ramli Mat, Senior Assistant Director, Forest Plantation & Protection, Forestry 

Department Peninsular Malaysia 

29. Ms. Siti Fariza Mat Tahir, Meteorological Officer, Climate and Hydrology Section, 

Malaysian Meteorological Department 

30. Mr. Zamzul Rizal Bin Zulkifli, Environmental Control Officer, Air Division/Air 

Quality Data Management Section, Department Of Environment 

31. Ms. Zureen Norhaizatul Che Hassan, Meteorological Officer, Weather and 

Climate Model Development Section, Malaysian Meteorological Department 

32. Mr. Kwan Kok Foo, Atmospheric Science & Cloud Seeding Division, Malaysian 

Meteorological Department  
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B.1. Field Survey 

 List of resources manager/stake holders interviewed 

Survey areas Stake holders 

Riau Province 1. Nature Conservation Agency 

2. Secretary Fire Brigades  

3. Fire Brigade Minas  

4. Fire Brigade Siak  

5. Fire Community Siak  

6. BMKG Agency  

7. Siak Regency Disaster Management Authority 

Central Kalimantan 1. Nature Conservation Agency  

2. Sebangau National Park  

3. Secretary Fire Brigades  

4. Fire Brigade Palangkaraya  

5. Fire Brigade Muara Teweh  

6. Fire Brigade Kapuas  

7. Local Disaster Management Authority 

East Kalimantan 1. Nature Conservation Agency  

2. Kutai National Park  

3. Secretary Fire Brigades  

4. Fire Brigade Paser  

5. Provincial Land and Fire Control Office  

6. Provincial Disaster Management Authority 

 

 

 Structured questionnaire form 

1. Are you using weather/climate forecast information? 

☐ Yes  ☐ No  

 

2. If you selected ‘yes’ in question No 1, what is the source of the forecast information?  

_____________________________________________________________________________ 

 

3. If you selected ‘yes’ in question No 1, How often do you use the 3-6 Month Forecast?  

➀ Monthly or less ➁ Monthly ➂ Two to three times a month ➃ More than four times a 

month  

 

4. If you selected ‘yes’ in question No 1, what is the lead-time of the forecast information? 

➀ Short-range forecast (less than 1week)   ➁ Mid-range forecast (1 week ~ 3 month) 

     ➂  Long-range forecast (3 month ~ 6 month) 
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5. If you selected ‘yes’ in question No 1, what is the time-scale of the forecast information?  

➀ Hourly ➁ Daily  ➂ Weekly ➃ Monthly  

 

6. If you selected ‘yes’ in question No 1, what is the spatial scale of the forecast 

information?  

➀ Station    ➁ ~50km(grid)  

➂ 50~100km(grid)  ➃ 100~200km(grid)  ➄ 200km ~ (grid) 

 

7. If you selected ‘yes’ in question No 1, what is the weather variable of the forecast 

information? 

☐ Precipitation  ☐ Temperature  

☐  Relative humidity ☐ Wind speed  ☐ Solar radiation 

 

8. If you selected ‘yes’ in question No 1, what is the delivery methods of the forecast 

information?  

➀ Webpage     ➁ Email     ➂ FTP    ➃ Mobile App   ➄ Others (_________) 

 

9. If you selected ‘yes’ in question No 1, how do you think about the accuracy of the 

forecast information for your fire management work? 

➀ Very high  ➁ High  ➂ Medium  ➃ Low  ➄ Very low 

 

10. If you selected ‘yes’ in question No 1, how useful is the forecast information for your 

fire management work? (How much are you satisfied with the forecast information?) 

➀ Very high  ➁ High  ➂ Medium  ➃ Low  ➄ Very low 

 

 

 

11. If you selected ‘Low’ or ‘Very low’ in question No 10, what is the expected lead-time of 

weather information for improving future forest fire management? 

➀ Short-range forecast (less than 1week)   ➁ Mid-range forecast (1 week ~ 3 month) 

     ➂  Long-range forecast (3 month ~ 6 month) 

 

12. If you selected ‘Low’ or ‘Very low’ in question No 10, what is the expected the time-scale 

of weather information for improving future forest fire management? 

➀ Hourly ➁ Daily  ➂ Weekly ➃ Monthly  

 

13. If you selected ‘Low’ or ‘Very low’ in question No 10, what is the expected the spatial 

scale of forecast information for improving future forest fire management? 

➀ Station    ➁ ~50km(grid)  

➂ 50~100km(grid)  ➃ 100~200km(grid)  ➄ 200km ~ (grid) 
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14. If you selected ‘Low’ or ‘Very low’ in question No 10, what is the expected weather 

variable of the forecast information for improving future forest fire management (select 

all)? 

☐ Precipitation    ☐ Temperature     ☐  Relative humidity    ☐ Wind speed     

☐ Solar radiation 

 

15. If you selected ‘Low’ or ‘Very low’ in question No 10, what is the expected delivery 

method of the forecast information for improving future forest fire management (select 

all)? 

➀ Webpage     ➁ Email     ➂ FTP    ➃ Mobile App   ➄ Etc (_________) 

 

================================================================================== 

16. Are you using fire danger early warning information? 

☐ Yes  ☐ No  

 

17. If you selected ‘yes’ in question No 16, what is the source of the fire danger information?  

_____________________________________________________________________________ 

 

18. If you selected ‘yes’ in question No 16, How often do you use the fire danger information?  

➀ Monthly or less ➁ Monthly ➂ Two to three times a month ➃ More than four times a 

month  

 

19. If you selected ‘yes’ in question No 16, what is the lead-time of the fire danger 

information? 

➀ Short-range forecast (less than 1week)   ➁ Mid-range forecast (1 week ~ 3 month) 

     ➂  Long-range forecast (3 month ~ 6 month) 

 

20. If you selected ‘yes’ in question No 16, what is the time-scale of the fire danger 

information?  

➀ Hourly ➁ Daily  ➂ Weekly ➃ Monthly  

 

21. If you selected ‘yes’ in question No 16, what is the spatial scale of the fire danger 

information?  

 

22. If you selected ‘yes’ in question No 16, how many fire danger ranges are provided? 

➀ 2             ➁ 3             ➂ 4            ➃ 5             ➄ greater than 5 

 

23. If you selected ‘yes’ in question No 16, what is the delivery methods of the fire danger 
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information?  

➀ Webpage     ➁ Email     ➂ FTP    ➃ Mobile App   ➄ Others (_________) 

 

24. If you selected ‘yes’ in question No 16, how do you think about the accuracy of the fire 

danger information? 

➀ Very high  ➁ High  ➂ Medium  ➃ Low  ➄ Very low 

 

25. If you selected ‘yes’ in question No 16, how useful is the fire danger information for 

your work? (How much are you satisfied with the information?) 

➀ Very high  ➁ High  ➂ Medium  ➃ Low  ➄ Very low 

 

26. If you selected ‘Low’ or ‘Very low’ in question No 25, what is the expected lead-time of 

the fire danger information? 

➀ Short-range forecast (less than 1week)   ➁ Mid-range forecast (1 week ~ 3 month) 

     ➂  Long-range forecast (3 month ~ 6 month) 

 

27. If you selected ‘Low’ or ‘Very low’ in question No 25, what is the expected the time-scale 

of the fire danger information? 

➀ Hourly ➁ Daily  ➂ Weekly ➃ Monthly  

 

28. If you selected ‘Low’ or ‘Very low’ in question No 25, what is the expected the spatial 

scale of the fire danger information? 

 

29. If you selected ‘Low’ or ‘Very low’ in question No 25, what is the expected appropriate 

number of danger ranges of the information? 

➀ 2             ➁ 3             ➂ 4            ➃ 5             ➄ greater than 5 

 

30. If you selected ‘Low’ or ‘Very low’ in question No 25, what is the expected delivery 

method of the fire danger information for improving future forest fire management 

(select all)? 

➀ Webpage     ➁ Email     ➂ FTP    ➃ Mobile App   ➄ Etc (_________) 


