Assessment of Climate-Induced Long-term Water Availability in the Ganges Basin and the Impacts on Energy Security in South Asia

The following collaborators worked on this project:

1. Dr. Xin Zhou, Institute for Global Environmental Strategies (IGES), Japan, zhou@iges.or.jp
2. Dr. Bijon Kumer Mitra, Institute for Global Environmental Strategies (IGES), Japan, b-mitra@iges.or.jp
3. Dr. Devesh Sharma, Central University of Rajasthan (CURAJ), India, deveshsharma@curaj.ac.in
4. Prof. G.M. Tarekul Islam, Bangladesh University of Engineering and Technology (BUET), Bangladesh, tarekulislam87@gmail.com
5. Dr. Rabin Malla, Center of Research for Environment, Energy and Water (CREEW), Nepal, rabin@creew.org.np
6. Dr. Diego Silva Herran, Institute for Global Environmental Strategies (IGES), Japan, silva-herran@iges.or.jp
7. Dr. Brian Johnson, Institute for Global Environmental Strategies (IGES), Japan, Johnson@iges.or.jp
Table of Content

Table of Content ... 3
Project Overview ... 4
1. Introduction .. 9
2. Methodology ... 12
3. Results & Discussion ... 14
4. Conclusions .. 96
5. Future Directions .. 98
6. References .. 99
7. Appendices .. 105
Project Overview

<table>
<thead>
<tr>
<th>Project Duration</th>
<th>:</th>
<th>2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Awarded</td>
<td>:</td>
<td>US$ 40,000 for Year 1; US$ 35,000 for Year 2</td>
</tr>
<tr>
<td>Key organisations involved</td>
<td>:</td>
<td>Institute for Global Environmental Strategies (IGES), Japan (Dr. Xin Zhou, Dr. Bijon Kumer Mitra, Dr. Brian Johnson, Dr. Diego Silva Herran)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central University of Rajasthan (CURAJ), India (Dr. Devesh Sharma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bangladesh University of Engineering and Technology (BUET), Bangladesh (Professor G.M. Tarekul Islam)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Center of Research for Environment, Energy and Water (CREEW), Nepal (Dr. Rabin Malla)</td>
</tr>
</tbody>
</table>

Project Summary

The Ganges basin provides essential water for drinking, irrigation, industrial use and cooling the power generation facilities. Changes in the water availability induced by global climate change will impact on the economic development as well as the people’s life in this basin and beyond. Water competition among major consumers will become fierce in the Ganges basin in the coming decades when the three major South Asian developing countries, namely Nepal, India and Bangladesh, prioritise poverty eradication, industrial development, food security and universal energy access for achieving their long-term social and economic development goals. These combined together will exacerbate the water stress situation that has been happening in some sub-basins of Ganges. As one of the largest water consumers, the energy sector will face great challenge to ensure having sufficient water to maintain the stable operation of the existing and the planned thermal power plants in the future. Knowledge on the spatial distribution of water supply, water demand, water supply-demand balance and energy water requirement in a quantitative manner is crucial to make feasible energy plan and effective water resource management. However, relevant studies on these practical issues are rarely found in the existing literature.

This project, entitled “Assessment of Climate-Induced Long-term Water Availability in the Ganges Basin and the Impacts on Energy Security in South Asia”, is funded by the Asian-Pacific Network for Global Change Research (APN). The project aims to inform the decision makers, relevant stakeholders and energy project investors about future water availability under climate change conditions, water supply-demand balance and the water risks for the existing and the planned power plants from now and up to 2050. We developed a novel approach on the integrated assessment of the water-energy nexus by using various modelling techniques (hydrological modelling and water demand projections) together with the first-hand data collected from the power plant field surveys. Three case studies were conducted for India,
Bangladesh and Nepal. The case study in India covering four selected sub-basins, namely Chambal, Damodar, Gandak and Yamuna, provide a detailed assessment on future water availability, water demand, water supply-demand balance and the water risks for the existing and the planned thermal power plants at the sub-basin as well as the district levels. To enable effective communications with the target audience, a free on-line web tool on the Water-Energy Nexus Assessment for India was developed to help explore and visualise the spatial data and the results of the project in maps. Through multi-stakeholder consultations at the kick-off workshops and the final workshops held in the three countries, the objective of this project, the major results and key messages have been effectively communicated with relevant policy makers from the development and planning ministry, energy sector and water supply and management department, etc., as well as the academia and other stakeholders (e.g. the project investors). This project had made contributions to the strengthening of the science-policy interface in the area of water-energy nexus for the Ganges basin.

Keywords: Water-energy nexus, integrated assessment, Ganges basin, water supply and demand balance assessment, water stress for thermal power generation

Project outputs and outcomes

Project outputs include:
- An integrated assessment of the water-energy nexus at the sub-basin level, including water supply assessment, water demand assessment, water supply and demand balance assessment and water stress assessment for future thermal power generation;
- A free on-line tool providing the spatial visualisation results on water supply, water demand, water supply and demand balance, and the water stress for the existing and the planned thermal power plants at the district level for four selected sub-basins in India (accessible at http://153.126.211.142/public_html/simulation.html);
- Stakeholder consultation workshops through which the objective, methodology, results and key messages were effectively communicated with relevant stakeholders in Nepal, India and Bangladesh.

Project outcomes:
- Relevant governmental officials particularly from the national planning organisation and the energy development sector were the first time informed about the spatial distribution of water supply and demand balance at the district level.
- Relevant planning officials, energy planners and the investors were well aware of the potential water risks faced by the existing and the planned thermal power plants which locate in the water-stressed regions at present and in the future.
- Relevant planning officials, energy planners and the investors were informed about the potential sites where water will be surplus for the consideration of future energy projects, particularly for the thermal power plants.
- Relevant energy planners, project developers and the investors were informed about the substantial impacts of the selection of proper technologies of power generation and the cooling system on sustainable water use and available water saving technologies.
Key facts/figures

- For India, from the supply side, the results show that the overall water availability will increase in future in the selected sub-basins, particularly in the Chambal, Damodar and Gandak sub-basins. However, the water availability in the Yamuna sub-basin will decrease in the far future.

- Water availability in India will vary from month to month depending on the physical conditions such as precipitation, evapotranspiration and surface runoff, etc. The water availability in both the dry and the wet seasons will increase in the Damodar and the Gandak sub-basins, however, it will decrease in the dry season in the Chambal and the Yamuna sub-basins. At the district level, the water availability in most of the districts in the four sub-basins will increase.

- From the demand side in India, future water demand will increase due to population growth, industrial development, increase in power generation and irrigation. Out of four sub-basins, there will be the least water demand in the Chambal sub-basin and the most water demand in the Yamuna sub-basin. In all the four sub-basins, the irrigation water demand will dominate followed by the domestic water demand and this trend will continue till 2050. Energy water demand is the highest in the Damodar sub-basin followed by the Gandak sub-basin. Energy water demand will greatly increase in the Gandak sub-basin.

- For the water supply-demand balance at the sub-basin level in India, the Chambal and the Damodar sub-basins will have surplus water in the future. The Chambal sub-basin will have the largest water surplus among the four selected sub-basins. The Yamuna and Gandak sub-basins will face serious water deficit in the future, particularly the Yamuna sub-basin.

- At the district level, in the Chambal and the Damodar sub-basins, particularly in the Chambal sub-basin, most of the districts will have water surplus. However, in the Gandak and the Yamuna sub-basins, most of the district will face water deficit in the future. Particularly in the Gandak sub-basin, there will be many planned new thermal power installations which operation will face sever water shortage.

- Many of the existing power plants are located in the water-stressed areas and many new thermal power plants are planned to be installed in the areas with high or moderate water stress. Specifically, most of the exiting power plants and the newly planned power plants in the Yamuna and the Gandak sub-basins, a few in the upper part of the Chambal sub-basin and a few in the middle right part and the lower part of the Damodar sub-basin will face high risks of water shortage. Among the four sub-basins, most of the districts in the middle and lower part of the Chambal sub-basin and the districts located in the upper part of Damodar (the yellow area) can be considered as the ideal locations for new thermal power plants.

- For Bangladesh, from the supply side, the results show that the Ganges flow will increase significantly in the future especially during the pre-monsoon (April to May) and the monsoon months (June to September). There may be a decrease of the inflow during the post-monsoon period (October-November). The results also show that winter flow may likely increase in the future due to the increase in winter precipitation (December-February) under climate change.
From the demand side in Bangladesh, the results show that the power sector will become the largest water consumer if the power plants will be equipped with the open loop cooling system. However, if the power plants will be installed with the close loop cooling system, a significant amount of water can be saved. Selection of proper cooling systems for thermal power generation will be critical to influence on the total water demand and the level of water stress in the country. Relevant policy makers, investors and the energy project developers should be highly aware of the big impacts of the selection of the power generation technologies and the cooling systems in particular on the sustainability of water use.

Potential for further work

The present study can be further developed in the following areas. First, the Ganges River includes 19 sub-basins across the borders of Nepal, India and Bangladesh. The present study only conducted a detailed case study for four selected sub-basins in India and a case study for Bangladesh covering the whole river sub-basin within Bangladesh. An extended study covering all the 19 sub-basins can be developed in the future to provide a full picture about the water-energy nexus in the Ganges basin. In addition, the case study in India provided a very detailed assessment at the district level for the four selected sub-basins which can be extended to all the 19 sub-basins of Ganges. The calibration and validation of the SWAT model for the assessment of water supply at the sub-basin level are very limited in the present study and should be improved further using the morning data or other reference data from secondary sources. The dissemination of the present study is limited through stakeholder consultation workshops and the IGES website and could be extended through relevant outreach events and the publications in relevant journals.

Publications

Nexus for Resource Security in the Ganges River Basin, 20 November 2018, Central University of Rajasthan, India.

Acknowledgments

We would like to thank the Asian-Pacific Network for Global Change Research (APN) for providing the generous fund to support this two-year project. Special thanks are given to Dr. Linda Anne Stevenson, Ms. Dyota Condrorini and Ms. Nafesa Ismail for providing detailed guidance and various support throughout the implementation of the project without which we cannot complete the project successfully.

We feel grateful to the three collaborating institutions and relevant collaborators, including Dr. Devesh Sharma, Central University of Rajasthan (CURAJ), India, Professor G.M. Tarekul Islam, Bangladesh University of Engineering and Technology (BUET), Bangladesh and Dr. Rabin Malla, Center of Research for Environment, Energy and Water (CREEW), Nepal, without whose brilliant contributions from both technical and logistic perspectives this project cannot be finished with fruitful results. We would like to extend our thanks to the research assistants, Mr. Sazzad Hossain, Dr. Sawtantra Dubey and Mr. Aashis Sapkota, who contributed to the research activities in Bangladesh, India and Nepal, respectively. In addition, grateful thanks are given to many stakeholders in the three countries who kindly attended the kick-off workshops or the final workshops and provided invaluable comments and feedbacks for the improvement of the project design, methodology and the results. We are also thankful to those power plants which provided relevant information and detailed data to support our field surveys.

We sincerely thank Dr. Hiroaki Shirakawa who helped develop the Water-Energy Nexus Assessment web tool. This free on-line tool greatly enhance the ability of presenting a large amount of spatial data which is challenging to be included in a written report. As a handy tool, it helps strengthen the communications with the target audience.
1. Introduction

Water, energy and food are fundamental resources to support human survival, economic growth and sustainable development. Rapid urbanization and population growth are placing increasing pressures on these resources and shortage of any resources could lead to social and political instability, geopolitical conflicts and human health hazards and cause irreversible environmental damages both within individual countries and beyond the national borders.

Resources are intrinsically interdependent on each other for both supply and demand sides. Water is required for extracting fuels and refining and processing the raw materials which are finally transformed into different forms of energy such as natural gas, liquid fuels or electricity. On the global scale, approximately 8% of the total withdrawn water is used for energy generation (Bhattacharya and Mitra, 2013). In some developed countries it accounts for about 40% of the total withdrawn water (World Economic Forum, 2011; Huston et al., 2004). Large water demand will continue to grow particularly in the emerging countries like China, India and Brazil due to the increasing energy demand from rapid economic development. Putting these three countries together will account for 30% of the global total energy consumption over the next 40 years (World Energy Council, 2010). Similarly, energy is an important input to enable modern water supply and wastewater treatment. Hence, insecurity of individual sectors can become more serious when the issues are considered together. Until recently, a surge in demand for water and energy has typically been addressed through sectoral approaches which ignores the intrinsic interactions among various resources. This needs to be changed by taking into account of the interlinkages among resources and integrating into relevant national and regional development plans.

South Asia is one of the major regions in the world with rapid economic development and population growth, as well as with a large poverty-ridden population, high energy demand and limited availability of water and energy. As a result, resource conflicts are prominent issues in this region which are considered threatening to the long-term growth pattern. On the one hand, South Asia is one of the driest regions in the world. On the other hand, the existing power generation is dominated by coal-based and gas-based thermal power plants which are water intensive facilities (Mitra and Bhattacharya, 2012). The portfolio of energy mix will stress future water availability among various end users. In fact some cases of water conflicts were reported in South Asia (The Times of India, 2011; UNEP Finance Initiative, 2010; NDTV, 2013). The situation can become even worse when the impacts from long-term climate change are taken into account.

There are few systematic analyses which address these issues from the perspective of the interactions between energy security and water availability that will be impacted from climate change in South Asia. The study conducted by Mitra and Bhattacharya (2012) is one of the few quantitative studies of the water-energy nexus in this region. Their estimates show that the water demand from Indian power plants will grow to 225 billion cubic meters by 2050 if the power plants are equipped with the open-loop cooling systems. This indicates that water availability can possibly threat the reliability of the existing operations as well as the physical, economic and environmental viability of future projects. Given the location-specific nature of water resources, understanding the water and energy relationship at the river basin and sub-
basin levels, or even at particular sites, is crucial for ensuring future energy security in the region particularly for transboundary river catchment.

The Dublin Conference on Water and Environment in 1992 and the UN Conference on Environment and Development pointed out that resource management should be considered throughout the river basin to avoid negative social, economic and environmental impacts, which is particularly important for transboundary river basins.

The Ganges basin is a strategic river basin in South Asia. The Ganges basin has the second largest catchment area and is the most populated area in the world. It is the home of more than 500 million people which will increase to 1 billion by 2050. More than 30% of the water resources in the region are provided from this basin. Figure 1 shows the location of Ganges River with 19 sub-basins. The basin connects three South Asian countries: Nepal, India and Bangladesh. Population growth together with rapid economic development will place great pressure on water resources. Ganges basin is defined as a water-stressed area and the problem can be more serious in the near future. In addition, water intensive economic activities such agriculture and power generation are expected to increase.

Figure 1 Map of the Ganges basin (World Bank 2014)

The Ganges basin supplies water to the thermal power plants with a capacity of more than 50 GW, accounting for over 40% of the total capacity in the region. Massive upstream hydropower development impacts downstream water supply and causes water scarcity in some parts of India and Bangladesh particularly in the dry season. Thermal power is the major type covering 73% of the total installed capacity followed by hydro power. Out of the total installed capacity of thermal power plants, 92% uses coal. Therefore, the Ganges basin is a strategic area in South Asia. Its sustainable use is of great importance for the regional development.
This project, funded by the Asia Pacific Network for Global Change Research (APN), is entitled “Assessment of Climate-induced Long-term Water Availability in the Ganges Basin and Impacts on Energy Security in South Asia”. The objective is to inform the decision makers and investors on water supply and demand balance/deficit under the long-term impacts from climate change up to 2050 and water stress for future energy supply. This will enable effective energy planning and water management and helps reduce the risks of investment in the water-constrained areas.

The outputs of the project includes:

(i) An integrated assessment of water-energy nexus at the sub-basin level, including water supply assessment, water demand assessment and water stress assessment for future thermal power generation;
(ii) A free on-line tool providing the spatial visualisation of water supply, water demand, water supply and demand balance/deficit, and water availability for the existing and planned thermal power plants at the district level for India (accessible at http://153.126.211.142/public_html/simulation.html);
(iii) Stakeholder consultation workshops through which the objective, methodology, results and key messages were conveyed to relevant stakeholders in the three countries.

We conducted the case studies in three riparian countries of the Ganges basin including Nepal, India and Bangladesh with different levels of details and using different methodologies particularly for the future water demand assessment. The case study for India is the most detailed which provides a full assessment including three components, i.e. water-energy nexus including water supply assessment based on the Soil and Water Assessment Tool (SWAT), water demand assessment for agriculture, livestock, households and industry based on various methodologies and water stress assessment for future thermal power plants, at the district level for four selected sub-basins, Chambal, Damodar, Gandak and Yamuna.

The case study for Bangladesh was conducted at a single sub-basin level including water supply assessment based on SWAT, water demand assessment mainly based on literature review at the sub-basin level and water stress assessment for overall thermal power generation in the sub-basin.

The case study for Nepal is the least detailed and mainly based on literature review. The majority of energy supply in Nepal is based on hydro which is not relevant for the assessment of the water stress for thermal power plants. The major purpose of including the Nepal's case study is to enable the discussions on cross-border cooperation in the context of water-energy nexus among the three countries. On the one hand, abundant water resource in Nepal provides potential opportunities to invest in hydro power expansion which enables cross-border electricity transmission to India and Bangladesh to help address the big gaps between the energy supply and demand in these two countries. On the other hand, large-scale hydro power development in Nepal as an upstream country may impact downstream water supply in India and Bangladesh in particular in the dry season which may worsen the situation of water shortage for the existing and future power plants. The synergies and trade-offs between the upstream and downstream countries in the context of water-energy nexus is very relevant for this project. Due to the differences in the three case studies, we include the two case
studies of India and Bangladesh in the main body of this report and Nepal’s case study in Appendix 1.

Section 2 provides the overall analytical framework of this project including the water supply module, the water demand module, the energy module and water-energy nexus assessment for thermal power generation, as well as power plant surveys, stakeholder consultations and the web tool developed for the spatial visualisation of the research results. Section 3 presents the results of the two case studies in India and Bangladesh with discussions. For each case study, specific methodologies for water supply assessment and water demand assessment are provided followed by associated results. Section 4 summaries the conclusions and policy implications and Section 5 discusses future direction of this research.

2. Methodology

2.1 An integrated assessment approach

Various approaches were used to implement this project. First of all, we developed an integrated approach which combines various modelling techniques to assess water-energy nexus from the perspective of energy supply security under the long-term impacts from climate change.

Second, one of the key parameters for future water demand projection is water use intensity of thermal power generation based on different technologies, including fuels (coal, gas and oil) and the cooling systems (close loop, open loop and dry cooling systems). Due to limited available literature in this area particularly for South Asia and the importance of this parameter, we conducted field surveys of about 15 power plants located in different places in India and Bangladesh, respectively, and use various technologies as well as questionnaire survey through our local collaborators to get the first-hand data.

Third, to achieve the objective of this project which is to inform the decision makers and investors on the spatial distribution of water stress particularly from long-term energy supply security perspective, we conducted stakeholder consultation meetings in the three countries to communicate with relevant stakeholders on the research purpose and methodologies and collected feedbacks on their concerns and needs at the kick-off meetings and conveyed the research results and key messages at the final workshops (see Appendices 2 - 6).

Finally, to enable policy makers and investors to explore the data, relevant assessment and results, we developed a free on-line tool on the spatial visualisation of water supply, water demand, water supply-demand stress and water availability for future thermal power generation for India at the district level for four sub-basins, Chambal, Damodar, Gandak and Yamuna.

2.2 Analytical framework

We developed an integrated approach which links various modelling techniques including hydrological modelling based on SWAT, water demand assessment for major water consumers (agriculture, domestic sector and industry) based on various techniques and energy technology scenario analysis for the existing and future thermal power generation. The
analytical framework (see Figure 2) includes Water Supply Module, Water Demand Module, Water Supply-Demand Assessment, Energy Module and Water-Enter Nexus Assessment.

Under the Water Supply Module, Based on the results from the General Circulation Models (GCM) (IPCC, 2007), i.e. future climate change under the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 for the time period of 2020-2050 for the Ganges sub-basins, future water supply (in billion cubic meters, BCM) is projected using a hydrological model SWAT.

Under the Water Demand Module, future water demand of three major sectors including agriculture/livestock, domestic sector and industry (manufacturing, commercial and services) is estimated for the Ganges sub-basins based on various methodologies taking into account of population growth, income levels, economy development and activity expansion, etc. up to 2050. Since the methodologies used for water demand projection for India and Bangladesh are different, detailed methodologies used for the projections of the three sectors are introduced in Sections 3.1 and 3.2, respectively. Adding up the water demand from the three major sectors is the total water demand excluding the water demand from thermal power generation which is estimated in the Energy Module.

Based on the outputs from the Water Supply Module, i.e. future water availability under climate scenarios RCP 4.5 and RCP 8.5, and the outputs from the Water Demand Module, i.e. water demand from the three sectors, water supply and demand balance at the sub-basin level or at

Figure 2 Overall analytical framework

Under the Water Demand Module, future water demand of three major sectors including agriculture/livestock, domestic sector and industry (manufacturing, commercial and services) is estimated for the Ganges sub-basins based on various methodologies taking into account of population growth, income levels, economy development and activity expansion, etc. up to 2050. Since the methodologies used for water demand projection for India and Bangladesh are different, detailed methodologies used for the projections of the three sectors are introduced in Sections 3.1 and 3.2, respectively. Adding up the water demand from the three major sectors is the total water demand excluding the water demand from thermal power generation which is estimated in the Energy Module.

Based on the outputs from the Water Supply Module, i.e. future water availability under climate scenarios RCP 4.5 and RCP 8.5, and the outputs from the Water Demand Module, i.e. water demand from the three sectors, water supply and demand balance at the sub-basin level or at...
the district level can be assessed by subtracting the future water demand of three sectors and the ecological water use (estimated as 1.5% of total water demand) from future water supply. Surplus in water supply can be considered for future thermal power generation. Further water stress assessment for future thermal power generation is conducted under the spatial Water-Energy Nexus Assessment. Deficit in water supply implies there will be no water available for the proper operation of the existing power plants nor for new capacity installations.

Under the Energy Module, water demand from future thermal power generation (including both existing installations and the planned new installations) is estimated. Information on i) the location of the existing installations and the planned new installations; ii) the types of technologies used for each installation (both the existing and the planned) including different power generation technologies (coal-fired, gas-fired, oil-fired, hydro and other renewables) and the cooling systems (open-loop, close loop and dry cooling, etc.) and iii) total annual electricity generation of each installation are collected. To obtain the first-hand data on the water intensity (in m3/MWh) of different technologies (combination of power generation technologies and the cooling systems), power plant field surveys and questionnaire survey were conducted. Based on the type of technology used, the water intensity of the particular type of technology and the total annual electricity generation, future water demand from each installation is estimated. Total water demand from thermal power generation at the sub-basin or district level is obtained by summing up individual demand in the respective locations.

Based on the outputs from Water Supply-Demand Assessment, i.e. water surplus/deficit for the existing and new planned thermal power generation at the sub-basin or district levels, and the outputs from the Energy Module, i.e. total water demand from thermal power generation at the same sub-basin or district levels, water stress for future thermal power generation for each location (sub-basin or districts) can be assessed. For those locations in which water supply is deficit after balancing the water supply and water demand from three sectors, the operation of the existing and the planned thermal power installations in the locations will be constrained by water availability. Furthermore, for the locations with water supply surplus but not enough to satisfy the water demand from the existing or planned thermal power generation within the locations, the operation of these installations will also be threatened by water constrains. The results of the water stress assessment for each location are provided in maps and can be visualised through the on-line spatial analysis tool. For those areas under water stress, alternative power generation technologies or alternative cooling methods that can sustain thermal power generation under water constrains are provided.

3. Results & Discussion

3.1 Case study in India

The catchment area of Ganges lies between longitudes 73° 30’ to 89° 0’E and latitudes 22°30’ to 31° 30’N connecting three South Asian countries, i.e. India, Bangladesh and Nepal. The Ganges catchment area is approximately 1,087,300 km², which covers 52% of the area of South Asia and 30% of the area of India (World Bank, 2014). Ganges is very important to the riparian countries, particularly India, which occupies 76% of the total catchment area.

Ganges is defined as a water-stressed river basin and the problem is expected to become more critical in the near future with the expected increase in water-intensive economic activities such as agriculture and power generation. Rapid growing urbanization is also a big
concern for the Indian areas located in this river basin. In India, more than 600 million people live in this basin and 50 major cities are located in this region (World Bank, 2015)

Water of this basin is used for various purposes including irrigation, domestic use, industrial use and hydropower generation. Among the users, agriculture alone accounts about 90% of total water use (Sinha, 2014). According to the Ministry of Water Resources of India, the average water resource potential of Ganges is 525,020 Million Cubic Metres (MCM), of which only 250,000 MCM is utilisable water. Of the utilisable water, 56,451 MCM is already sanctioned for various hydropower projects in the basin and the rest of the utilisable water 193,549 MCM is for other users. A significant amount of the water is being diverted for various industrial purposes. Approximately 50,000 MW of thermal power capacity is installed in the Ganges basin that locates in Indian territories which abstract millions of cubic meters of water from the surface water system (Sinha, 2014).

Power generation, 73% of which is provided by thermal power generation technologies, demands huge amount of water from this basin. Table 1 shows the installed capacity of different power utilities located in the Ganges basin (as of 31 March 2015). Geographically, Uttar Pradesh has the largest installed capacity followed by Rajasthan and West Bengal.

Table 1 Installed capacity of power utilities in Indian states located in the Ganges basin (in MW)

<table>
<thead>
<tr>
<th>State</th>
<th>Coal</th>
<th>Gas</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Renewables</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bihar</td>
<td>2,516</td>
<td>-</td>
<td>2,516</td>
<td>129</td>
<td>114</td>
<td>2,760</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>2,405</td>
<td>-</td>
<td>2,405</td>
<td>201</td>
<td>20</td>
<td>2,626</td>
</tr>
<tr>
<td>West Bengal</td>
<td>8,084</td>
<td>100</td>
<td>8,184</td>
<td>1,248</td>
<td>132</td>
<td>9,564</td>
</tr>
<tr>
<td>DVC</td>
<td>7,161</td>
<td>90</td>
<td>7,251</td>
<td>193</td>
<td>-</td>
<td>7,444</td>
</tr>
<tr>
<td>Delhi</td>
<td>5,002</td>
<td>2,366</td>
<td>7,368</td>
<td>122</td>
<td>822</td>
<td>8,333</td>
</tr>
<tr>
<td>Haryana</td>
<td>6,528</td>
<td>560</td>
<td>7,088</td>
<td>109</td>
<td>1,457</td>
<td>8,790</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>152</td>
<td>62</td>
<td>214</td>
<td>34</td>
<td>3,422</td>
<td>3,733</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>9,401</td>
<td>825</td>
<td>10,226</td>
<td>573</td>
<td>1,719</td>
<td>16,904</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>11,678</td>
<td>550</td>
<td>12,228</td>
<td>336</td>
<td>2,168</td>
<td>15,722</td>
</tr>
<tr>
<td>Uttarakhand</td>
<td>400</td>
<td>69</td>
<td>469</td>
<td>22</td>
<td>2,442</td>
<td>3,177</td>
</tr>
<tr>
<td>Total</td>
<td>53,325</td>
<td>4,623</td>
<td>57,948</td>
<td>1,196</td>
<td>13,802</td>
<td>79,714</td>
</tr>
</tbody>
</table>

Source: Central Electricity Authority, 2015.

According to Gosain et al. (2011), the impacts of climate change and climate variability on water resources are likely to affect irrigated agriculture, installed power generation, environmental flows in the dry season and higher flows during the wet season, thereby causing severe droughts and floods in urban and rural areas. The increasing pressures induced by climate change on water resources will threat the livelihoods of 85% population of this basin that rely on agriculture and will also negatively affect the basin’ sustainable development.

The case study for India provides a detailed assessment including three components, i.e. water-energy nexus including water supply assessment based on SWAT, water demand assessment for agriculture, livestock, households and industry based on various
methodologies and water stress assessment for future thermal power plants. The assessment of the water-energy nexus was conducted at the district level for four selected sub-basins, Chambal, Damodar, Gandak and Yamuna.

3.1.1 Selection of the sub-basins

It is realized that water availability may challenge the reliability of the operation of the existing power plants as well as the physical, economic and environmental viability of future power plant projects. Considering the location-specific nature of water resources and climatic scenarios, it is necessary to quantify the linkages between water and energy at an appropriate hydrologic level such as a river basin or sub-basins.

Due to the differences in the locations which are closely related to the natural endowment such as local climate, terrain, soil type, etc., as well as the differences in the demographics and social and economic development, the selection of the sub-basins within the Ganges basin is important to assess water availability and water demand situation in details. The Ganges basin is divided into 19 sub-basins as shown in Figure 1. As an outcome of the project kick-off workshop held in Jawaharlal Nehru University, New Delhi, 20 April 2015, it was decided that considerations from both the supply side and the demand side of water resources should be taken into account (see Figure 3). The following criteria is used for the selection of the sub-basins in this project.

i) Water supply side: Water is used for various processes of power generation such as like cooling, ash disposal and other domestic uses. Water availability is directly linked with the stability of power generation. For water supply, two variables are considered for the selection of the sub-basins, i.e. precipitation and water yield.

ii) Water demand side: Except for power generation which consumes substantial water, there are other three major water use sectors including agriculture (irrigation and livestock), domestic sector and industrial sector. Agriculture is the largest water consumer, particularly for irrigation. Therefore irrigation water requirement is used as an indicator for the selection of the sub-basins. This is directly linked with the land area for agriculture and the crop patterns. For domestic use, water requirement is proportional to the size of population and per capita water consumption. Industrial water s depends on the number of industrial units as well as types of industries and their water requirement.
The following steps are used for the selection of the sub-basins:

(i) Preparation of the precipitation map and the water yield map (see Figure 4 and Figure 5) based on the water system modelling report for the Ganges basin (INRM consultant, undated). 19 sub-basins are categorised into five levels based on the amount of precipitation and the amount of water yield, respectively. Level 1 indicates the highest supply, i.e. the highest precipitation or the highest water yield, while Level 5 indicates the lowest supply, i.e. the lowest precipitation or the lowest water yield.

(ii) Preparation of the demand side-related maps for population density, irrigation water demand and number of industries in each of the sub-basins based on the five-level classification. For each sub-basin, Level 1 links with the highest demand and Level 5 links with the lowest demand (see Figure 6, Figure 7 and Figure 8). Population density and the irrigation demand maps are taken from the water system modelling report for the Ganges basin (INRM consultant, undated). The map for the industrial sector is prepared using the secondary data collected from various reports and the data from the Ministry of Micro Small and Medium Enterprises.

(iii) Preparation of the composite supply map based on the average level of precipitation and water yield for each sub-basin based on the results from Step (i) and the composite demand map based on the average level of population density, irrigation water demand and number of industries for each sub-basin based on the results from Step (ii) (see Figure 9). For details, please see also Table 2.

(iv) Preparation of the demand/supply ratio map based on the results from Step (iii) (see Figure 10). For details, please see Table 2.

(v) Based on the demand/supply ratios and by taking into account of the location of the existing thermal power plants in the sub-basins (see Figure 10), four sub-basins are selected (see Figure 11) including:
 a) Chambal sub-basin: Categorised as the area with low water supply, low water demand and a few existing thermal power plants;
 b) Yamuna sub-basin: Categorised as the area with low water supply but high water demand;
 c) Gandak sub-basin: Categorised as the area with high water supply but low water demand which can be considered for future power plant development;
d) Damodar sub-basin: Categorised as the area with moderate water supply and moderate water demand but with many existing thermal power plants.

Figure 4 Precipitation distribution in the Ganges Basin

Note: Modified from the water system modelling for the Ganges basin (report prepared by the INRM consultant, undated).

Figure 5 Water yield distribution in the Ganges basin

Note: Modified from the water system modelling for the Ganges basin (report prepared by the INRM consultant, undated).
Figure 6 Population density in the Ganges Basin

Figure 7 Irrigation water demand in the Ganges basin

Note: Modified from the water system modelling for the Ganges basin (report prepared by the INRM consultant, undated).
Figure 8 Number of industries in the Ganges basin

Figure 9 Demand and supply patterns in the Ganges basin
Figure 10 Demand-supply ratio in the Ganges basin

Figure 11 Four sub-basins selected for this project
Table 2 Supply and demand-side indicators for the selection of the sub-basins

<table>
<thead>
<tr>
<th>ID</th>
<th>Sub-basin</th>
<th>Supply</th>
<th>Demand</th>
<th>Demand/Supply ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRECP</td>
<td>WYLD</td>
<td>Average</td>
</tr>
<tr>
<td>0</td>
<td>Chambal Upper</td>
<td>4.0</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>Kali Sindh</td>
<td>4.0</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>Chambal Lower</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>Banas</td>
<td>4.0</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>Yamuna Middle</td>
<td>4.0</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>Yamuna Upper</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>6</td>
<td>Yamuna Lower</td>
<td>4.0</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>Tons</td>
<td>3.0</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>Damodar</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>Bhagirathi and others (Ganga Lower)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>Kosi</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>11</td>
<td>Gandak and others</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>12</td>
<td>Sone</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>Ghaghara Confluence to Gomti confluence</td>
<td>3.0</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>14</td>
<td>Gomti</td>
<td>4.0</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>15</td>
<td>Ramganga</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>16</td>
<td>Ghaghara</td>
<td>3.0</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>17</td>
<td>Ramganga Confluence</td>
<td>3.0</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>18</td>
<td>Upstream of Gomti confluence to Muzaffarnagar</td>
<td>4.0</td>
<td>5.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Note: The supply average is the mean of the values of precipitation (PRECP) and water yield (WYLD). The demand average is mean of the values of three major demand sectors, i.e. industrial sector, domestic sector and agriculture/irrigation, represented by the indicators of number of industries, population density and irrigation water demand. The demand-supply ratio is calculated by dividing the demand average by the supply average.

Chambal sub-basin

The Chambal sub-basin is located between latitudes 22°27' N and 27° 20' N and longitudes 73° 20' E and 79° 20' E. The area lies within the semi-arid zone of north-western India overlapping the borders of Madhya Pradesh (MP) State, Rajasthan State and Uttar Pradesh (UP) State covering 24 districts (Department of Water Resources, Rajasthan, undated). Banas and Mahi Basins lie to the west and Gambhir and Parbati Basins lie to the north. On its south, east and west, the Chambal sub-basin is bounded by the Vindhyan mountain ranges and on the north-west by the Aravallis.
There are four distinct seasons for the Chambal sub-basin. Annual precipitation ranges from 356 mm to 1,270 mm and the mean annual rainfall is about 797 mm. Out of the rainfall, 93% comes during the four monsoon months (from June to September). The mean average temperature in different months is: January-15°-20°C; April- 27.5° - 32.5°C; July-27.5° - 32.5°C and October-25° -27.5°C. The average annual potential evaporation is 1,763 mm.

Forest occupies only 8.8% of the geographical area of the Chambal sub-basin, while the arable land area constitutes 75%. Out of the total arable land area of 10.14 million hectares, nearly 71.4% are cultivated annually (Department of Agriculture). Agriculture depends solely on rainfall and normal practices are used to raise Kharif crops like bajra, jowar and maize during the monsoon months and wheat, barley and other Rabi crops during the Rabi season, making use of the moisture in the soil and winter rainfall. Wheat and barley are grown on 25% of the total cultivated area annually.

Damodar sub-basin

The Damodar basin lies between latitudes 22°15’ N and 24°30’ N and longitudes 84°30’ E and 88°15’ E and spreading over an area of about 23,370 km² in Jharkhand and West Bengal states. The basin is bounded by the Santhal Paragana district in the north, Hazaribag and Palamau districts in the west, Ranchi, Purulia and Bankura districts in the south and Hooghly and Howrah districts in the east and southeast. It covers six districts of Jharkhand and five districts of West Bengal. The three-fourth of the basin representing the upper catchment is belonged to Jharkhand State while the low lying flood plains lie in West Bengal State (Jana & Majumder, 2010).

The Damodar sub-basin is located in the warm sub-tropical zone and its climate is influenced by the Bay of Bengal monsoon. Rainfall is irregular and about 85% of total annual rainfall occurs in the rainy season (from June to September) and the remaining 15% occurs in the winter season (from October to December). Annual rainfall varies from 765 mm to 1,607 mm with an average of 1,200 mm. Evaporation is maximum during summer with 21 mm and minimum in winter in monsoon with 2.5 mm with 70% humidity. In summer, the average high temperature is 43°C and the low temperature is 30°C. In winter, the average high temperature is around 25°C and low temperature is 10°C.

River Damodar originates from the hills of the south-east corner of the Palamu district of Bihar at an elevation of 600 m and outfall in River Bhagirathi in West Bengal near Calcutta. The right bank tributaries of River Damodar are Sapahi, Bhera, Isri and Gowai, while the left bank tributaries are Bokaro, Konar, Jamunia and Barakar. The major Dams of the Damodar basin are Tilaiya, Konar, Maithon Panchel Dams and Durgapur Barrage. Flood reserve capacity is 1,292 MCM (NIH, 1998-99).

There are six thermal and three hydro power plants in the Damodar sub-basin with a total capacity of 5,857 MW, of which 5,710 MW is equipped with thermal power capacity and 147.2 MW for hydro power capacity.

Gandak sub-basin

__Final Report: ARCP2015-13CMY-Zhou 23__
The Gandak sub-basin is bounded on the north by the Himalayas, on the south by River Ganges, on the east by the Burhi Gandak basin and on the west by the Ghagra basin. River Gandak known as Kalie or Krishna Gandaki in the upper reaches rises in the glacial of southern Tibet at altitude of 7,620 m near the Tibet Nepal border to the south-east of Dhaulagiri at latitudes 29°18" N and longitude 83°85" E. After receiving a number of tributaries including Mayangadi, Bari and Trisuli, Gandak debouches into the plains of West Champaran district of Bihar at Triveni (Valmikinagar). At this point two more tributaries, Panchand and Sarhad, join the river. Thereafter, the river flows in a south direction and forms the boundary between Uttar Pradesh and Bihar for about 45 km. It then flows through Bihar and finally joins River Ganges opposite Patna (India-WRIS, undated).

The catchment area of River Gandak is trapezoidal in shape up to Triveni. Out of its total catchment area of 45,731 km², 5,687 km² is in Tibet, 30,882 km² in Nepal, 1,874 km² in UP, and 7,288 km² in Bihar. It runs a course of 380 km in Tibet and Nepal and about 250 km in India.

Yamuna sub-basin

The catchment of the upper Yamuna above Tajewala, extends over 82 km long in north-south direction and 98 km in east-west direction. Geographically, the area lies between latitudes 30°31' N and 31°30' N and longitudes 77°0' E and 78°30' E. It covers the Dehradun, Tehri and Uttar Kashi districts in Uttarakhand and the Nahan (Sirmour) and Shimla districts in Himachal Pradesh (HP) and small extent in the Ambala district of Haryana. The catchment presents a great diversity in climate conditions mainly because of different elevations. The mountain ranges influence the climate through their indirect orographic effects like rain shadow of individual mountain ranges.

The broad land use patterns in the upper Yamuna catchment shows that non-agriculture lands constitute over 86% of the total area with more than half of it covered by the forest and the rests as pastures and hilly areas, etc.

3.1.2 Water availability assessment for the sub-basins

3.1.2.1 Hydrological Model

The hydrological model, SWAT, was used for assessing the water availability at the sub-basin level. SWAT is a physically-based, semi-distributed and basin-scaled hydrological model that runs on a daily time basis. SWAT is developed to predict the impacts of land management practices and can simulate the climate change impacts on watershed. In SWAT, basins are divided into multiple sub-watersheds, which are further divided into hydrologic response units (HRUs) characterised by homogeneous land use, slope and soil type. The overall hydrological balance is simulated for each HRU including precipitation, potential evapotranspiration, evapotranspiration, soil water, lateral sub-surface flow, and water yield (Arnold et al., 1998; Srinivasan et al., 1998).

The hydrological cycle is simulated by the SWAT model based on the water balance equation:

\[SW_i = SW_0 + \sum (R_{day} - Q_{surf} - E_a - W_{seep} - Q_{gw}) \]
where: SW_t - final soil water content after t days (in mm); SW_0 - initial soil water content (in mm); R_{day} - amount of precipitation on day i (in mm); Q_{surf} - amount of surface runoff on day i (in mm); E_a - amount of evapotranspiration on day i (in mm); W_{seep} - amount of percolation and bypass flow exiting the soil profile bottom on day i (in mm); Q_{gw} - amount of return flow on day i (in mm); t - time (days).

SWAT is used to predict future water availability in the selected four sub-basins. Figure 12 presents the methodology for assessing the impacts of future climate change on water availability. A bias-correction technique (delta change method) is applied to the precipitation and temperature projections of the GCMs to correct the existing biasness, improve the quality of the datasets and reduce the uncertainty in the future projection of water availability. The bias-corrected projections are used to run the hydrological model for the assessment of the climate change impacts on water availability based on the future climate change scenarios.

Figure 12 Hydrological model for the selected sub-basins

Note: GCM - General Circulation Model; RCM- Regional Circulation Model; LULC- Land use and land cover

Required data including Digital Elevation Model (DEM), soil map, land use and land cover (LULC) data, meteorological data and climate model projections on temperature and precipitation is shown in Table 3.
Table 3 Data used for the SWAT model

<table>
<thead>
<tr>
<th>Data Required</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Elevation Model (DEM)</td>
<td>SRTM 90 X 90 m resolution</td>
</tr>
<tr>
<td>Land use and land cover</td>
<td>National Remote Sensing Centre (NRSC) 100 m X 100 m resolution</td>
</tr>
<tr>
<td>Soil</td>
<td>Food and Agriculture Organization (FAO) gridded raster data 6500 m X 6500 m</td>
</tr>
<tr>
<td>Weather data</td>
<td>Precipitation of 0.5 degree (IMD)</td>
</tr>
<tr>
<td></td>
<td>Temperature of 1 degree (IMD)</td>
</tr>
<tr>
<td></td>
<td>Relative humidity, solar radiation, wind grid weather data</td>
</tr>
<tr>
<td></td>
<td>http://globalweather.tamu.edu/</td>
</tr>
<tr>
<td>Future climate from GCM</td>
<td>MRI-CGCM3 model</td>
</tr>
<tr>
<td></td>
<td>http://pcmdi9.llnl.gov/</td>
</tr>
</tbody>
</table>

MRI-CGCM3 is a general circulation model, an updated version of the MRI-CGCM2 series developed by the Meteorological Research Institute (MRI). MRI-CGCM3 is composed of atmosphere-land, aerosol, and ocean-ice models, and is a subset of the MRI’s earth system model MRI-ESM1 (Yukimoto et al. 2012). Atmospheric component of the MRI-AGCM3 is interactively coupled with an aerosol model to represent direct and indirect effects of aerosols with a new cloud microphysics scheme. MRI-CGCM3 is used for conducting basic experiments for pre-industrial control. The spatial resolution of this climate model is 1.12148° x 1.125°. Two climate scenarios of RCP 4.5 and RCP 8.5 of this model (see Table 4) are used for the assessment of the climate change impacts on water resources in this study.

Table 4 Climate change scenarios RCP 4.5 and RCP 8.5

<table>
<thead>
<tr>
<th>Climate change scenarios</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP 4.5</td>
<td>Stabilisation without overshooting pathway leading to 4.5 W/m² and stabilisation after 2100</td>
</tr>
<tr>
<td>RCP 8.5</td>
<td>Rising radiative forcing pathway leading to 8.5 W/m² in 2100</td>
</tr>
</tbody>
</table>

Generation of the future datasets for the four sub-basins are considered for five decadal periods (2011-2020, 2021-2030, 2031-2040 and 2041-2050) and the historical period of 1976-2005.

One of the major limitations of the existing method for water availability assessment is that the SWAT model is not calibrated due to the lack of discharge data for the sub-basins. However, the model does not require much calibration according to Gosain et al. (2005) and Mishra et al. (2017). Another limitation is that future water availability of the sub-basins are simulated based on a single GCM model, i.e. MRI-CGCM3.

3.1.2.2 Methods of downscaling water availability assessment to the district level

In this project, water availability is defined as the volume of water available for use in a specific area, which can be obtained by multiplying the water yield by the area of the spatial unit. Water yield (in mm) projection from the SWAT model is provided at the HRU and the sub-basin levels.
On the other hand, water demand of major sectors can be projected at the district level based on the statistical data available at various administrative levels. To conduct the assessment with better spatial resolution, for the case study in India, we selected the district level as the basic spatial unit for both the supply side and the demand side assessment. To provide water supply assessment at the district level, the results on the water availability from the SWAT model at the HRU level need to be further downscaled to the district level. The following steps are used for the downscaling:

(i) Identification of all the districts that locate within the border of each HRU in the respective sub-basins;
(ii) Calculation of the area of each district;
(iii) Using the water yield result of relevant HRU from the SWAT model as the representative value to the district that locates within the HRU;
(iv) Volume of water availability is estimated by multiplying the water yield by the area of the district.
(v) In the case that one district is located across more than one HRU, calculation of the water availability of the district is conducted based on the land area covered within each of the relevant HRUs using the Geographical Information System (GIS) tool and the water yield of each respective HRU and summing up the results.

3.1.3 Water demand estimation

Estimation of the water demand for five sectors (domestic sector, irrigation, livestock, industrial sector and energy sector) under the current and future scenarios are mainly dependent on the secondary information. As most of the secondary information for the above mentioned sectors is available at the district level, water demand at the state or the sub-basin levels is estimated based on the percentage of area of the district covered within the border of specific sub-basin.

3.1.3.1 Domestic water demand estimation

Domestic water use was estimated at the district level by multiplying the population by the different water use rates per capita for urban and rural areas. In the urban areas, per capita water use is often higher than in the rural areas due to better water infrastructure in the cities and resource-intensive lifestyles of the urban households. Therefore, for the present study, per capita water demand for urban and rural areas are considered as 150 litre per capita per day (lpcd) and 70 lpcd, respectively (Van Rooijen et al., 2009). District-level population data were taken from the census (2001 and 2011) and used to project future population using the arithmetic increase method for all the sub-basins. For urban areas, the average value is used considering metropolitans and the cities with population more than 1 million. Similarly, the average value of villages and towns is used for the rural areas. For the future case, population projection is estimated using the arithmetic increase method. With this method, the average increase in population per decade is calculated based on the past census data. It assumes that the population is changing with constant rate.
3.1.3.2 Irrigation water demand estimation

Irrigation water requirement is calculated at the district level for major cereal crops for the four sub-basins. Based on these estimated data, percentage changes in the crop water requirement are calculated. The detailed procedure is described as follows:

(i) Identification of major crops in the sub-basins;
(ii) Estimation of the reference evapotranspiration ET_0: The ET_0 Calculator (Version 3.2) is used to estimate ET_0. This is a free online tool which can be downloaded from www.fao.org/nr/water.ET0.html.
(iii) Evapotranspiration of each crop (ET_c): ET_c is the amount of water demanded by the crop under standard conditions. It is calculated by multiplying the reference crop evapotranspiration (ET_0) in mm/day by the dimensionless crop coefficient (K_c) suggested by FAO and other secondary sources for the main crops in the sub-basins:

\[ET_c = ET_0 \times K_c; \]

(iv) Estimation of effective precipitation ($P_{\text{effective}}$) which is the rainfall available for crop production (based on the FAO/AGLW formula)

(v) FAO/AGLW developed an empirical formula based on different climate data to determine the dependable effective rainfall, i.e. the dependable rainfall at 80% probability corrected for the assumed losses due to runoff and percolation (Smith, 1988):

\[P_{\text{effective}} = 0.6 \times P_{\text{total}} - 10, \text{ if } P_{\text{total}} \leq 70 \text{ mm} \]
\[P_{\text{effective}} = 0.8 \times P_{\text{total}} - 25, \text{ if } P_{\text{total}} > 70 \text{ mm} \]

(vi) Estimation of irrigation water requirement, which is $ET_c - P_{\text{effective}}$.

For future estimation, climate change scenarios of RCP 4.5 and RCP 8.5 for the periods from 2011 to 2050 based on the district-level changes in climate variables (precipitation and temperature) are considered for the existing dominant crops in the relevant sub-basins (see Table 5).

Table 5 Dominant crops in each sub-basin

<table>
<thead>
<tr>
<th>Name of sub-basin</th>
<th>Dominant crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamuna</td>
<td>Bajra, Cotton, Groundnut, Jowar, Maize, Rice, Sugarcane, Barley, Mustard, Potato, Wheat</td>
</tr>
<tr>
<td>Gandak</td>
<td>Maize, Rice, Sugarcane, Barley, Mustard, Potato, Wheat</td>
</tr>
<tr>
<td>Damodar</td>
<td>Maize, Bajra, Mustard, Potato, Wheat, Sugarcane, Rice</td>
</tr>
<tr>
<td>Chambal</td>
<td>Bajra, Cotton, Groundnut, Jowar, Maize, Rice, Barley, Mustard, Wheat, Potato, Sugarcane</td>
</tr>
</tbody>
</table>

To estimate the total irrigation water requirement at the district level, we used the national reference values from Amarasinghe et al. (2009). This reference factor of 1.45 is multiplied by the cereal irrigation water demand in 2010 to calculate the total irrigation water demand in the current period. For future periods, different multiplication factors are used to estimate the total irrigation water demand (1.003 for the 2020s, 1.007 for the 2030s, 1.168 for the 2040s and 1.329 for the 2050s).
3.1.3.3 Livestock water demand estimation

Livestock water demand was estimated at the district level and then aggregated to the sub-basin level by multiplying the livestock population by the water use rate per head for different types of livestock. Data on the district-level population of the livestock is collected from the census (2007 and 2012). There is the fluctuation in the number of different types of livestock and it is impossible to estimate the decadal growth for the future livestock. Because of this, we assumed that there is an increase of 10% in the water demand at the decadal basis considering the increase in the livestock population and the impacts from climate change in terms of temperature increase.

3.1.3.4 Industrial water demand estimation

Due to the limitation in data availability and accessibility, it is difficult to estimate water use from industries. District-level data on the number of factories are available however is not very useful to estimate industrial water use because the amount of water used by different sectors is often different. We use an alternative method for estimating industrial water demand as suggested by the Central Pollution Control Board (1989) and used by Van Rooijen et al. (2009) for the Krishna basin. This method considers urban and rural water demand for the calculation of the industrial water use.

The annual industrial water use can be estimated as a percentage of urban and rural domestic water use, as suggested by the Central Pollution Control Board (1989).

\[
I_{\text{industry}} = I_{\text{rural}} \times f_{\text{rural}} + I_{\text{urban}} \times f_{\text{urban}}
\]

where \(I_{\text{industry}}\) is industrial water use, \(I_{\text{rural}}\) and \(I_{\text{urban}}\) are rural and urban domestic water use, respectively, and \(f_{\text{rural}}\) and \(f_{\text{urban}}\) are urban and rural water use factors (dimensionless), respectively. In this study, \(f_{\text{rural}}\) and \(f_{\text{urban}}\) are considered as 25% and 5%, respectively.

3.1.3.5 Energy water demand estimation

As mentioned in Section 2, the project team conducted power plant surveys to collect the first-hand information on water use intensity for different power generation technologies and different cooling systems in the selected four sub-basins. During the power plant surveys, the team collected various information including fuels, power generation technologies, plant load factors (PLF), cooling technologies, source of water, volume of water use by the power plants, etc. The energy water demand \((EWD)\) is calculated using the following equation:

\[
EWD = \text{Installed capacity} \times 24 \text{ hours} \times 365 \text{ days} \times PLF \times \text{water use per unit electricity generation}
\]

Future water demand from power generation is calculated based on the total planned capacity disclosed by the Central Energy Authority.
3.1.3.6 Environmental water requirements

Environmental water requirements is the amount of water that the ecosystems need to sustain their ecological processes and biodiversity. Due to limited data availability, it is difficult to estimate the environmental water requirements. In this study, the environmental water requirements are estimated by using a specific ratio of the total water demand which is used by the Central Water Commission (2015).

3.1.3.7 Water risk assessment for future power generation

Water supply and demand balance is assessed by subtracting the total water demand from the total water availability at the district level for each sub-basin, i.e. total water availability – total water demand. The supply-demand balance is estimated for the present and future time periods. Positive value of water supply-demand balance indicates water surplus and negative value of water supply-demand balance indicates water shortage. The results of the water supply-demand balance are further classified into three groups based on the water supply-demand gap ratio, which is the ratio of the water supply-demand balance to the total water supply (see Table 6).

Table 6 Classification of water risks for future power plants

<table>
<thead>
<tr>
<th>No.</th>
<th>Water supply-demand gap ratio</th>
<th>Class</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 0</td>
<td>red zone</td>
<td>Highly water-stressed area which is not appropriate for building new thermal power plants</td>
</tr>
<tr>
<td>2</td>
<td>(0 - 0.5)</td>
<td>orange zone</td>
<td>Moderate water-stressed area with limited potential for building new thermal power plants</td>
</tr>
<tr>
<td>3</td>
<td>[0.5 - 1.0]</td>
<td>yellow zone</td>
<td>High water surplus area which is appropriate for building new thermal power plants</td>
</tr>
</tbody>
</table>

Limitations of the water demand assessment include:

(i) Future domestic water demand estimation is only based on the population projection but does not take into account of the changes in the income levels and its associated impacts. Similarly, the water demand of livestock is based on the future livestock population which is estimated as 10% increase in each time period.

(ii) The water demand from agriculture is estimated using the national-level data of the changes in the water requirement (Amarasinghe et al., 2009) which is not necessarily true for specific districts due to different crops and water supply patterns and infrastructure.

3.1.4 Results and discussions

3.1.4.1 Water availability assessment at the sub-basin and the district levels

Chambal sub-basin

In the Chambal sub-basin, the precipitation and its changes compared to the historical levels under the RCP 4.5 and RCP 8.5 scenarios are presented in Table 7 and Table 8. The changes vary between 7% and 20% under RCP 4.5 and between 1% and 34% under RCP 8.5. It is observed that the increase in the precipitation will be greater in the mid-future periods and then
become lower in the second half of the century. It is a good sign for this sub-basin due to the increase in the water supply. Under RCP 4.5, there will be a decrease in the evapotranspiration in the near future but an increase in the mid-future and the far-future periods. Under RCP 8.5, evapotranspiration will increase in all the three time periods.

Table 7 Water supply in the Chambal sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
<td>PCP</td>
<td>ET</td>
</tr>
<tr>
<td>Historical</td>
<td>854</td>
<td>443</td>
<td>373</td>
<td>425</td>
<td>854</td>
<td>443</td>
</tr>
<tr>
<td>2011-2020</td>
<td>962</td>
<td>423</td>
<td>438</td>
<td>540</td>
<td>1,054</td>
<td>506</td>
</tr>
<tr>
<td>2021-2030</td>
<td>918</td>
<td>425</td>
<td>419</td>
<td>490</td>
<td>1,004</td>
<td>479</td>
</tr>
<tr>
<td>2031-2040</td>
<td>939</td>
<td>420</td>
<td>434</td>
<td>522</td>
<td>1,014</td>
<td>497</td>
</tr>
<tr>
<td>2041-2050</td>
<td>1,021</td>
<td>549</td>
<td>420</td>
<td>482</td>
<td>1,148</td>
<td>519</td>
</tr>
<tr>
<td>2051-2060</td>
<td>988</td>
<td>516</td>
<td>426</td>
<td>482</td>
<td>1,097</td>
<td>486</td>
</tr>
<tr>
<td>2061-2070</td>
<td>1,010</td>
<td>533</td>
<td>433</td>
<td>494</td>
<td>1,113</td>
<td>507</td>
</tr>
<tr>
<td>2071-2080</td>
<td>952</td>
<td>479</td>
<td>412</td>
<td>478</td>
<td>990</td>
<td>508</td>
</tr>
<tr>
<td>2081-2090</td>
<td>916</td>
<td>448</td>
<td>412</td>
<td>469</td>
<td>995</td>
<td>478</td>
</tr>
<tr>
<td>2091-2100</td>
<td>933</td>
<td>476</td>
<td>414</td>
<td>469</td>
<td>861</td>
<td>459</td>
</tr>
<tr>
<td>Near Future</td>
<td>940</td>
<td>423</td>
<td>430</td>
<td>517</td>
<td>1,024</td>
<td>494</td>
</tr>
<tr>
<td>Mid Future</td>
<td>1,006</td>
<td>533</td>
<td>426</td>
<td>486</td>
<td>1,119</td>
<td>504</td>
</tr>
<tr>
<td>Far Future</td>
<td>934</td>
<td>468</td>
<td>413</td>
<td>472</td>
<td>949</td>
<td>482</td>
</tr>
</tbody>
</table>

Table 8 Percent change in the water supply of the Chambal sub-basin for different time periods under two climate scenarios (%)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
<td>PCP</td>
<td>ET</td>
</tr>
<tr>
<td>2011-2020</td>
<td>13</td>
<td>-5</td>
<td>17</td>
<td>27</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>2021-2030</td>
<td>7</td>
<td>-4</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>2031-2040</td>
<td>10</td>
<td>-5</td>
<td>16</td>
<td>23</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>2041-2050</td>
<td>20</td>
<td>24</td>
<td>13</td>
<td>13</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>2051-2060</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>2061-2070</td>
<td>18</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>2071-2080</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>2081-2090</td>
<td>7</td>
<td>1</td>
<td>10</td>
<td>17</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>2091-2100</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Near Future</td>
<td>10</td>
<td>-5</td>
<td>15</td>
<td>22</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Mid Future</td>
<td>18</td>
<td>20</td>
<td>14</td>
<td>14</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Far Future</td>
<td>9</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Surface runoff in the sub-basin under the RCP 4.5 and RCP 8.5 scenarios is given in Table 7. There will be an increase in the runoff in all the predicted time periods under both climate change scenarios which varies from 10% to 17% under RCP 4.5 and from 15% to 38% under RCP 8.5. The changes are proportional to the increase in the rainfall. For water yield, there is also an increase. Under RCP 4.5, the increase is between 10% and 27% and between 17% and 48% under RCP 8.5.

Monthly precipitation and its changes compared with the historical level for different future time periods are given in Table 9 and Table 10, respectively. In the Chambal sub-basin, the average monthly precipitation will increase in the wet season (June to October) with the ranges between 68.2 mm and 166.5 mm under RCP 4.5 and between 142.6 mm and 293.3 mm under RCP 8.5. In the dry season, it shows slightly negative changes (-3.2 mm) to slightly positive changes (1.3 mm) under RCP 4.5 and varies between -3.1 mm and 2.8 mm under RCP 8.5.

Monthly variation of water yield and the changes for different decades are given in Table 11 and Table 12, respectively. In the Chambal sub-basin, average monthly water yields increase in the wet season with the ranges between 40.4 mm and 61.8 mm under RCP 4.5 and between 97.4 mm and 200.6 mm under RCP 8.5. In the dry season, there will be decreases between -5.3 mm and -0.8 mm under RCP 4.5 and changes between -1.8 mm and 6.2 mm under RCP 8.5.

Water availability at the district level in the Chambal sub-basin is provided in Table 13. The results show that the water availability in most of the districts located in the Chambal sub-basin will increase in the future. However, the water availability of a couple of districts will decrease in the future. Specifically, the water availability in Neemuch (Ch_13), Sawai Madhopur (Ch_16) and Tonk (Ch_21) will reduce substantially particularly in 2030 compared with that in 2010.

Table 9 Average monthly precipitation in the Chambal sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>6.4</td>
<td>4.0</td>
<td>9.4</td>
</tr>
<tr>
<td>February</td>
<td>4.8</td>
<td>5.8</td>
<td>5.4</td>
</tr>
<tr>
<td>March</td>
<td>2.2</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>April</td>
<td>2.7</td>
<td>0.5</td>
<td>3.3</td>
</tr>
<tr>
<td>May</td>
<td>7.2</td>
<td>8.3</td>
<td>10.1</td>
</tr>
<tr>
<td>June</td>
<td>92.7</td>
<td>150.7</td>
<td>113.6</td>
</tr>
<tr>
<td>July</td>
<td>269.9</td>
<td>281.4</td>
<td>334.5</td>
</tr>
<tr>
<td>August</td>
<td>303.9</td>
<td>313.9</td>
<td>362.8</td>
</tr>
<tr>
<td>September</td>
<td>111.8</td>
<td>145.2</td>
<td>125.5</td>
</tr>
<tr>
<td>October</td>
<td>27.6</td>
<td>22.0</td>
<td>38.9</td>
</tr>
<tr>
<td>November</td>
<td>11.3</td>
<td>23.9</td>
<td>11.2</td>
</tr>
<tr>
<td>December</td>
<td>13.0</td>
<td>5.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Wet Season</td>
<td>805.9</td>
<td>913.2</td>
<td>874.1</td>
</tr>
<tr>
<td>Dry Season</td>
<td>47.6</td>
<td>49</td>
<td>44.4</td>
</tr>
</tbody>
</table>
Table 10 Average monthly precipitation change in the Chambal sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>-2.4</td>
<td>3</td>
</tr>
<tr>
<td>February</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>March</td>
<td>-0.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>April</td>
<td>-2.2</td>
<td>0.6</td>
</tr>
<tr>
<td>May</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>June</td>
<td>58</td>
<td>20.9</td>
</tr>
<tr>
<td>July</td>
<td>11.5</td>
<td>-36.6</td>
</tr>
<tr>
<td>August</td>
<td>10</td>
<td>58.9</td>
</tr>
<tr>
<td>September</td>
<td>33.4</td>
<td>13.7</td>
</tr>
<tr>
<td>October</td>
<td>-5.6</td>
<td>11.3</td>
</tr>
<tr>
<td>November</td>
<td>12.6</td>
<td>-0.1</td>
</tr>
<tr>
<td>December</td>
<td>-7.8</td>
<td>-8.9</td>
</tr>
<tr>
<td>Wet Season</td>
<td>107.3</td>
<td>68.2</td>
</tr>
<tr>
<td>Dry Season</td>
<td>1.4</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

Table 11 Average monthly water yields in the Chambal sub-basin for different periods and climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
</tr>
<tr>
<td>January</td>
<td>2.8</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>February</td>
<td>0.8</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>March</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>April</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>May</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>June</td>
<td>7.5</td>
<td>17.7</td>
<td>9.5</td>
</tr>
<tr>
<td>July</td>
<td>95.3</td>
<td>117.2</td>
<td>80.5</td>
</tr>
<tr>
<td>August</td>
<td>177.1</td>
<td>167.5</td>
<td>210.0</td>
</tr>
<tr>
<td>September</td>
<td>84.5</td>
<td>123.0</td>
<td>94.7</td>
</tr>
<tr>
<td>October</td>
<td>31.8</td>
<td>32.1</td>
<td>41.7</td>
</tr>
<tr>
<td>November</td>
<td>11.5</td>
<td>15.1</td>
<td>14.6</td>
</tr>
<tr>
<td>December</td>
<td>9.2</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Wet Season</td>
<td>396.1</td>
<td>457.4</td>
<td>436.5</td>
</tr>
<tr>
<td>Dry Season</td>
<td>25.2</td>
<td>20.8</td>
<td>19.9</td>
</tr>
</tbody>
</table>
Table 12 Average monthly water yield changes in the Chambal sub-basin for different periods and climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>-2.2</td>
<td>-2.0</td>
</tr>
<tr>
<td>February</td>
<td>-0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>March</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>April</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>May</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>June</td>
<td>10.1</td>
<td>2.0</td>
</tr>
<tr>
<td>July</td>
<td>21.9</td>
<td>-14.8</td>
</tr>
<tr>
<td>August</td>
<td>-9.5</td>
<td>33.0</td>
</tr>
<tr>
<td>September</td>
<td>38.6</td>
<td>10.2</td>
</tr>
<tr>
<td>October</td>
<td>0.3</td>
<td>9.9</td>
</tr>
<tr>
<td>November</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>December</td>
<td>-5.4</td>
<td>-6.5</td>
</tr>
<tr>
<td>Wet Season</td>
<td>61.3</td>
<td>40.4</td>
</tr>
<tr>
<td>Dry Season</td>
<td>-4.4</td>
<td>-5.3</td>
</tr>
</tbody>
</table>
Table 13 District-level water availability in the Chambal sub-basin for the periods in 2010, 2030 and 2050 under RCP 4.5 (MCM)

<table>
<thead>
<tr>
<th>District Name</th>
<th>District Code</th>
<th>State Name</th>
<th>Area (km²) in the Basin</th>
<th>Water_2010</th>
<th>Water_4.5_2030</th>
<th>Water_4.5_2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baran</td>
<td>Ch_01</td>
<td>Rajasthan</td>
<td>6,070</td>
<td>2,503</td>
<td>3,020</td>
<td>3,042</td>
</tr>
<tr>
<td>Bhilwara</td>
<td>Ch_02</td>
<td>Rajasthan</td>
<td>1,041</td>
<td>198</td>
<td>197</td>
<td>343</td>
</tr>
<tr>
<td>Bhopal</td>
<td>Ch_03</td>
<td>Madhya Pradesh</td>
<td>612</td>
<td>250</td>
<td>327</td>
<td>313</td>
</tr>
<tr>
<td>Bundi</td>
<td>Ch_04</td>
<td>Rajasthan</td>
<td>5,414</td>
<td>1,074</td>
<td>1,003</td>
<td>1,827</td>
</tr>
<tr>
<td>Chittaurgarh</td>
<td>Ch_05</td>
<td>Rajasthan</td>
<td>3,070</td>
<td>1,048</td>
<td>1,108</td>
<td>1,412</td>
</tr>
<tr>
<td>Dewas</td>
<td>Ch_06</td>
<td>Madhya Pradesh</td>
<td>3,086</td>
<td>1,230</td>
<td>1,805</td>
<td>1,696</td>
</tr>
<tr>
<td>Dhar</td>
<td>Ch_07</td>
<td>Madhya Pradesh</td>
<td>1,579</td>
<td>521</td>
<td>662</td>
<td>487</td>
</tr>
<tr>
<td>Dhar</td>
<td>Ch_08</td>
<td>Madhya Pradesh</td>
<td>4,622</td>
<td>1,959</td>
<td>2,551</td>
<td>2,454</td>
</tr>
<tr>
<td>Indore</td>
<td>Ch_09</td>
<td>Madhya Pradesh</td>
<td>2,875</td>
<td>929</td>
<td>1,266</td>
<td>1,404</td>
</tr>
<tr>
<td>Jhalawar</td>
<td>Ch_10</td>
<td>Rajasthan</td>
<td>6,248</td>
<td>2,494</td>
<td>3,132</td>
<td>3,186</td>
</tr>
<tr>
<td>Kota</td>
<td>Ch_11</td>
<td>Rajasthan</td>
<td>5,503</td>
<td>1,895</td>
<td>1,910</td>
<td>2,429</td>
</tr>
<tr>
<td>Mandasaur</td>
<td>Ch_12</td>
<td>Madhya Pradesh</td>
<td>5,631</td>
<td>2,298</td>
<td>2,412</td>
<td>2,703</td>
</tr>
<tr>
<td>Neemuch</td>
<td>Ch_13</td>
<td>Madhya Pradesh</td>
<td>3,531</td>
<td>1,666</td>
<td>1,265</td>
<td>1,588</td>
</tr>
<tr>
<td>Rajgarh</td>
<td>Ch_14</td>
<td>Madhya Pradesh</td>
<td>6,120</td>
<td>2,631</td>
<td>3,506</td>
<td>2,943</td>
</tr>
<tr>
<td>Ratlam</td>
<td>Ch_15</td>
<td>Madhya Pradesh</td>
<td>2,919</td>
<td>933</td>
<td>1,357</td>
<td>1,527</td>
</tr>
<tr>
<td>Sawai Madhopur</td>
<td>Ch_16</td>
<td>Rajasthan</td>
<td>730</td>
<td>193</td>
<td>43</td>
<td>91</td>
</tr>
<tr>
<td>Sehore</td>
<td>Ch_17</td>
<td>Madhya Pradesh</td>
<td>3,151</td>
<td>1,341</td>
<td>1,790</td>
<td>1,641</td>
</tr>
<tr>
<td>Shajapur</td>
<td>Ch_18</td>
<td>Madhya Pradesh</td>
<td>6,292</td>
<td>2,632</td>
<td>3,611</td>
<td>3,427</td>
</tr>
<tr>
<td>Sheopur</td>
<td>Ch_19</td>
<td>Madhya Pradesh</td>
<td>1,422</td>
<td>557</td>
<td>691</td>
<td>709</td>
</tr>
<tr>
<td>Shivpuri</td>
<td>Ch_20</td>
<td>Madhya Pradesh</td>
<td>60</td>
<td>24</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Tonk</td>
<td>Ch_21</td>
<td>Rajasthan</td>
<td>423</td>
<td>92</td>
<td>66</td>
<td>141</td>
</tr>
<tr>
<td>Ujjain</td>
<td>Ch_22</td>
<td>Madhya Pradesh</td>
<td>6,081</td>
<td>2,008</td>
<td>2,737</td>
<td>3,130</td>
</tr>
<tr>
<td>Vidisha</td>
<td>Ch_23</td>
<td>Madhya Pradesh</td>
<td>391</td>
<td>159</td>
<td>209</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>76,871</td>
<td>28,637</td>
<td>34,701</td>
<td>36,722</td>
</tr>
</tbody>
</table>

Damodar sub-basin

The water supply in the Damodar sub-basin is shown in Table 14. Percent change in precipitation varies between 9% and 20% under RCP 4.5 and between 11% and 31% under RCP 8.5 (Table 15). Surface runoff changes between -4% and 19% under RCP 4.5 and between -3% and 32% under RCP 8.5. Water yield will increase between 13% and 39% under RCP 4.5 and between 14% and 55% under RCP 8.5. It can be expected that there will be the increases in the precipitation in both dry and wet seasons. The Damodar sub-basin will get extra precipitation under the climate scenarios. For evapotranspiration, there will be an increase in all the time periods. The maximum change is up to 12% under RCP 4.5% and up to 21% under RCP 8.5.
Table 14 Water supply in the Damodar sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>PCP 4.5</th>
<th>ET 4.5</th>
<th>SURQ 4.5</th>
<th>WYLD 4.5</th>
<th>PCP 8.5</th>
<th>ET 8.5</th>
<th>SURQ 8.5</th>
<th>WYLD 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>1,464</td>
<td>1,464</td>
<td>1,464</td>
<td>1,464</td>
<td>1,464</td>
<td>1,464</td>
<td>1,464</td>
<td>1,464</td>
</tr>
<tr>
<td>2011-2020</td>
<td>1,644</td>
<td>1,644</td>
<td>1,644</td>
<td>1,644</td>
<td>1,644</td>
<td>1,644</td>
<td>1,644</td>
<td>1,644</td>
</tr>
<tr>
<td>2021-2030</td>
<td>1,631</td>
<td>1,631</td>
<td>1,631</td>
<td>1,631</td>
<td>1,631</td>
<td>1,631</td>
<td>1,631</td>
<td>1,631</td>
</tr>
<tr>
<td>2031-2040</td>
<td>1,681</td>
<td>1,681</td>
<td>1,681</td>
<td>1,681</td>
<td>1,681</td>
<td>1,681</td>
<td>1,681</td>
<td>1,681</td>
</tr>
<tr>
<td>2041-2050</td>
<td>1,758</td>
<td>1,758</td>
<td>1,758</td>
<td>1,758</td>
<td>1,758</td>
<td>1,758</td>
<td>1,758</td>
<td>1,758</td>
</tr>
<tr>
<td>2051-2060</td>
<td>1,751</td>
<td>1,751</td>
<td>1,751</td>
<td>1,751</td>
<td>1,751</td>
<td>1,751</td>
<td>1,751</td>
<td>1,751</td>
</tr>
<tr>
<td>2061-2070</td>
<td>1,718</td>
<td>1,718</td>
<td>1,718</td>
<td>1,718</td>
<td>1,718</td>
<td>1,718</td>
<td>1,718</td>
<td>1,718</td>
</tr>
<tr>
<td>2071-2080</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
<td>1,612</td>
</tr>
<tr>
<td>2081-2090</td>
<td>1,603</td>
<td>1,603</td>
<td>1,603</td>
<td>1,603</td>
<td>1,603</td>
<td>1,603</td>
<td>1,603</td>
<td>1,603</td>
</tr>
<tr>
<td>2091-2100</td>
<td>1,722</td>
<td>1,722</td>
<td>1,722</td>
<td>1,722</td>
<td>1,722</td>
<td>1,722</td>
<td>1,722</td>
<td>1,722</td>
</tr>
<tr>
<td>Near Future</td>
<td>1,652</td>
<td>1,652</td>
<td>1,652</td>
<td>1,652</td>
<td>1,652</td>
<td>1,652</td>
<td>1,652</td>
<td>1,652</td>
</tr>
<tr>
<td>Mid Future</td>
<td>1,743</td>
<td>1,743</td>
<td>1,743</td>
<td>1,743</td>
<td>1,743</td>
<td>1,743</td>
<td>1,743</td>
<td>1,743</td>
</tr>
<tr>
<td>Far Future</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
</tr>
</tbody>
</table>

Table 15 Percent change in the water supply in the Damodar sub-basin for different time periods under two climate scenarios (%)

<table>
<thead>
<tr>
<th>Period</th>
<th>PCP 4.5</th>
<th>ET 4.5</th>
<th>SURQ 4.5</th>
<th>WYLD 4.5</th>
<th>PCP 8.5</th>
<th>ET 8.5</th>
<th>SURQ 8.5</th>
<th>WYLD 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2020</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2031-2040</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2041-2050</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2051-2060</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2061-2070</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>2071-2080</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2081-2090</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2091-2100</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Near Future</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Mid Future</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Far Future</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

In the Damodar sub-basin, the average monthly precipitation for different time periods under the two climate scenarios are shown in Table 16 and Table 17. The average monthly precipitation in the wet season shows positive changes between 24.3 mm and 310.2 mm under RCP 4.5 and between 85.6 mm and 333.4 mm under RCP 8.5. In the dry season, it shows the changes between -23.5 mm and 79 mm under RCP 4.5 and between -3.7 mm and 70.6 mm under RCP 8.5.
Table 16 Average monthly precipitation in the Damodar sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
</tr>
<tr>
<td>January</td>
<td>13.4</td>
<td>13.2</td>
<td>10.0</td>
</tr>
<tr>
<td>February</td>
<td>20.7</td>
<td>22.9</td>
<td>27.3</td>
</tr>
<tr>
<td>March</td>
<td>27.9</td>
<td>26.1</td>
<td>32.1</td>
</tr>
<tr>
<td>April</td>
<td>36.0</td>
<td>38.6</td>
<td>54.4</td>
</tr>
<tr>
<td>May</td>
<td>84.1</td>
<td>106.8</td>
<td>132.6</td>
</tr>
<tr>
<td>June</td>
<td>257.6</td>
<td>273.7</td>
<td>302.3</td>
</tr>
<tr>
<td>July</td>
<td>333.3</td>
<td>381.8</td>
<td>345.9</td>
</tr>
<tr>
<td>August</td>
<td>307.6</td>
<td>314.7</td>
<td>301.8</td>
</tr>
<tr>
<td>September</td>
<td>252.2</td>
<td>280.5</td>
<td>239.7</td>
</tr>
<tr>
<td>October</td>
<td>103.4</td>
<td>114.6</td>
<td>88.7</td>
</tr>
<tr>
<td>November</td>
<td>16.9</td>
<td>10.4</td>
<td>15.0</td>
</tr>
<tr>
<td>December</td>
<td>10.8</td>
<td>6.7</td>
<td>13.1</td>
</tr>
<tr>
<td>Wet Season</td>
<td>1,254.2, 1,365.2, 1,278.6, 1,377.5, 1,564.4, 1,396.1, 1,339.8, 1,460.0, 1,587.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Season</td>
<td>209.8, 224.8, 284.4, 288.8, 186.3, 231.0, 280.4, 276.3, 206.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 17 Average monthly precipitation change in the Damodar sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>-0.2</td>
<td>-3.4</td>
</tr>
<tr>
<td>February</td>
<td>2.2</td>
<td>6.6</td>
</tr>
<tr>
<td>March</td>
<td>-1.7</td>
<td>4.2</td>
</tr>
<tr>
<td>April</td>
<td>2.6</td>
<td>18.4</td>
</tr>
<tr>
<td>May</td>
<td>22.7</td>
<td>48.5</td>
</tr>
<tr>
<td>June</td>
<td>16.0</td>
<td>44.7</td>
</tr>
<tr>
<td>July</td>
<td>48.5</td>
<td>12.7</td>
</tr>
<tr>
<td>August</td>
<td>7.1</td>
<td>-5.8</td>
</tr>
<tr>
<td>September</td>
<td>28.3</td>
<td>-12.5</td>
</tr>
<tr>
<td>October</td>
<td>11.2</td>
<td>-14.7</td>
</tr>
<tr>
<td>November</td>
<td>-6.4</td>
<td>-1.9</td>
</tr>
<tr>
<td>December</td>
<td>-4.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Wet Season</td>
<td>111.0</td>
<td>24.3</td>
</tr>
<tr>
<td>Dry Season</td>
<td>15.0</td>
<td>74.6</td>
</tr>
</tbody>
</table>

Table 18 and Table 19 present the decadal water yield projections and relevant changes in twelve months in the Damodar sub-basin. The average monthly water yield will increase in the wet season, showing positive changes between 30.5 mm and 210.3 mm under RCP 4.5 and between 81.4 mm and 246.6 mm under RCP 8.5. In the dry season, only in the 2020s it shows a decrease
under RCP 4.5. This shows that there will be an increase in the water yield in the dry season which is good indication that the sub-basin can provide extra water to various sectors in the future.

Table 18 Average monthly water yield in the Damodar sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
</tr>
<tr>
<td>January</td>
<td>4.4</td>
<td>4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>February</td>
<td>3.9</td>
<td>3.1</td>
<td>3.7</td>
</tr>
<tr>
<td>March</td>
<td>3.3</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>April</td>
<td>1.4</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>May</td>
<td>7.1</td>
<td>7.5</td>
<td>16.3</td>
</tr>
<tr>
<td>June</td>
<td>69.7</td>
<td>69.3</td>
<td>94.2</td>
</tr>
<tr>
<td>July</td>
<td>139.8</td>
<td>158.0</td>
<td>154.7</td>
</tr>
<tr>
<td>August</td>
<td>166.7</td>
<td>180.0</td>
<td>169.7</td>
</tr>
<tr>
<td>September</td>
<td>165.1</td>
<td>185.4</td>
<td>153.2</td>
</tr>
<tr>
<td>October</td>
<td>102.5</td>
<td>118.6</td>
<td>102.5</td>
</tr>
<tr>
<td>November</td>
<td>40.7</td>
<td>43.0</td>
<td>42.6</td>
</tr>
<tr>
<td>December</td>
<td>16.8</td>
<td>15.9</td>
<td>17.9</td>
</tr>
<tr>
<td>Wet Season</td>
<td>643.7</td>
<td>711.3</td>
<td>674.2</td>
</tr>
<tr>
<td>Dry Season</td>
<td>77.6</td>
<td>77.4</td>
<td>88.7</td>
</tr>
</tbody>
</table>

Table 19 Average monthly water yield change in the Damodar sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>0.0</td>
<td>-1.1</td>
</tr>
<tr>
<td>February</td>
<td>-0.8</td>
<td>-0.2</td>
</tr>
<tr>
<td>March</td>
<td>-1.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>April</td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>May</td>
<td>0.4</td>
<td>9.2</td>
</tr>
<tr>
<td>June</td>
<td>-0.3</td>
<td>24.5</td>
</tr>
<tr>
<td>July</td>
<td>18.2</td>
<td>14.9</td>
</tr>
<tr>
<td>August</td>
<td>13.3</td>
<td>2.9</td>
</tr>
<tr>
<td>September</td>
<td>20.3</td>
<td>-12.0</td>
</tr>
<tr>
<td>October</td>
<td>16.1</td>
<td>0.1</td>
</tr>
<tr>
<td>November</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>December</td>
<td>-0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Wet Season</td>
<td>67.6</td>
<td>30.5</td>
</tr>
<tr>
<td>Dry Season</td>
<td>-0.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Water availability at the district level in the Damodar sub-basin is provided in Table 20. The results show that the water availability in most of the districts located in the Damodar sub-basin will increase in the future. However, the water availability in a couple of districts will decrease in the future. Specifically, the water availability in Deograh (Da_05), Giridih (Da_08), Jamatara (Da_12), Latehar (Da_14) and Lohardaga (Da_15) will reduce particularly in 2030 compared with that in 2010.

Table 20 District-level water availability in the Damodar sub-basin for the periods in 2010, 2030 and 2050 (MCM) under RCP 4.5

<table>
<thead>
<tr>
<th>District Name</th>
<th>District Code</th>
<th>State Name</th>
<th>Area (km²) in the Basin</th>
<th>Water 2010</th>
<th>Water_4.5 2030</th>
<th>Water_4.5 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bankura</td>
<td>Da_01</td>
<td>West Bengal</td>
<td>6,965</td>
<td>5,186</td>
<td>6,084</td>
<td>6,065</td>
</tr>
<tr>
<td>Barddhaman</td>
<td>Da_02</td>
<td>West Bengal</td>
<td>2,095</td>
<td>1,551</td>
<td>1,797</td>
<td>1,878</td>
</tr>
<tr>
<td>Bokaro</td>
<td>Da_03</td>
<td>Jharkhand</td>
<td>2,848</td>
<td>1,579</td>
<td>1,831</td>
<td>2,184</td>
</tr>
<tr>
<td>Chatra</td>
<td>Da_04</td>
<td>Jharkhand</td>
<td>646</td>
<td>356</td>
<td>409</td>
<td>516</td>
</tr>
<tr>
<td>Deograh</td>
<td>Da_05</td>
<td>Jharkhand</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dhanbad</td>
<td>Da_06</td>
<td>Jharkhand</td>
<td>2,084</td>
<td>1,385</td>
<td>1,448</td>
<td>1,659</td>
</tr>
<tr>
<td>East Midnapore</td>
<td>Da_07</td>
<td>West Bengal</td>
<td>2,674</td>
<td>2,316</td>
<td>2,337</td>
<td>2,720</td>
</tr>
<tr>
<td>Giridih</td>
<td>Da_08</td>
<td>Jharkhand</td>
<td>3,494</td>
<td>2,482</td>
<td>2,343</td>
<td>2,803</td>
</tr>
<tr>
<td>Haora</td>
<td>Da_09</td>
<td>West Bengal</td>
<td>276</td>
<td>218</td>
<td>266</td>
<td>269</td>
</tr>
<tr>
<td>Hazaribag</td>
<td>Da_10</td>
<td>Jharkhand</td>
<td>5,367</td>
<td>3,181</td>
<td>3,344</td>
<td>4,341</td>
</tr>
<tr>
<td>Hugli</td>
<td>Da_11</td>
<td>West Bengal</td>
<td>1,062</td>
<td>759</td>
<td>934</td>
<td>927</td>
</tr>
<tr>
<td>Jamatara</td>
<td>Da_12</td>
<td>Jharkhand</td>
<td>3,494</td>
<td>2,482</td>
<td>2,343</td>
<td>2,803</td>
</tr>
<tr>
<td>Koderma</td>
<td>Da_13</td>
<td>Jharkhand</td>
<td>546</td>
<td>288</td>
<td>313</td>
<td>424</td>
</tr>
<tr>
<td>Latehar</td>
<td>Da_14</td>
<td>Jharkhand</td>
<td>692</td>
<td>454</td>
<td>387</td>
<td>497</td>
</tr>
<tr>
<td>Lohardaga</td>
<td>Da_15</td>
<td>Jharkhand</td>
<td>313</td>
<td>194</td>
<td>234</td>
<td>293</td>
</tr>
<tr>
<td>Purba Singhbhum</td>
<td>Da_16</td>
<td>Jharkhand</td>
<td>313</td>
<td>194</td>
<td>234</td>
<td>293</td>
</tr>
<tr>
<td>Puruliya</td>
<td>Da_17</td>
<td>West Bengal</td>
<td>5,238</td>
<td>3,430</td>
<td>4,122</td>
<td>4,308</td>
</tr>
<tr>
<td>Ranchi</td>
<td>Da_18</td>
<td>Jharkhand</td>
<td>809</td>
<td>503</td>
<td>512</td>
<td>655</td>
</tr>
<tr>
<td>Saraikela Kharsawan</td>
<td>Da_19</td>
<td>Jharkhand</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>West Midnapore</td>
<td>Da_20</td>
<td>West Bengal</td>
<td>6,830</td>
<td>5,799</td>
<td>5,949</td>
<td>6,403</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>42,549</td>
<td>30,171</td>
<td>32,720</td>
<td>36,418</td>
</tr>
</tbody>
</table>

Gandak sub-basin

Table 21 and Table 22 show the water supply and its changes in the Gandak sub-basin for different decades under two climate scenarios. There will be increases in the precipitation which vary between -5% and 26% under the RCP 4.5 and the changes between -1% and 34% under RCP 8.5. For evapotranspiration, the percentage changes vary between -3% and 10% under RCP 4.5 and between 1% and 12% under RCP 8.5. The surface runoff shows the changes between -9% and 39% under RCP 4.5 and between -7% and 50% under RCP 8.5. An increase in the water yield of the Gandak sub-basin is predicted under both scenarios. The changes vary between -9% and 43% under RCP 4.5 and between -5% and 58% under RCP 8.5.
Table 21 Water supply in the Gandak sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
</tr>
<tr>
<td>Historical</td>
<td>1,075</td>
<td>608</td>
<td>425</td>
<td>496</td>
<td>1,075</td>
<td>608</td>
<td>425</td>
<td>496</td>
</tr>
<tr>
<td>2011-2020</td>
<td>1,268</td>
<td>671</td>
<td>515</td>
<td>617</td>
<td>1,186</td>
<td>666</td>
<td>466</td>
<td>544</td>
</tr>
<tr>
<td>2021-2030</td>
<td>1,356</td>
<td>667</td>
<td>583</td>
<td>708</td>
<td>1,278</td>
<td>664</td>
<td>535</td>
<td>634</td>
</tr>
<tr>
<td>2031-2040</td>
<td>1,134</td>
<td>620</td>
<td>438</td>
<td>537</td>
<td>1,061</td>
<td>615</td>
<td>396</td>
<td>472</td>
</tr>
<tr>
<td>2041-2050</td>
<td>1,246</td>
<td>666</td>
<td>500</td>
<td>600</td>
<td>1,338</td>
<td>683</td>
<td>552</td>
<td>674</td>
</tr>
<tr>
<td>2051-2060</td>
<td>1,334</td>
<td>662</td>
<td>568</td>
<td>691</td>
<td>1,420</td>
<td>676</td>
<td>619</td>
<td>762</td>
</tr>
<tr>
<td>2061-2070</td>
<td>1,120</td>
<td>620</td>
<td>427</td>
<td>523</td>
<td>1,197</td>
<td>635</td>
<td>470</td>
<td>584</td>
</tr>
<tr>
<td>2071-2080</td>
<td>1,137</td>
<td>639</td>
<td>451</td>
<td>523</td>
<td>1,353</td>
<td>680</td>
<td>569</td>
<td>692</td>
</tr>
<tr>
<td>2081-2090</td>
<td>1,228</td>
<td>640</td>
<td>517</td>
<td>610</td>
<td>1,441</td>
<td>676</td>
<td>638</td>
<td>783</td>
</tr>
<tr>
<td>2091-2100</td>
<td>1,016</td>
<td>591</td>
<td>383</td>
<td>453</td>
<td>1,211</td>
<td>627</td>
<td>491</td>
<td>607</td>
</tr>
<tr>
<td>Near Future</td>
<td>1,253</td>
<td>653</td>
<td>512</td>
<td>621</td>
<td>1,175</td>
<td>649</td>
<td>466</td>
<td>550</td>
</tr>
<tr>
<td>Mid Future</td>
<td>1,233</td>
<td>649</td>
<td>498</td>
<td>605</td>
<td>1,318</td>
<td>665</td>
<td>547</td>
<td>673</td>
</tr>
<tr>
<td>Far Future</td>
<td>1,127</td>
<td>624</td>
<td>450</td>
<td>529</td>
<td>1,335</td>
<td>661</td>
<td>566</td>
<td>694</td>
</tr>
</tbody>
</table>

Table 22 Percent change in the water supply in the Gandak sub-basin for different time periods under two climate scenarios (%)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
</tr>
<tr>
<td>2011-2020</td>
<td>18</td>
<td>10</td>
<td>21</td>
<td>24</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2021-2030</td>
<td>26</td>
<td>10</td>
<td>37</td>
<td>43</td>
<td>19</td>
<td>9</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>2031-2040</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>-1</td>
<td>1</td>
<td>-7</td>
<td>-5</td>
</tr>
<tr>
<td>2041-2050</td>
<td>16</td>
<td>10</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>2051-2060</td>
<td>24</td>
<td>9</td>
<td>34</td>
<td>39</td>
<td>32</td>
<td>11</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>2061-2070</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>2071-2080</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>26</td>
<td>12</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>2081-2090</td>
<td>14</td>
<td>5</td>
<td>22</td>
<td>23</td>
<td>34</td>
<td>11</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>2091-2100</td>
<td>-5</td>
<td>-3</td>
<td>-10</td>
<td>-9</td>
<td>13</td>
<td>3</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Near Future</td>
<td>17</td>
<td>7</td>
<td>20</td>
<td>25</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Mid Future</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>22</td>
<td>23</td>
<td>9</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>Far Future</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>24</td>
<td>9</td>
<td>33</td>
<td>40</td>
</tr>
</tbody>
</table>

In the Gandak sub-basin, the average monthly precipitation in the wet season shows positive changes between 60.8 mm and 257.4 mm under RCP 4.5 and from negative to positive changes from -15 to 258.1 mm under RCP 8.5 (Table 23 and Table 24). In the dry season, the variation is
between -2.1 mm and 23.4 mm under RCP 4.5 and between 1.2 mm and 29.4 mm under RCP 8.5.

Table 23 Average monthly precipitation in the Gandak sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>11.2</td>
<td>13.6</td>
<td>12.7</td>
</tr>
<tr>
<td>February</td>
<td>11.6</td>
<td>15.5</td>
<td>13.0</td>
</tr>
<tr>
<td>March</td>
<td>7.7</td>
<td>6.2</td>
<td>11.2</td>
</tr>
<tr>
<td>April</td>
<td>12.9</td>
<td>18.0</td>
<td>17.6</td>
</tr>
<tr>
<td>May</td>
<td>37.8</td>
<td>41.6</td>
<td>49.9</td>
</tr>
<tr>
<td>June</td>
<td>153.2</td>
<td>178.1</td>
<td>212.8</td>
</tr>
<tr>
<td>July</td>
<td>313.7</td>
<td>412.0</td>
<td>474.8</td>
</tr>
<tr>
<td>August</td>
<td>261.2</td>
<td>267.4</td>
<td>262.6</td>
</tr>
<tr>
<td>September</td>
<td>190.5</td>
<td>220.2</td>
<td>218.4</td>
</tr>
<tr>
<td>October</td>
<td>61.9</td>
<td>87.2</td>
<td>69.3</td>
</tr>
<tr>
<td>November</td>
<td>6.9</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>December</td>
<td>6.6</td>
<td>3.1</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 24 Average monthly precipitation change in the Gandak sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
</tr>
<tr>
<td>January</td>
<td>2.4</td>
<td>1.5</td>
</tr>
<tr>
<td>February</td>
<td>3.9</td>
<td>1.4</td>
</tr>
<tr>
<td>March</td>
<td>-1.6</td>
<td>3.5</td>
</tr>
<tr>
<td>April</td>
<td>5.2</td>
<td>4.8</td>
</tr>
<tr>
<td>May</td>
<td>3.9</td>
<td>12.1</td>
</tr>
<tr>
<td>June</td>
<td>25.0</td>
<td>59.7</td>
</tr>
<tr>
<td>July</td>
<td>98.3</td>
<td>161.1</td>
</tr>
<tr>
<td>August</td>
<td>6.1</td>
<td>1.4</td>
</tr>
<tr>
<td>September</td>
<td>29.6</td>
<td>27.9</td>
</tr>
<tr>
<td>October</td>
<td>25.3</td>
<td>7.4</td>
</tr>
<tr>
<td>November</td>
<td>-0.9</td>
<td>-1.9</td>
</tr>
<tr>
<td>December</td>
<td>-3.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Wet Season</td>
<td>184.3</td>
<td>257.4</td>
</tr>
<tr>
<td>Dry Season</td>
<td>9.3</td>
<td>23.4</td>
</tr>
</tbody>
</table>

In the Gandak sub-basin, the average monthly water yield in the wet season shows positive changes between 41 mm and 190.5 mm under RCP 4.5 and changes from -17.3 mm to 161.2
mm under RCP 8.5 (see Table 25 and Table 26). Under RCP 8.5 scenario in both dry and wet seasons, it shows positive changes except for the period in the 2040s which have negative changes, i.e. from -17.3 mm to -0.8 mm.

Table 25 Average monthly water yield in the Gandak sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5 2020s</th>
<th>RCP 4.5 2030s</th>
<th>RCP 4.5 2040s</th>
<th>RCP 4.5 2050s</th>
<th>RCP 8.5 2020s</th>
<th>RCP 8.5 2030s</th>
<th>RCP 8.5 2040s</th>
<th>RCP 8.5 2050s</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>3.0</td>
<td>2.5</td>
<td>3.5</td>
<td>2.3</td>
<td>2.6</td>
<td>2.3</td>
<td>3.3</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>February</td>
<td>2.1</td>
<td>2.1</td>
<td>1.8</td>
<td>1.4</td>
<td>2.0</td>
<td>1.9</td>
<td>1.7</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>March</td>
<td>1.1</td>
<td>0.6</td>
<td>1.0</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.9</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>April</td>
<td>0.5</td>
<td>3.8</td>
<td>1.0</td>
<td>0.3</td>
<td>3.7</td>
<td>3.6</td>
<td>0.9</td>
<td>0.3</td>
<td>3.6</td>
</tr>
<tr>
<td>May</td>
<td>1.3</td>
<td>2.6</td>
<td>2.1</td>
<td>1.7</td>
<td>2.3</td>
<td>2.7</td>
<td>2.3</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>June</td>
<td>27.4</td>
<td>27.5</td>
<td>48.5</td>
<td>33.9</td>
<td>22.0</td>
<td>22.6</td>
<td>42.1</td>
<td>27.3</td>
<td>36.6</td>
</tr>
<tr>
<td>July</td>
<td>120.7</td>
<td>160.2</td>
<td>212.6</td>
<td>137.3</td>
<td>138.1</td>
<td>127.8</td>
<td>178.2</td>
<td>110.6</td>
<td>176.8</td>
</tr>
<tr>
<td>August</td>
<td>128.0</td>
<td>147.0</td>
<td>159.0</td>
<td>132.9</td>
<td>154.8</td>
<td>131.2</td>
<td>145.2</td>
<td>119.6</td>
<td>172.4</td>
</tr>
<tr>
<td>September</td>
<td>107.7</td>
<td>130.7</td>
<td>134.9</td>
<td>125.4</td>
<td>130.8</td>
<td>122.7</td>
<td>127.4</td>
<td>118.5</td>
<td>134.8</td>
</tr>
<tr>
<td>October</td>
<td>52.1</td>
<td>80.2</td>
<td>71.5</td>
<td>47.4</td>
<td>82.0</td>
<td>75.1</td>
<td>66.5</td>
<td>42.6</td>
<td>85.4</td>
</tr>
<tr>
<td>November</td>
<td>15.3</td>
<td>18.3</td>
<td>21.3</td>
<td>19.1</td>
<td>19.2</td>
<td>15.8</td>
<td>18.9</td>
<td>16.8</td>
<td>20.3</td>
</tr>
<tr>
<td>December</td>
<td>6.1</td>
<td>6.2</td>
<td>7.7</td>
<td>6.8</td>
<td>6.8</td>
<td>5.4</td>
<td>6.9</td>
<td>6.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Wet Season</td>
<td>435.8</td>
<td>545.6</td>
<td>626.4</td>
<td>476.8</td>
<td>527.7</td>
<td>479.3</td>
<td>559.4</td>
<td>418.5</td>
<td>597.0</td>
</tr>
<tr>
<td>Dry Season</td>
<td>29.5</td>
<td>36.0</td>
<td>38.5</td>
<td>32.1</td>
<td>37.2</td>
<td>32.2</td>
<td>34.9</td>
<td>28.7</td>
<td>38.0</td>
</tr>
</tbody>
</table>

Table 26 Average monthly water yield change in the Gandak sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5 2020s</th>
<th>RCP 4.5 2030s</th>
<th>RCP 4.5 2040s</th>
<th>RCP 4.5 2050s</th>
<th>RCP 8.5 2020s</th>
<th>RCP 8.5 2030s</th>
<th>RCP 8.5 2040s</th>
<th>RCP 8.5 2050s</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-0.5</td>
<td>0.5</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.8</td>
<td>0.2</td>
<td>-0.9</td>
<td>-0.5</td>
</tr>
<tr>
<td>February</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.7</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.8</td>
<td>-0.1</td>
</tr>
<tr>
<td>March</td>
<td>-0.5</td>
<td>-0.1</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-0.2</td>
<td>-0.7</td>
<td>-0.4</td>
</tr>
<tr>
<td>April</td>
<td>3.3</td>
<td>0.5</td>
<td>-0.2</td>
<td>3.2</td>
<td>3.1</td>
<td>0.4</td>
<td>-0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>May</td>
<td>1.2</td>
<td>0.8</td>
<td>0.3</td>
<td>1.0</td>
<td>1.3</td>
<td>1.0</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>June</td>
<td>0.1</td>
<td>21.1</td>
<td>6.5</td>
<td>-5.4</td>
<td>-4.8</td>
<td>14.7</td>
<td>-0.1</td>
<td>9.2</td>
</tr>
<tr>
<td>July</td>
<td>39.6</td>
<td>91.9</td>
<td>16.6</td>
<td>17.5</td>
<td>7.1</td>
<td>57.5</td>
<td>-10.1</td>
<td>47.2</td>
</tr>
<tr>
<td>August</td>
<td>19.0</td>
<td>31.0</td>
<td>4.9</td>
<td>26.8</td>
<td>3.2</td>
<td>17.2</td>
<td>-8.4</td>
<td>44.4</td>
</tr>
<tr>
<td>September</td>
<td>23.0</td>
<td>27.2</td>
<td>17.7</td>
<td>23.1</td>
<td>15.0</td>
<td>19.7</td>
<td>10.9</td>
<td>27.2</td>
</tr>
<tr>
<td>October</td>
<td>28.1</td>
<td>19.4</td>
<td>-4.7</td>
<td>29.9</td>
<td>23.0</td>
<td>14.4</td>
<td>-9.5</td>
<td>33.3</td>
</tr>
<tr>
<td>November</td>
<td>3.0</td>
<td>6.0</td>
<td>3.9</td>
<td>3.9</td>
<td>0.6</td>
<td>3.6</td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td>December</td>
<td>0.0</td>
<td>1.6</td>
<td>0.6</td>
<td>0.7</td>
<td>-0.8</td>
<td>0.8</td>
<td>-0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Wet Season</td>
<td>109.8</td>
<td>190.5</td>
<td>41.0</td>
<td>91.8</td>
<td>43.5</td>
<td>123.5</td>
<td>-17.3</td>
<td>161.2</td>
</tr>
<tr>
<td>Dry Season</td>
<td>6.5</td>
<td>9.0</td>
<td>2.6</td>
<td>7.7</td>
<td>2.7</td>
<td>5.4</td>
<td>-0.8</td>
<td>8.5</td>
</tr>
</tbody>
</table>
Water availability at the district level in the Gandak sub-basin is provided in Table 27. The results show that the water availability in all the districts located in the Gandak sub-basin will increase in 2030. The water availability in most of the districts will increase in 2050 except for a few districts, including Deoghar (Gd_06), Dumka (Gd_07) and Munger (Gd_20) which water availability will decrease in 2050 compared with those in 2010.

Table 27 District-level water availability in the Gandak sub-basin for the periods in 2010, 2030 and 2050 (MCM) under RCP 4.5

<table>
<thead>
<tr>
<th>District Name</th>
<th>District Code</th>
<th>State Name</th>
<th>Area (km²) in the Basin</th>
<th>Water 2010</th>
<th>Water_4.5 2030</th>
<th>Water_4.5 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurangabad</td>
<td>Gd_01</td>
<td>Bihar</td>
<td>2,819</td>
<td>1,136</td>
<td>1,513</td>
<td>1,493</td>
</tr>
<tr>
<td>Banka</td>
<td>Gd_02</td>
<td>Bihar</td>
<td>3,090</td>
<td>1,629</td>
<td>2,164</td>
<td>1,702</td>
</tr>
<tr>
<td>Begusarai</td>
<td>Gd_03</td>
<td>Bihar</td>
<td>502</td>
<td>333</td>
<td>388</td>
<td>357</td>
</tr>
<tr>
<td>Bhagalpur</td>
<td>Gd_04</td>
<td>Bihar</td>
<td>1,606</td>
<td>846</td>
<td>1,153</td>
<td>969</td>
</tr>
<tr>
<td>Chatra</td>
<td>Gd_05</td>
<td>Jharkhand</td>
<td>2,569</td>
<td>1,067</td>
<td>1,451</td>
<td>1,523</td>
</tr>
<tr>
<td>Deoghar</td>
<td>Gd_06</td>
<td>Jharkhand</td>
<td>192</td>
<td>119</td>
<td>119</td>
<td>107</td>
</tr>
<tr>
<td>Dumka</td>
<td>Gd_07</td>
<td>Jharkhand</td>
<td>112</td>
<td>64</td>
<td>70</td>
<td>63</td>
</tr>
<tr>
<td>Gaya</td>
<td>Gd_08</td>
<td>Bihar</td>
<td>4,965</td>
<td>2,140</td>
<td>3,032</td>
<td>2,700</td>
</tr>
<tr>
<td>Giridih</td>
<td>Gd_09</td>
<td>Jharkhand</td>
<td>1,189</td>
<td>712</td>
<td>1,025</td>
<td>830</td>
</tr>
<tr>
<td>Godda</td>
<td>Gd_10</td>
<td>Jharkhand</td>
<td>1,806</td>
<td>766</td>
<td>1,130</td>
<td>1,016</td>
</tr>
<tr>
<td>Gopalganj</td>
<td>Gd_11</td>
<td>Bihar</td>
<td>698</td>
<td>403</td>
<td>611</td>
<td>480</td>
</tr>
<tr>
<td>Hazaribag</td>
<td>Gd_12</td>
<td>Jharkhand</td>
<td>637</td>
<td>301</td>
<td>426</td>
<td>380</td>
</tr>
<tr>
<td>Jamui</td>
<td>Gd_13</td>
<td>Bihar</td>
<td>2,695</td>
<td>1,416</td>
<td>2,203</td>
<td>1,511</td>
</tr>
<tr>
<td>Jehanabad</td>
<td>Gd_14</td>
<td>Bihar</td>
<td>1,431</td>
<td>617</td>
<td>871</td>
<td>807</td>
</tr>
<tr>
<td>Khagaria</td>
<td>Gd_15</td>
<td>Bihar</td>
<td>164</td>
<td>114</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>Khushinagar</td>
<td>Gd_16</td>
<td>Uttar Pradesh</td>
<td>771</td>
<td>458</td>
<td>646</td>
<td>546</td>
</tr>
<tr>
<td>Koderma</td>
<td>Gd_17</td>
<td>Jharkhand</td>
<td>399</td>
<td>258</td>
<td>383</td>
<td>285</td>
</tr>
<tr>
<td>Lakhisarai</td>
<td>Gd_18</td>
<td>Bihar</td>
<td>1,336</td>
<td>684</td>
<td>1,001</td>
<td>803</td>
</tr>
<tr>
<td>Maharajganj</td>
<td>Gd_19</td>
<td>Uttar Pradesh</td>
<td>37</td>
<td>24</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>Munger</td>
<td>Gd_20</td>
<td>Bihar</td>
<td>1,355</td>
<td>734</td>
<td>1,086</td>
<td>706</td>
</tr>
<tr>
<td>Muzaffarpur</td>
<td>Gd_21</td>
<td>Bihar</td>
<td>1,844</td>
<td>900</td>
<td>1,317</td>
<td>1,113</td>
</tr>
<tr>
<td>Nalanda</td>
<td>Gd_22</td>
<td>Bihar</td>
<td>2,337</td>
<td>1,079</td>
<td>1,608</td>
<td>1,357</td>
</tr>
<tr>
<td>Nawada</td>
<td>Gd_23</td>
<td>Bihar</td>
<td>2,485</td>
<td>1,272</td>
<td>1,858</td>
<td>1,529</td>
</tr>
<tr>
<td>Palamu</td>
<td>Gd_24</td>
<td>Jharkhand</td>
<td>728</td>
<td>291</td>
<td>379</td>
<td>391</td>
</tr>
<tr>
<td>Pashchim Champaran</td>
<td>Gd_25</td>
<td>Bihar</td>
<td>2,366</td>
<td>1,527</td>
<td>2,266</td>
<td>1,688</td>
</tr>
<tr>
<td>Patna</td>
<td>Gd_26</td>
<td>Bihar</td>
<td>2,501</td>
<td>1,197</td>
<td>1,661</td>
<td>1,555</td>
</tr>
<tr>
<td>Purba Champaran</td>
<td>Gd_27</td>
<td>Bihar</td>
<td>1,449</td>
<td>824</td>
<td>1,216</td>
<td>956</td>
</tr>
<tr>
<td>Sahibganj</td>
<td>Gd_28</td>
<td>Jharkhand</td>
<td>148</td>
<td>63</td>
<td>93</td>
<td>83</td>
</tr>
<tr>
<td>Samastipur</td>
<td>Gd_29</td>
<td>Bihar</td>
<td>688</td>
<td>312</td>
<td>443</td>
<td>410</td>
</tr>
<tr>
<td>Saran</td>
<td>Gd_30</td>
<td>Bihar</td>
<td>1,703</td>
<td>885</td>
<td>1,322</td>
<td>1,196</td>
</tr>
<tr>
<td>Sheikhpura</td>
<td>Gd_31</td>
<td>Bihar</td>
<td>604</td>
<td>264</td>
<td>394</td>
<td>385</td>
</tr>
<tr>
<td>Siwan</td>
<td>Gd_32</td>
<td>Bihar</td>
<td>125</td>
<td>65</td>
<td>101</td>
<td>83</td>
</tr>
<tr>
<td>Vaishali</td>
<td>Gd_33</td>
<td>Bihar</td>
<td>2,009</td>
<td>958</td>
<td>1,329</td>
<td>1,236</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>47,360</td>
<td>23,456</td>
<td>33,433</td>
<td>28,407</td>
</tr>
</tbody>
</table>
Yamuna sub-basin

In the Yamuna sub-basin, overall there will be an increase in the precipitation in the future periods under both scenarios (Table 28 and Table 29). There will be increases in the precipitation in the near-future compared to the mid-future periods and then decreases in the far-future period. The changes in precipitation range from -2% to 21% under RCP 4.5 and vary from 1% to 29% under RCP 8.5 scenario. Overall, there will be positive changes in the sub-basin.

Table 28 Water supply in the Yamuna sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
<td>PCP</td>
<td>ET</td>
</tr>
<tr>
<td>Historical</td>
<td>744</td>
<td>452</td>
<td>210</td>
<td>271</td>
<td>744</td>
<td>452</td>
</tr>
<tr>
<td>2011-2020</td>
<td>902</td>
<td>506</td>
<td>275</td>
<td>369</td>
<td>782</td>
<td>471</td>
</tr>
<tr>
<td>2021-2030</td>
<td>864</td>
<td>516</td>
<td>239</td>
<td>320</td>
<td>755</td>
<td>478</td>
</tr>
<tr>
<td>2031-2040</td>
<td>898</td>
<td>513</td>
<td>280</td>
<td>358</td>
<td>787</td>
<td>480</td>
</tr>
<tr>
<td>2041-2050</td>
<td>861</td>
<td>490</td>
<td>264</td>
<td>346</td>
<td>962</td>
<td>512</td>
</tr>
<tr>
<td>2051-2060</td>
<td>823</td>
<td>497</td>
<td>229</td>
<td>301</td>
<td>913</td>
<td>520</td>
</tr>
<tr>
<td>2061-2070</td>
<td>857</td>
<td>499</td>
<td>266</td>
<td>332</td>
<td>948</td>
<td>520</td>
</tr>
<tr>
<td>2071-2080</td>
<td>743</td>
<td>459</td>
<td>207</td>
<td>267</td>
<td>872</td>
<td>509</td>
</tr>
<tr>
<td>2081-2090</td>
<td>726</td>
<td>467</td>
<td>183</td>
<td>240</td>
<td>836</td>
<td>517</td>
</tr>
<tr>
<td>2091-2100</td>
<td>751</td>
<td>470</td>
<td>216</td>
<td>263</td>
<td>879</td>
<td>518</td>
</tr>
<tr>
<td>Near Future</td>
<td>888</td>
<td>512</td>
<td>265</td>
<td>349</td>
<td>775</td>
<td>476</td>
</tr>
<tr>
<td>Mid Future</td>
<td>847</td>
<td>495</td>
<td>253</td>
<td>326</td>
<td>941</td>
<td>517</td>
</tr>
<tr>
<td>Far Future</td>
<td>740</td>
<td>465</td>
<td>202</td>
<td>257</td>
<td>862</td>
<td>515</td>
</tr>
</tbody>
</table>

For the surface runoff (see Table 29), the changes vary from -1% to 33% under RCP 4.5 and between -6% and 51% under the RCP 8.5 scenario. This pattern is similar to the precipitation. An increase in the water yield has been shown in Table 29. The changes vary between -1% and 36% under RCP 4.5 and between -3% and 60% under RCP.

An increase in the evapotranspiration has been projected under both RCP 4.5 and RCP 8.5 scenarios in the Yamuna sub-basin as shown in Table 29. It means that there will be more water loss through evapotranspiration. Overall, evapotranspiration increases from 2% to 15% under both climate scenarios.

Monthly precipitation and its changes for different time periods are given in Table 30 and Table 31, respectively. In the Yamuna sub-basin, the average monthly precipitation in the wet season will increase from 79.6 mm to 174 mm under RCP 4.5 and change from -25.9 mm to 233.3 mm under RCP 8.5. There will be the decreases in most of the time periods in the dry season in the 2030s. The decrease in the dry season can worsen the existing water scarcity situation in the sub-basin.
Table 29 Percent change in the water supply in the Yamuna sub-basin for different time periods under two climate scenarios (%)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCP</td>
<td>ET</td>
<td>SURQ</td>
<td>WYLD</td>
<td>PCP</td>
<td>ET</td>
</tr>
<tr>
<td>2011-2020</td>
<td>21</td>
<td>12</td>
<td>31</td>
<td>36</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2021-2030</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>18</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2031-2040</td>
<td>21</td>
<td>13</td>
<td>33</td>
<td>32</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2041-2050</td>
<td>16</td>
<td>8</td>
<td>26</td>
<td>28</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>2051-2060</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>2061-2070</td>
<td>15</td>
<td>10</td>
<td>27</td>
<td>23</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>2071-2080</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>2081-2090</td>
<td>-2</td>
<td>3</td>
<td>-13</td>
<td>-11</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2091-2100</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>-3</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Near Future</td>
<td>19</td>
<td>13</td>
<td>26</td>
<td>29</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Mid Future</td>
<td>14</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Far Future</td>
<td>-1</td>
<td>3</td>
<td>-4</td>
<td>-5</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 30 Average monthly precipitation in the Yamuna sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>21.3</td>
<td>23.5</td>
<td>19.2</td>
<td>24.0</td>
<td>22.6</td>
<td>22.5</td>
<td>18.3</td>
<td>22.8</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>27.6</td>
<td>27.0</td>
<td>34.6</td>
<td>31.7</td>
<td>26.0</td>
<td>24.6</td>
<td>32.3</td>
<td>29.6</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>22.2</td>
<td>18.2</td>
<td>31.9</td>
<td>18.0</td>
<td>17.0</td>
<td>17.4</td>
<td>30.7</td>
<td>17.2</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>15.4</td>
<td>9.8</td>
<td>21.5</td>
<td>13.1</td>
<td>9.3</td>
<td>9.5</td>
<td>21.3</td>
<td>12.9</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>26.7</td>
<td>22.7</td>
<td>38.1</td>
<td>19.2</td>
<td>23.2</td>
<td>23.8</td>
<td>39.5</td>
<td>20.2</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>69.2</td>
<td>101.4</td>
<td>67.7</td>
<td>92.4</td>
<td>88.6</td>
<td>97.8</td>
<td>60.6</td>
<td>81.9</td>
<td>94.5</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>206.0</td>
<td>285.4</td>
<td>233.9</td>
<td>245.4</td>
<td>317.0</td>
<td>207.8</td>
<td>168.2</td>
<td>182.0</td>
<td>399.9</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>214.8</td>
<td>271.0</td>
<td>261.5</td>
<td>289.4</td>
<td>207.3</td>
<td>243.9</td>
<td>236.2</td>
<td>264.5</td>
<td>211.7</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>103.2</td>
<td>112.0</td>
<td>109.7</td>
<td>132.4</td>
<td>117.4</td>
<td>103.4</td>
<td>101.9</td>
<td>122.9</td>
<td>122.6</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>20.0</td>
<td>17.5</td>
<td>20.1</td>
<td>20.6</td>
<td>18.2</td>
<td>17.9</td>
<td>20.5</td>
<td>20.9</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>4.6</td>
<td>6.0</td>
<td>7.0</td>
<td>4.1</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>4.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>12.3</td>
<td>8.4</td>
<td>18.9</td>
<td>8.9</td>
<td>8.4</td>
<td>8.4</td>
<td>18.8</td>
<td>8.8</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>Wet Season</td>
<td>613.2</td>
<td>787.2</td>
<td>692.9</td>
<td>780.1</td>
<td>748.6</td>
<td>670.8</td>
<td>587.4</td>
<td>672.2</td>
<td>846.6</td>
<td></td>
</tr>
<tr>
<td>Dry Season</td>
<td>130.1</td>
<td>115.5</td>
<td>171.3</td>
<td>118.9</td>
<td>112.5</td>
<td>112.2</td>
<td>167.7</td>
<td>115.5</td>
<td>114.9</td>
<td></td>
</tr>
</tbody>
</table>

Average monthly water yield and its changes compared with the historical period in the Yamuna sub-basin is given in Table 32 and Table 33. Average monthly water yield in the wet season shows the increases from 42.4 mm to 104.3 mm under RCP 4.5 and the changes from -16.6 mm
to 155.7 mm under RCP 8.5. In the dry season, there will be decreases in the water yield except for the 2030s. The pattern similarly to the precipitation can be observed in the sub-basin.

Table 31 Average monthly precipitation change in the Yamuna sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
</tr>
<tr>
<td>January</td>
<td>2.2</td>
<td>-2.0</td>
<td>2.7</td>
<td>1.3</td>
<td>1.2</td>
<td>-3.0</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>February</td>
<td>-0.7</td>
<td>7.0</td>
<td>4.1</td>
<td>-1.6</td>
<td>-3.0</td>
<td>4.6</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>March</td>
<td>-4.0</td>
<td>9.7</td>
<td>-4.2</td>
<td>-5.2</td>
<td>-4.8</td>
<td>8.5</td>
<td>-5.0</td>
<td>-4.7</td>
</tr>
<tr>
<td>April</td>
<td>-5.6</td>
<td>6.1</td>
<td>-2.3</td>
<td>-6.1</td>
<td>-5.9</td>
<td>5.9</td>
<td>-2.5</td>
<td>-5.7</td>
</tr>
<tr>
<td>May</td>
<td>-4.0</td>
<td>11.4</td>
<td>-7.5</td>
<td>-3.4</td>
<td>-2.9</td>
<td>12.8</td>
<td>-6.4</td>
<td>-4.4</td>
</tr>
<tr>
<td>June</td>
<td>32.2</td>
<td>-1.6</td>
<td>23.2</td>
<td>19.4</td>
<td>28.6</td>
<td>-8.7</td>
<td>12.7</td>
<td>25.2</td>
</tr>
<tr>
<td>July</td>
<td>79.4</td>
<td>27.9</td>
<td>39.4</td>
<td>111.0</td>
<td>1.8</td>
<td>-37.8</td>
<td>-24.0</td>
<td>193.9</td>
</tr>
<tr>
<td>August</td>
<td>56.2</td>
<td>46.7</td>
<td>74.6</td>
<td>-7.4</td>
<td>29.1</td>
<td>21.4</td>
<td>49.7</td>
<td>-3.1</td>
</tr>
<tr>
<td>September</td>
<td>8.8</td>
<td>6.5</td>
<td>29.1</td>
<td>14.1</td>
<td>0.2</td>
<td>-1.3</td>
<td>19.6</td>
<td>19.4</td>
</tr>
<tr>
<td>October</td>
<td>-2.5</td>
<td>0.1</td>
<td>0.6</td>
<td>-1.8</td>
<td>-2.1</td>
<td>0.5</td>
<td>1.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>November</td>
<td>1.4</td>
<td>2.4</td>
<td>-0.5</td>
<td>1.4</td>
<td>1.4</td>
<td>2.4</td>
<td>-0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>December</td>
<td>-3.9</td>
<td>6.6</td>
<td>-3.4</td>
<td>-3.9</td>
<td>-3.9</td>
<td>6.4</td>
<td>-3.5</td>
<td>-3.9</td>
</tr>
<tr>
<td>Wet Season</td>
<td>174.0</td>
<td>79.6</td>
<td>166.9</td>
<td>135.3</td>
<td>57.6</td>
<td>-25.9</td>
<td>59.0</td>
<td>233.3</td>
</tr>
<tr>
<td>Dry Season</td>
<td>-14.6</td>
<td>41.2</td>
<td>-11.2</td>
<td>-17.6</td>
<td>-17.9</td>
<td>37.6</td>
<td>-14.5</td>
<td>-15.1</td>
</tr>
</tbody>
</table>

Table 32 Average monthly water yield in the Yamuna sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>Hist.</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
</tr>
<tr>
<td>January</td>
<td>5.6</td>
<td>5.7</td>
<td>4.1</td>
<td>5.0</td>
<td>5.4</td>
<td>5.2</td>
<td>3.6</td>
<td>4.6</td>
</tr>
<tr>
<td>February</td>
<td>7.9</td>
<td>5.9</td>
<td>7.4</td>
<td>7.4</td>
<td>5.4</td>
<td>5.1</td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>March</td>
<td>7.9</td>
<td>4.1</td>
<td>8.4</td>
<td>4.3</td>
<td>4.0</td>
<td>3.6</td>
<td>7.6</td>
<td>3.9</td>
</tr>
<tr>
<td>April</td>
<td>3.7</td>
<td>1.2</td>
<td>4.4</td>
<td>1.9</td>
<td>1.2</td>
<td>1.1</td>
<td>3.9</td>
<td>1.7</td>
</tr>
<tr>
<td>May</td>
<td>4.0</td>
<td>3.4</td>
<td>6.7</td>
<td>1.6</td>
<td>3.5</td>
<td>3.3</td>
<td>6.6</td>
<td>1.6</td>
</tr>
<tr>
<td>June</td>
<td>8.6</td>
<td>16.9</td>
<td>7.9</td>
<td>15.2</td>
<td>14.6</td>
<td>16.3</td>
<td>7.4</td>
<td>13.7</td>
</tr>
<tr>
<td>July</td>
<td>58.5</td>
<td>90.6</td>
<td>63.0</td>
<td>70.0</td>
<td>102.1</td>
<td>62.5</td>
<td>43.7</td>
<td>47.8</td>
</tr>
<tr>
<td>August</td>
<td>91.1</td>
<td>134.4</td>
<td>115.7</td>
<td>134.4</td>
<td>112.1</td>
<td>108.7</td>
<td>93.6</td>
<td>110.8</td>
</tr>
<tr>
<td>September</td>
<td>58.6</td>
<td>75.3</td>
<td>67.4</td>
<td>83.2</td>
<td>71.1</td>
<td>62.2</td>
<td>55.6</td>
<td>69.0</td>
</tr>
<tr>
<td>October</td>
<td>17.1</td>
<td>21.0</td>
<td>22.2</td>
<td>25.0</td>
<td>18.3</td>
<td>14.9</td>
<td>17.0</td>
<td>18.6</td>
</tr>
<tr>
<td>November</td>
<td>4.5</td>
<td>7.6</td>
<td>7.0</td>
<td>7.5</td>
<td>6.3</td>
<td>5.4</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>December</td>
<td>3.5</td>
<td>2.6</td>
<td>5.7</td>
<td>3.1</td>
<td>2.3</td>
<td>2.0</td>
<td>5.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Wet Season</td>
<td>233.9</td>
<td>338.2</td>
<td>276.2</td>
<td>327.8</td>
<td>318.3</td>
<td>264.6</td>
<td>217.3</td>
<td>259.9</td>
</tr>
<tr>
<td>Dry Season</td>
<td>37.1</td>
<td>30.5</td>
<td>43.6</td>
<td>30.8</td>
<td>28.0</td>
<td>25.7</td>
<td>38.1</td>
<td>25.6</td>
</tr>
</tbody>
</table>
Table 33: Average monthly water yield change in the Yamuna sub-basin for different time periods under two climate scenarios (in mm)

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP 4.5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>RCP 8.5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
<td>2020s</td>
<td>2030s</td>
<td>2040s</td>
<td>2050s</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>0.0</td>
<td>-1.6</td>
<td>-0.6</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-2.0</td>
<td>-1.1</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>-2.1</td>
<td>-0.5</td>
<td>-0.5</td>
<td>-2.5</td>
<td>-2.9</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>-3.8</td>
<td>0.5</td>
<td>-3.6</td>
<td>-3.9</td>
<td>-4.3</td>
<td>-0.3</td>
<td>-4.0</td>
<td>-3.7</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>-2.5</td>
<td>0.7</td>
<td>-1.8</td>
<td>-2.6</td>
<td>-2.6</td>
<td>0.2</td>
<td>-2.0</td>
<td>-2.5</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>-0.5</td>
<td>2.7</td>
<td>-2.4</td>
<td>-0.5</td>
<td>-0.6</td>
<td>2.7</td>
<td>-2.4</td>
<td>-0.7</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>8.3</td>
<td>-0.7</td>
<td>6.6</td>
<td>6.0</td>
<td>7.7</td>
<td>-1.3</td>
<td>5.1</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>32.1</td>
<td>4.5</td>
<td>11.4</td>
<td>43.6</td>
<td>4.0</td>
<td>-14.9</td>
<td>-10.7</td>
<td>86.5</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>43.3</td>
<td>24.6</td>
<td>43.3</td>
<td>21.0</td>
<td>17.6</td>
<td>2.5</td>
<td>19.7</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>16.7</td>
<td>8.9</td>
<td>24.7</td>
<td>12.6</td>
<td>3.6</td>
<td>-2.9</td>
<td>10.4</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>3.9</td>
<td>5.1</td>
<td>7.9</td>
<td>1.2</td>
<td>-2.2</td>
<td>0.0</td>
<td>1.6</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>3.1</td>
<td>2.5</td>
<td>3.0</td>
<td>1.8</td>
<td>0.9</td>
<td>0.3</td>
<td>0.4</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>-1.0</td>
<td>2.2</td>
<td>-0.4</td>
<td>-1.2</td>
<td>-1.5</td>
<td>1.6</td>
<td>-0.9</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Wet Season</td>
<td>104.3</td>
<td>42.4</td>
<td>93.9</td>
<td>84.4</td>
<td>30.8</td>
<td>-16.6</td>
<td>26.0</td>
<td>155.7</td>
<td></td>
</tr>
<tr>
<td>Dry Season</td>
<td>-6.6</td>
<td>6.5</td>
<td>-6.3</td>
<td>-9.1</td>
<td>-11.5</td>
<td>1.0</td>
<td>-11.5</td>
<td>-7.0</td>
<td></td>
</tr>
</tbody>
</table>

Water availability at the district level in the Yamuna sub-basin is provided in Table 34. The results show that the water availability in most of the districts located in the Yamuna sub-basin will increase in the future except for a few districts. Specifically, the water availability in Aligarh (Ya_02), Auraiya (Ya_04), Bulandshahr (Ya_07), Etawah (Ya_12), Gautam Buddha Nagar (Ya_15), Ghaziabad (Ya_16), Haridwar (Ya_18), Mathura (Ya_27) and Meerut (Ya_28) will decrease in the future compared with those in 2010.
Table 34 District-level water availability in the Yamuna sub-basin for the periods in 2010, 2030 and 2050 (MCM) under RCP 4.5

<table>
<thead>
<tr>
<th>District Name</th>
<th>District Code</th>
<th>State Name</th>
<th>Area (km²) in the Basin</th>
<th>Water 2010</th>
<th>Water_4.5 2030</th>
<th>Water_4.5 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agra</td>
<td>Ya_01</td>
<td>Uttar Pradesh</td>
<td>2,986</td>
<td>520</td>
<td>661</td>
<td>600</td>
</tr>
<tr>
<td>Aligarh</td>
<td>Ya_02</td>
<td>Uttar Pradesh</td>
<td>1,495</td>
<td>248</td>
<td>307</td>
<td>239</td>
</tr>
<tr>
<td>Alwar</td>
<td>Ya_03</td>
<td>Rajasthan</td>
<td>4,899</td>
<td>763</td>
<td>964</td>
<td>1,137</td>
</tr>
<tr>
<td>Auraiya</td>
<td>Ya_04</td>
<td>Uttar Pradesh</td>
<td>88</td>
<td>22</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>Baghapat</td>
<td>Ya_05</td>
<td>Uttar Pradesh</td>
<td>1,332</td>
<td>440</td>
<td>442</td>
<td>587</td>
</tr>
<tr>
<td>Bharatpur</td>
<td>Ya_06</td>
<td>Rajasthan</td>
<td>5,051</td>
<td>714</td>
<td>900</td>
<td>1,036</td>
</tr>
<tr>
<td>Bulandshahr</td>
<td>Ya_07</td>
<td>Uttar Pradesh</td>
<td>216</td>
<td>33</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Dausa</td>
<td>Ya_08</td>
<td>Rajasthan</td>
<td>2,374</td>
<td>425</td>
<td>484</td>
<td>605</td>
</tr>
<tr>
<td>Dehra Dun</td>
<td>Ya_09</td>
<td>Uttaranchal</td>
<td>2,079</td>
<td>1,168</td>
<td>1,390</td>
<td>1,562</td>
</tr>
<tr>
<td>Delhi</td>
<td>Ya_10</td>
<td>Delhi</td>
<td>1,502</td>
<td>379</td>
<td>440</td>
<td>505</td>
</tr>
<tr>
<td>Dhaulpur</td>
<td>Ya_11</td>
<td>Rajasthan</td>
<td>2,246</td>
<td>361</td>
<td>436</td>
<td>580</td>
</tr>
<tr>
<td>Etawah</td>
<td>Ya_12</td>
<td>Uttar Pradesh</td>
<td>479</td>
<td>117</td>
<td>146</td>
<td>115</td>
</tr>
<tr>
<td>Faridabad</td>
<td>Ya_13</td>
<td>Haryana</td>
<td>2,162</td>
<td>341</td>
<td>416</td>
<td>420</td>
</tr>
<tr>
<td>Firozabad</td>
<td>Ya_14</td>
<td>Uttar Pradesh</td>
<td>1,092</td>
<td>228</td>
<td>312</td>
<td>249</td>
</tr>
<tr>
<td>Gautam Buddha Nagar</td>
<td>Ya_15</td>
<td>Uttar Pradesh</td>
<td>1,302</td>
<td>177</td>
<td>194</td>
<td>163</td>
</tr>
<tr>
<td>Ghaziabad</td>
<td>Ya_16</td>
<td>Uttar Pradesh</td>
<td>580</td>
<td>173</td>
<td>172</td>
<td>244</td>
</tr>
<tr>
<td>Gurgaon</td>
<td>Ya_17</td>
<td>Haryana</td>
<td>2,007</td>
<td>387</td>
<td>469</td>
<td>523</td>
</tr>
<tr>
<td>Haridwar</td>
<td>Ya_18</td>
<td>Uttaranchal</td>
<td>288</td>
<td>84</td>
<td>94</td>
<td>79</td>
</tr>
<tr>
<td>Jaipur</td>
<td>Ya_19</td>
<td>Rajasthan</td>
<td>474</td>
<td>95</td>
<td>101</td>
<td>133</td>
</tr>
<tr>
<td>Jhajjar</td>
<td>Ya_20</td>
<td>Haryana</td>
<td>631</td>
<td>159</td>
<td>184</td>
<td>207</td>
</tr>
<tr>
<td>Jind</td>
<td>Ya_21</td>
<td>Haryana</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Karauli</td>
<td>Ya_22</td>
<td>Rajasthan</td>
<td>2,998</td>
<td>470</td>
<td>578</td>
<td>687</td>
</tr>
<tr>
<td>Karnal</td>
<td>Ya_23</td>
<td>Haryana</td>
<td>859</td>
<td>341</td>
<td>352</td>
<td>414</td>
</tr>
<tr>
<td>Kinnaur</td>
<td>Ya_24</td>
<td>Himachal Pradesh</td>
<td>17</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Kurukshehra</td>
<td>Ya_25</td>
<td>Haryana</td>
<td>145</td>
<td>57</td>
<td>59</td>
<td>70</td>
</tr>
<tr>
<td>Mahamaya Nagar (Hathras)</td>
<td>Ya_26</td>
<td>Uttar Pradesh</td>
<td>747</td>
<td>138</td>
<td>174</td>
<td>142</td>
</tr>
<tr>
<td>Mathura</td>
<td>Ya_27</td>
<td>Uttar Pradesh</td>
<td>3,374</td>
<td>433</td>
<td>495</td>
<td>383</td>
</tr>
<tr>
<td>Meerut</td>
<td>Ya_28</td>
<td>Uttar Pradesh</td>
<td>241</td>
<td>66</td>
<td>65</td>
<td>94</td>
</tr>
<tr>
<td>Muzaffarnagar</td>
<td>Ya_29</td>
<td>Uttar Pradesh</td>
<td>2,634</td>
<td>835</td>
<td>880</td>
<td>973</td>
</tr>
<tr>
<td>Panipat</td>
<td>Ya_30</td>
<td>Haryana</td>
<td>978</td>
<td>325</td>
<td>349</td>
<td>404</td>
</tr>
<tr>
<td>Rohtak</td>
<td>Ya_31</td>
<td>Haryana</td>
<td>801</td>
<td>202</td>
<td>234</td>
<td>262</td>
</tr>
<tr>
<td>Saharanpur</td>
<td>Ya_32</td>
<td>Uttar Pradesh</td>
<td>3,555</td>
<td>1,245</td>
<td>1,319</td>
<td>1,403</td>
</tr>
<tr>
<td>Sawai Madhopur</td>
<td>Ya_33</td>
<td>Rajasthan</td>
<td>122</td>
<td>19</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Shimla</td>
<td>Ya_34</td>
<td>Himachal Pradesh</td>
<td>3,171</td>
<td>1,402</td>
<td>1,793</td>
<td>1,730</td>
</tr>
<tr>
<td>Sirmour</td>
<td>Ya_35</td>
<td>Himachal Pradesh</td>
<td>2,325</td>
<td>935</td>
<td>1,181</td>
<td>1,034</td>
</tr>
<tr>
<td>Solan</td>
<td>Ya_36</td>
<td>Himachal Pradesh</td>
<td>190</td>
<td>75</td>
<td>98</td>
<td>79</td>
</tr>
<tr>
<td>Sonepat</td>
<td>Ya_37</td>
<td>Haryana</td>
<td>2,076</td>
<td>607</td>
<td>675</td>
<td>769</td>
</tr>
<tr>
<td>Tehri Garhwal</td>
<td>Ya_38</td>
<td>Uttaranchal</td>
<td>436</td>
<td>385</td>
<td>464</td>
<td>569</td>
</tr>
<tr>
<td>Uttarkashi</td>
<td>Ya_39</td>
<td>Uttaranchal</td>
<td>3,083</td>
<td>2,067</td>
<td>2,524</td>
<td>2,943</td>
</tr>
<tr>
<td>Yamuna Nagar</td>
<td>Ya_40</td>
<td>Haryana</td>
<td>808</td>
<td>321</td>
<td>331</td>
<td>390</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>61,844</td>
<td>16,764</td>
<td>19,784</td>
<td>21,419</td>
</tr>
</tbody>
</table>
3.1.4.2 Water demand estimation

Chambal sub-basin

Table 35 shows the water demand from six sectors in the Chambal basin for the base period and the future periods (2030 and 2050). Among all the sectors, the demand from irrigation is the highest followed by the demand from domestic sector. The pattern of water demand is similar to other sub-basins and will continue until 2050. Dominant crops which are considered to calculate irrigation water requirement for the period of 2010 is given in Table 5. The water demand from irrigation will increase from 8,895 MCM to 11,821 MCM, about 30% increase in 40 years. It is observed that there will be a decrease in the energy water demand because there are not many proposed new power plants in this sub-basin and many of the existing power plants will be retired in 2050 assuming their lifetime of 40 years.

<table>
<thead>
<tr>
<th>Water demand</th>
<th>Base period</th>
<th>Future (2030)</th>
<th>Future (2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>725</td>
<td>1,082</td>
<td>1,359</td>
</tr>
<tr>
<td>Industry</td>
<td>113</td>
<td>181</td>
<td>246</td>
</tr>
<tr>
<td>Livestock</td>
<td>189</td>
<td>228</td>
<td>276</td>
</tr>
<tr>
<td>Irrigation</td>
<td>8,895</td>
<td>8,958</td>
<td>11,822</td>
</tr>
<tr>
<td>Energy</td>
<td>66</td>
<td>45</td>
<td>39</td>
</tr>
<tr>
<td>Environmental water requirement</td>
<td>125</td>
<td>131</td>
<td>172</td>
</tr>
<tr>
<td>Total</td>
<td>10,112</td>
<td>10,625</td>
<td>13,914</td>
</tr>
</tbody>
</table>

Damodar sub-basin

Table 36 shows the water demand from six sectors in the Damodar sub-basin for the based period and two future periods (2030 and 2050). Among all the sectors, irrigation demand is highest followed by the domestic water demand, two of which account for almost 85% of the total water demand. The pattern of water demand will continue until 2050. Dominant crops which are considered to calculate irrigation water requirement for the period of 2010 is given in Table 5. The water demand from irrigation will increase from 20,280 MCM to 26,952 MCM which is about 33% increase compared to the base period. There will be an increase in the water requirement for energy till the period of 2030 due mainly to the new installations and then will decrease from 2030 to 2050 due to retirement of many existing power plants in the future.

<table>
<thead>
<tr>
<th>Water demand</th>
<th>Base period</th>
<th>Future (2030)</th>
<th>Future (2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>925</td>
<td>1,238</td>
<td>1,550</td>
</tr>
<tr>
<td>Industry</td>
<td>123</td>
<td>176</td>
<td>229</td>
</tr>
<tr>
<td>Livestock</td>
<td>200</td>
<td>242</td>
<td>293</td>
</tr>
<tr>
<td>Irrigation</td>
<td>20,281</td>
<td>20,423</td>
<td>26,953</td>
</tr>
<tr>
<td>Energy</td>
<td>298</td>
<td>408</td>
<td>156</td>
</tr>
<tr>
<td>Environmental water requirement</td>
<td>273</td>
<td>281</td>
<td>365</td>
</tr>
<tr>
<td>Total</td>
<td>22,099</td>
<td>22,767</td>
<td>29,546</td>
</tr>
</tbody>
</table>
Gandak sub-basin

Table 37 shows the water demand from six sectors in the Gandak sub-basin for the based period and two future periods (2030 and 2050). Among all the sectors, irrigation demand is the highest which will increase by 25% by 2050. Dominant crops are considered to estimate the irrigation water requirement for base period is listed in Table 5. In 2050, the water demand from irrigation will reach to 30,152 MCM. Except for irrigation, there is a high demand from domestic sector which will increase by almost 2 times in the future period of 2050. There is also a high increase in the water demand from the energy sector from 71 MCM to 182 MCM, which is almost 2.5 times of the level in the base period. It indicates that there will be more new power plants built in this sub-basin.

Table 37 Sectoral water demand and future estimations in the Gandak sub-basin (in MCM)

<table>
<thead>
<tr>
<th>Water demand</th>
<th>Base period</th>
<th>Future (2030)</th>
<th>Future (2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>1,375</td>
<td>2,095</td>
<td>2,816</td>
</tr>
<tr>
<td>Industry</td>
<td>139</td>
<td>221</td>
<td>302</td>
</tr>
<tr>
<td>Livestock</td>
<td>218</td>
<td>263</td>
<td>318</td>
</tr>
<tr>
<td>Irrigation</td>
<td>22,688</td>
<td>22,847</td>
<td>30,152</td>
</tr>
<tr>
<td>Energy</td>
<td>71</td>
<td>253</td>
<td>182</td>
</tr>
<tr>
<td>Environmental water requirement</td>
<td>306</td>
<td>321</td>
<td>422</td>
</tr>
<tr>
<td>Total</td>
<td>24,796</td>
<td>26,000</td>
<td>34,193</td>
</tr>
</tbody>
</table>

Yamuna sub-basin

Table 38 shows the water demand from six sectors in the Yamuna sub-basin for the based period and two future periods (2030 and 2050). Among all the sectoral water demand, irrigation demand is the highest which will continue until 2050. Dominant crops that are considered to estimate the irrigation water requirement for base period is listed in Table 5. In the future period of 2050, the water demand from irrigation will reach to 31,147 MCM, about 1.35 times of the level in the base period (2010). Except for the irrigation demand, there will be high demand from domestic and industrial sectors which will increase in the future. The water demand from both sectors will increase about two times compared with the base period levels. There will be no apparent changes in the water demand from the energy sector and it will remain the same as the present situation. It indicates that new installations are mainly for the replacement of the retired power plants in this sub-basin.
Table 38 Sectoral water demand and future estimations in the Yamuna sub-basin (in MCM)

<table>
<thead>
<tr>
<th>Water demand</th>
<th>Base period</th>
<th>Future (2030)</th>
<th>Future (2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>2,291</td>
<td>3,655</td>
<td>5,018</td>
</tr>
<tr>
<td>Industry</td>
<td>446</td>
<td>756</td>
<td>1,067</td>
</tr>
<tr>
<td>Livestock</td>
<td>333</td>
<td>403</td>
<td>487</td>
</tr>
<tr>
<td>Irrigation</td>
<td>23,437</td>
<td>23,601</td>
<td>31,148</td>
</tr>
<tr>
<td>Energy</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Environmental water requirement</td>
<td>333</td>
<td>356</td>
<td>473</td>
</tr>
<tr>
<td>Total</td>
<td>26,940</td>
<td>28,872</td>
<td>38,294</td>
</tr>
</tbody>
</table>

3.1.4.3 Power plant water demand

We conducted field surveys in the selected power plants to collect the primary data on water use intensity in the existing power plants. Power plants were selected based on the fuel types and the technologies that are employed for the cooling systems: open loop cooling system, close loop cooling system and dry cooling system. The survey results indicated that the selection of the cooling technologies has great impacts on the water demand from power generation. The water use intensity of the power plants with open loop cooling system is about 70 m³/MWh (Coal 4) while the water use intensity of the power plants with close loop cooling system ranges from 3.4 m³/MWh to 5.0 m³/MWh (Coal 1-3). We also observed that coal-based power plants require more water than the gas-based power plants (see Figure 13).

Figure 13 Water use intensity in the existing power plants

We also found that coal-based power plants dominate the majority of the existing installed thermal power capacity in the four sub-basins. In Damodar and Gandak, all the installed capacity is based on coal (Figure 14).
Among the selected sub-basins, the Damodar sub-basin has the largest thermal power capacity (17,956 MW). As a result, the water demand from power generation is the highest among the four selected sub-basins. This situation will continue until 2030. In 2030, the water demand from thermal power generation will reach to 408 MCM (see Figure 15). The Gandak sub-basin has the second highest water demand from thermal power generation and in 2030 the thermal power generation will require 253 MCM water. In contrast, estimates show that thermal power generation will reduce in the Chambal and the Yamuna sub-basins in 2030.
3.1.4.4 Water supply-demand balance at the sub-basin level

Results of the assessment of water supply and demand balance are shown in Table 39. The results show that the Chambal and Damodar sub-basins will have surplus water for all the time periods. The Chambal sub-basin will have the largest water surplus among the four selected sub-basins. The amount of water surplus in the Damodar sub-basin will reduce from 8,072 MCM in 2010 to 6,872 MCM in 2050. The situation of water deficit will become more serious in both the Yamuna and Gandak sub-basins. In particularly, the water deficit in the Yamuna sub-basin will increase by 86%.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambal</td>
<td>28,637</td>
<td>10,112</td>
<td>18,525</td>
<td>34,701</td>
<td>10,625</td>
<td>24,076</td>
<td>36,722</td>
<td>13,914</td>
<td>22,809</td>
</tr>
<tr>
<td>Damodar</td>
<td>30,171</td>
<td>22,099</td>
<td>8,072</td>
<td>32,720</td>
<td>22,767</td>
<td>9,953</td>
<td>36,418</td>
<td>29,546</td>
<td>6,872</td>
</tr>
<tr>
<td>Gandak</td>
<td>23,456</td>
<td>24,796</td>
<td>-1,340</td>
<td>33,433</td>
<td>26,000</td>
<td>7,433</td>
<td>28,407</td>
<td>34,193</td>
<td>-5,786</td>
</tr>
<tr>
<td>Yamuna</td>
<td>16,764</td>
<td>25,791</td>
<td>-9,026</td>
<td>19,784</td>
<td>28,872</td>
<td>-9,088</td>
<td>21,419</td>
<td>38,294</td>
<td>-16,875</td>
</tr>
</tbody>
</table>

3.1.4.5 Assessment of the water risks for future power generation

The maps of water supply-demand gap ratios, the ratio of the water supply-demand balance to the total water supply (see classification in Table 6), are created for 2010, 2030 and 2050 using the ArcGIS which present the spatial distribution of water supply-demand balance at the district level for four sub-basins.

Chambal sub-basin

Based on the three maps (2010, 2030 and 2050) of the water supply-demand gap ratios (Figure 16), it can be seen that only a small part of the Chambal sub-basin located in the upper part of the area will face high water stress (in red) and some parts will have moderate water stress (in orange). The majority of the sub-basin will have water surplus (in yellow) indicating there will be more room for the installation of new thermal power capacity in this sub-basin particularly in the middle and lower part of the sub-basin. However it can also be observed that the existing power plants are located in the water-stressed region and depend on water resources from the upstream.
Figure 16 Water risk assessment for the power plants in the Chambal sub-basin

Damodar sub-basin

Based on the three maps created for the water supply-demand gap ratios, it can be found that only a little part of the Damodar sub-basin located at the lower part of the sub-basin will face water stress (in red). In addition, the area of the yellow part and of the orange parts are about the same size. There are not much changes in 2030 compared with 2010. In the period of 2050, some areas will change from yellow to red (see Figure 17). It means that the existing power plants located in these areas will face water stress in the future. In the upper part of the sub-basin, there will be sufficient water available for the existing power plants and will be available to meet the water requirement from new thermal power plants.
All the three maps for the Gandak sub-basin show different patterns of the distribution of water supply-demand balance (Figure 18). It can be found that from 2010 to 2030, some areas will change from red into orange and some areas will change from orange into yellow, indicating water stress will be relieved to some extent in this sub-basin up to 2030. However, from 2030 onwards, many areas will change from orange or yellow into red indicating that the existing power plants located in these areas will face water stress in the future. Except for Chatra District (Gd_5), all other districts in the Gandak sub-basin will face severe water stress or moderate water stress in 2050. It indicates that both the existing and the planned power plants will face high water risks in the Gandak sub-basin in the future.
Yamuna sub-basin

All the three maps of the Yamuna sub-basin are showing similar patterns of water supply-demand balance with about 75% of the area face serious water stress (Figure 19). Many existing power plants are located in the water-stressed area. It is clearly indicated that water will not be sufficient in this sub-basin to support new thermal power plants, particularly in the red areas. The upper part of this basin may have enough water to support the existing thermal power plants.
3.1.5 Web tool for water-energy nexus assessment and energy planning

To support the spatial analysis of the water-energy nexus and energy planning in India, we developed a free on-line tool on Water-Energy Nexus Assessment to visualise the data used in the hydrological modelling and the spatial distribution of the results at present and in the future in maps, including water supply and water demand, water supply-demand balance, water stress for the existing and newly planned thermal power installations.

The structure of the web tool interface includes the following:

- Project
- Methodology
- Maps/Data
- Simulation
- Publications
The Project tab introduces the background of the project, importance of understanding the water-energy nexus and the objective of the project. Information about the project members and collaborating institutions are also introduced.

The Methodology tab presents the overall analytical framework for the integrated assessment of the water-energy nexus in the Ganges sub-basins. The Water Supply Module, Water Demand Module, Water Supply-Demand Balance Assessment, Water-Energy Nexus Assessment, the methodologies used for conducting different modules and the links between the modules are introduced.

The Maps/Data tab provides the spatial data and the modelling results on water supply and water demand projections which can be visualised in maps at the district level for the four selected sub-basins, i.e. Chambal, Damodar, Gandak and Yamuna. From the supply side, key data that is used for the hydrological modelling, including land cover, precipitation and evapotranspiration, can be visualised (see Figure 20). The spatial distribution of water availability as the results of the hydrological modelling can be shown in maps (see Figure 21). From the demand side, water demand for irrigation, livestock, domestic use and industry are provided.

![Figure 20 A screen shot of the visualisation of the spatial distribution of precipitation](image)

Figure 20 A screen shot of the visualisation of the spatial distribution of precipitation
Figure 21 A screen shot of the visualisation of the spatial distribution of water availability

The Simulation tab provides the simulation results on water supply-demand balance and water risks of the existing and newly planned thermal power plants. Through these maps, the users can easily visualise where there will be water surplus that can satisfy the water demand from thermal power generation and where there will be water stress and may not be appropriate for the installation of new capacity (see Figure 22), etc. These maps can help the decision makers for making effective energy planning and inform the investors about the water risks for investing in new thermal power plants in the locations where water is scarce.
3.1.6 Conclusions

As the most populous river basin in India, the Ganges basin provides water for drinking, irrigation, industrial use and power plant cooling. Changes in the water availability in the basin will impact economic development and the people’s life. From the supply side, the results from the hydrological model, SWAT, show that the overall annual water availability in the four selected sub-basins will increase in the future, particularly in the Chambal, the Damodar and the Gandak sub-basins. However, the annual water availability in the Yamuna sub-basin will decrease particularly in the far future under RCP 4.5.

However, water availability will not be evenly distributed around the year and will vary from month to month depending on the physical conditions such as precipitation, evapotranspiration and surface runoff, etc. The water availability in both the dry season and the wet season will increase in the Damodar and the Gandak sub-basins, however, it will decrease in the dry season in the Chambal and the Yamuna sub-basins. In addition, at the district level, the water availability in most of the districts in the four sub-basins will increase, however there will be some few districts which water availability will decrease in either 2030 or 2050.

From the demand side, future water demand will increase due to population growth, industrial development, increase in power generation and irrigation. Out of the four sub-basins, there will be the least water demand in the Chambal sub-basin and the most water demand in the Yamuna sub-basin. In all the four sub-basins, the irrigation water demand will dominate followed by the
domestic water demand and this trend will continue till 2050. In particular, the Yamuna sub-basin will have the largest irrigation water demand and the largest domestic water demand among the four sub-basins, followed by the Gandak sub-basin which has the second largest water demand from both irrigation and the domestic sector. Energy water demand is the highest in the Damodar sub-basin followed by the Gandak sub-basin. Energy water demand will decrease in the Chambal and the Damodar sub-basins and will maintain the same level in the Yamuna sub-basin, however it will greatly increase in the Gandak sub-basin.

For the water supply-demand balance at the sub-basin level, the Chambal and the Damodar sub-basins will have surplus water in the future. The Chambal sub-basin will have the largest water surplus among the four selected sub-basins. The Yamuna and Gandak sub-basins will face serious water deficit in the future, particularly the Yamuna sub-basin.

At the district level, in general there will be more districts which will face water stress in the future, particularly in 2050. Water stress situation varies among the sub-basins. In the Chambal and the Damodar sub-basins, particularly in the Chambal sub-basin, most of the districts will have water surplus which will not only satisfy the water demand from operating the existing and the planned thermal power plants, but also be available for some additional thermal power installations in the future. However, in the Gandak and the Yamuna sub-basins, most of the district will face water deficit in the future where the existing and the planned thermal power plants will face high water risks. Particularly in the Gandak sub-basin, there will be many planned new thermal power installations which operation will face sever water shortage.

Spatial distribution of the water supply-demand balance at the district level can be used as an important indicator to assess the location and technologies for future power plants. District-level analysis indicates that many of the existing power plants are located in the water-stressed areas and many new thermal power plants are planned to be installed in the areas with high or moderate water stress. It implies that these power plants will face high risks of water shortage in the future and some power plants may need to be shut down due to the increasing water shortage, particularly in the dry season. The results showed that most of the exiting power plants and the newly planned power plants in the Yamuna and the Gandak sub-basins, a few in the upper part of the Chambal sub-basin and a few in the middle right part and the lower part of the Damodar sub-basin will face high risks of water shortage. Relevant governmental organisations such as the development and planning organisation and the energy planning organisation as well as the investors should take this information seriously to prevent the new installations to be locked in the water-stressed locations. If the new capacity has not yet been installed, alternative locations where there will be water surplus should be considered. Among the four sub-basins, most of the districts in the middle and lower part of the Chambal sub-basin and the districts located in the upper part of Damodar (the yellow area) can be considered as the ideal alternative locations.

The results of the project and the Water-Energy Nexus Assessment web tool can inform relevant governmental decision makers, the energy planners and the investors about where there will be the risks of water shortage for the existing and planned power plants and help them identify
suitable locations for new thermal power installations to ensure there will be sufficient water available for cooling the thermal power plants.

3.2 Case study in Bangladesh

3.2.1 Introduction

Bangladesh has set up a goal to become a middle-income country by 2021. According to the World Bank’s latest estimates, the economic performance of Bangladesh has been continuously improving and the country has become a lower-middle income country. From the experiences of other countries, the demand for satisfying the basic needs such as food, water and energy will likely to increase quickly in Bangladesh. Bangladesh identified top priorities in Vision 2021 including ensuring food security, sustainable agriculture, water security and energy security (Planning Commission, 2012).

Agricultural development is critical to ensure food security for 160 million people in Bangladesh. Agriculture also plays an important role in the country’s economy and the changes in agriculture development will have economy-wide impacts. In the fiscal year of 2013-2014, agriculture contributed to 16.33% of the national GDP. Recognizing the importance of agriculture, the Government of Bangladesh prioritised agriculture development to help achieve zero poverty and become a middle-income country.

Agriculture in Bangladesh is dominated by water-intensive rice cultivation, which accounts for 81% of the total cropped area. To ensure food security for all the population, low-yield rain-fed rice cultivation has been substantially shifted to dry-season irrigated rice cultivation with considerable environmental costs such as groundwater degradation due to overexploitation. Such a shift towards high-yield irrigated rice cultivation has resulted in high cost of production, high water consumption, high fertilizer requirement and high electricity and diesel used for pumping the irrigation water.

Agriculture needs to grow further from its present rate of around 3.5% annually to feed an increasing population. Agriculture is facing several challenges for achieving continuous growth including water shortage particularly in the dry season and land area constraints, soil degradation due to salinity intrusion and possible impacts from climate change.

Governmental supportive policies such as providing the subsidies to irrigation water pumping resulted in an increase in the irrigation area from 26% in 1990 to 45% in 2010. In Bangladesh, 90% of the irrigation water comes from the groundwater. To ensure food security it is expected that the irrigation area will increase in the future, which however will threaten the sustainable use of the groundwater resources. Similarly the water demand from other users will increase in the future, which will intensify the competition among the users with a total demand of about 147 BCM against the total supply of 90 BCM (NWMP, 2004).

Unsustainable expansion of the groundwater-based irrigation for rice cultivation will also impact energy security. During the dry season, 1.5 millions of pumps is operated to irrigate the rice fields which consumes 800 million litre diesel and 760 MW electricity. Increase of the irrigated area and
associated energy use will impact on the energy use of other users and requires more electricity generation capacity to be installed in the future.

As industrialisation has been recognised as one of the important drivers of economic growth, some perspective plans for achieving Vision 2021 prioritised industrial growth for making the country to be a middle income country by 2021. Although industrial growth shows a declining trend in recent years, its share in the GDP increased from 26.5% in FY2009-2010 to 29.6% in FY2013-2014. It is projected that the industrial sector will account for 37% of the national GDP in the future. Rapid industrialisation will not only increase water demand but also increase electricity demand.

To support irrigation-based agriculture production and industrial development, the country needs to close the gaps between electricity supply and demand. At present, 60 million people do not have direct access to the grid electricity and 90 million people do not have reliable power. Shortage of electricity supply has severe consequences for economic growth. Realising these challenges, the Government of Bangladesh has set electricity generation as a priority sector. It is projected that the electricity generation capacity will grow to about 39,000 MW by 2040, which is about three times more than the current capacity. It is likely that thermal power generation will continuously dominate in the fuel mix and coal-based thermal power plants (TPP) will take lead over gas-based TPP in the future. Coal-based TPP is one of the water-intensive technologies for electricity generation. As a result, great pressure will be placed on the freshwater resources unless the cooling technologies adopted by the power plants can be advanced appropriately.

Impacts of climate change will further intensify the pressure on water resources. Global climate change will cause major changes in the seasonal and spatial patterns of water availability, as well as the degradation of water quality due to saline water intrusion. As a result, the economic development of Bangladesh will be affected adversely.

Nationwide water availability may become a major constraint for the future economic development in Bangladesh and the country may not be able to meet the increased demand for water for achieving the economic growth expected based on Vision 2021.

Lutz and Immerzeel (2013) studied the water availability for the Upper Indus, Ganges, Brahmaputra, Salween and Mekong River Basins. They found that in the upper Ganges the stream flow is dominated by the rainfall runoff (66%), with 20% of the stream flow contributed from the melt glacier. It is likely that the total runoff will increase by 1% to 27% by 2050. They also found that the share of the melt glacier will decrease and the share of the rainfall runoff in the total runoff will increase.

Whitehead et al. (2015) assessed the future changes in the water flow and water quality in Ganges, Brahmaputra and Meghna river systems under different climate conditions by using the INCA-N model. This study selected three model realisations from 17 perturbed model runs of the global and regional climate models of the Met Office Hadley Centre to evaluate the range of potential climate change. The simulation results indicated a significant increase of flow in monsoon during 2050s and 2090s which will increase flooding risk. The simulation also showed
that low flows would further fall with longer drought season, which may lead to the negative impacts on water supply, irrigated agriculture and intensity of saline water intrusion.

Ahmed et al. (2015) studied the impacts of climate change on the water availability in the Ganges basin using SWAT. Temperature and precipitation data from 9 GCMs and the two Special Report on Emissions Scenarios (SRES) are used together with various input data. They found that the annual flow generated from the Ganges basin is 361,593 Mm3. They pointed out that the water availability will decrease during the dry period and increase during the monsoon period. They concluded that the average annual flow volume would increase 22% by 2030, 26% by 2050 and 19% by 2080 for A1B scenarios.

Siderius et al. (2015) found that the actual snowmelt contribution to the discharge in the Ganges basin remains conjectural under both present and future climate conditions. As snowmelt is likely to be perturbed by the global warming, four hydrological models appropriate for the coupling with the regional climate models were used to provide the baseline estimate of the snowmelt contribution to the flow at the seasonal and annual timescales. They estimated that the contributions of the snowmelt was between 1% and 5% of the overall runoff of the basin. They also found that the snowmelt was significant in spring, a period when other sources of runoff are scarce.

The objective of this case study is to inform relevant decision makers and other stakeholders about the state of future water availability and potential water risks for the existing and future thermal power generation by assessing the current and future water availability of the Ganges basin in the Bangladesh’s territory under two climate scenarios, RCP 4.5 and RCP 8.5 and assessing the water-energy nexus for future power development plan of Bangladesh.

3.2.2 Methodology

The Ganges basin inside Bangladesh covers an area of 40,450 km2, about 27% of the total area of Bangladesh. This vast area is inhabited by 130 million people or a quarter of the country’s total population. More than 60% of the area is under cultivation. 35 districts are located inside the Ganges basin (see Figure 23). Table 40 shows the name, area and population of the districts in the Ganges basin inside Bangladesh.
There have been significant changes in the land use in the Ganges basin inside Bangladesh. Islam et al. (2015) has studied the temporal variation of agriculture land use changes and its implications for the ecosystem services in the Ganges basin inside Bangladesh. It was found that agriculture lands have been decreased with time and the wetlands have been increased rapidly due mainly to the growing popularity of saltwater shrimp farming. In the past 28 years, the agricultural lands have been reduced by about 50%, while the wetlands have been increased by more than five times. The settlement and other land use types have also been increased to nearly 5%. There is an increasing trend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between the agricultural land use and the ecosystem services in the Ganges basin inside Bangladesh.
Table 40 List of the districts of Bangladesh in the Ganges basin (BBS, 2012)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of the district</th>
<th>Area (km²)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Panchagar</td>
<td>1,387</td>
<td>987,644</td>
</tr>
<tr>
<td>2</td>
<td>Nilphamari</td>
<td>1,219</td>
<td>1,834,231</td>
</tr>
<tr>
<td>3</td>
<td>Thakurgaon</td>
<td>1,815</td>
<td>1,390,042</td>
</tr>
<tr>
<td>4</td>
<td>Dinajpur</td>
<td>3,463</td>
<td>2,990,128</td>
</tr>
<tr>
<td>5</td>
<td>Rangpur</td>
<td>1,367</td>
<td>2,881,086</td>
</tr>
<tr>
<td>6</td>
<td>Gaibandha</td>
<td>938</td>
<td>2,379,255</td>
</tr>
<tr>
<td>7</td>
<td>Jaipurhat</td>
<td>965</td>
<td>913,768</td>
</tr>
<tr>
<td>8</td>
<td>Naogaon</td>
<td>3,447</td>
<td>2,600,157</td>
</tr>
<tr>
<td>9</td>
<td>Bogra</td>
<td>2,583</td>
<td>3,400,874</td>
</tr>
<tr>
<td>10</td>
<td>Chapainawabganj</td>
<td>1,729</td>
<td>1,647,521</td>
</tr>
<tr>
<td>11</td>
<td>Sirajganj</td>
<td>1,484</td>
<td>3,097,489</td>
</tr>
<tr>
<td>12</td>
<td>Rajshahi</td>
<td>2,375</td>
<td>2,595,197</td>
</tr>
<tr>
<td>13</td>
<td>Nator</td>
<td>1,912</td>
<td>1,706,673</td>
</tr>
<tr>
<td>14</td>
<td>Pabna</td>
<td>2,351</td>
<td>2,523,179</td>
</tr>
<tr>
<td>15</td>
<td>Kushtia</td>
<td>1,685</td>
<td>1,946,838</td>
</tr>
<tr>
<td>16</td>
<td>Meherpur</td>
<td>709</td>
<td>655,392</td>
</tr>
<tr>
<td>17</td>
<td>Rajbari</td>
<td>9,430</td>
<td>1,049,778</td>
</tr>
<tr>
<td>18</td>
<td>Chuadanga</td>
<td>1,225</td>
<td>1,129,015</td>
</tr>
<tr>
<td>19</td>
<td>Jhenaidah</td>
<td>1,942</td>
<td>1,771,304</td>
</tr>
<tr>
<td>20</td>
<td>Faridpur</td>
<td>1,352</td>
<td>1912969</td>
</tr>
<tr>
<td>21</td>
<td>Magura</td>
<td>1,044</td>
<td>918,419</td>
</tr>
<tr>
<td>22</td>
<td>Madaripur</td>
<td>795</td>
<td>1,165,952</td>
</tr>
<tr>
<td>23</td>
<td>Shariyatpur</td>
<td>51</td>
<td>1,155,824</td>
</tr>
<tr>
<td>24</td>
<td>Jessore</td>
<td>2,528</td>
<td>2,764,547</td>
</tr>
<tr>
<td>25</td>
<td>Gopalganj</td>
<td>1,544</td>
<td>1,172,415</td>
</tr>
<tr>
<td>26</td>
<td>Narail</td>
<td>964</td>
<td>721,668</td>
</tr>
<tr>
<td>27</td>
<td>Barisal</td>
<td>1,768</td>
<td>2,324,310</td>
</tr>
<tr>
<td>28</td>
<td>Khulna</td>
<td>3,526</td>
<td>2,318,527</td>
</tr>
<tr>
<td>29</td>
<td>Bagerhat</td>
<td>3,587</td>
<td>1,476,090</td>
</tr>
<tr>
<td>30</td>
<td>Satkhira</td>
<td>3,305</td>
<td>1,985,959</td>
</tr>
<tr>
<td>31</td>
<td>Pirojpur</td>
<td>1,196</td>
<td>113,257</td>
</tr>
<tr>
<td>32</td>
<td>Jhalkati</td>
<td>747</td>
<td>682,669</td>
</tr>
<tr>
<td>33</td>
<td>Bhola</td>
<td>6</td>
<td>1,776,795</td>
</tr>
<tr>
<td>34</td>
<td>Patuakhali</td>
<td>1,866</td>
<td>1,535,854</td>
</tr>
<tr>
<td>35</td>
<td>Borguna</td>
<td>1,266</td>
<td>892,781</td>
</tr>
</tbody>
</table>
3.2.2.1 Water availability assessment

The SWAT model is used in this study to predict the impacts of land use changes on water, sediment and chemicals in large and complex watersheds with different soil types, land use and management conditions over long period of time. The model has been developed by following five sequential steps including (i) watershed delineation; (ii) analysis of the hydrologic response units (HRUs); (iii) definition of the weather data; (iv) edit the inputs to the SWAT model, and (v) model simulation. Figure 24 shows the schematic diagram of the SWAT model.

Figure 24 Schematic diagram of the SWAT model

Watershed delineation is accomplished using the automatic watershed delineation tool of SWAT 2012 by using the 90m Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission (SRTM). After watershed delineation, the Ganges basin was divided into 124 watersheds (Figure 25).
Figure 25 Delineated watersheds of the Ganges basin

The next step of the model setup is the definition of the HRUs. HRU is the unique combination of land use, soil and slope. The overlay of 22 land use classes, 69 soil types and 3 slope classes for the Ganges basin resulted in 1,404 HRUs. Daily precipitation and the maximum and the minimum air temperature have been taken for the period from 1998 to 2013. Available information from 44 reservoirs have been considered for the development of the model (Figure 26).

Efforts have been made to assess the water availability using newly introduced climate scenarios RCP 4.5 and RCP 8.5. Four different GCMs data has been selected for the entire Ganges basin to assess the water availability under scenarios RCP 4.5 and RCP 8.5.

To describe the distribution of precipitation, SWAT provides two options: a skewed normal distribution and a mixed exponential distribution. In this study, the skewed normal probability distribution function was selected. The SWAT tool uses Manning’s equation to calculate the rate and velocity of flows (Winai et al., 2013). Flows are routed through the channel network using the variable storage routing method. For estimating the runoff, the curve number method of the Soil Conservation Service has been used and the variable Curve Number for the moisture condition is selected. The Hargreaves method has been used to calculate the potential evapotranspiration which requires less weather parameters (Neitsch et al. 2011).
Input data to the hydrological model

Like other hydrological models, the SWAT model needs various data as the inputs to the model setting-up, calibration and validation, etc. DEM, land cover/land use, soil types, different hydro-meteorological data are the major inputs to the SWAT Model.

Digital Elevation Model

DEM is used to delineate sub-watersheds which are used as the inputs to the hydrological model. The SRTM DEM with a geometric resolution of 90m is used for the thus study. 14 tiles of 5 degree by 5 degree were downloaded from http://srtm.csi.cgiar.org/ and merged to prepare the DEM of the whole Ganges basin. Sinks were first identified and then filled up to produce seamless DEM. Figure 27 shows the derived DEM of the Ganges basin. The middle part of the basin is mostly the floodplain compared to the upper part of the basin where the Himalayan ranges are located.
Soil data

Soil data is an important input to the SWAT model. The FAO-UNESCO (1977) Soil Map of the World has been used which is available at http://www.fao.org/soils-portal/. This is a digitised soil map of the world at 1:5,000,000 scale. The map is in ‘shape file’ which contains several fields including a sequential code number (ranges from 1 to 6,999) for each soil mapping unit. An example of the description of the FAO soil types (e.g. soil type Bk23-2/3ab) is presented in Table 41. There are 29 types of soil in the Ganges basin (Figure 28).

Table 41 The FAO soil types description

<table>
<thead>
<tr>
<th>Unit</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bk</td>
<td>Calcic cambisols</td>
</tr>
<tr>
<td>Bk23</td>
<td>Refers to the soil components described on the back of the map</td>
</tr>
<tr>
<td></td>
<td>Associated soils: K and E each covering 20% of the mapping unit</td>
</tr>
<tr>
<td>2/3</td>
<td>Texture classes of the dominant soil</td>
</tr>
<tr>
<td>ab</td>
<td>Slope classes of the dominant soil</td>
</tr>
</tbody>
</table>
Figure 28 The FAO soil types in the Ganges basin

Land cover data
Land cover data for the Ganges basin was taken from the GlobCover Project of European Space Agency which has a resolution of 300m and available at http://due.esrin.esa.int/page_globcover.php. The GlobCover 2009 has 23 classifications (Bontemps et al., 2011).

Table 42 shows the land cover classes that were used for the Ganges basin in by the SWAT model while the land use map of the Ganges basin is shown in Figure 29. Agricultural land use is dominant in the Ganges basin.

Precipitation data
It is very difficult to get the upstream hydro-meteorological information. Satellite-based observation is the major source of information for hydrological modelling particularly when monitoring data is not available. The Multi-satellite Precipitation Analysis (TMPA) of the Tropical Rainfall Measuring Mission (TRMM), developed by the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA), provides a calibration-based
sequential scheme for combining the precipitation estimates from multiple satellites and the monthly gauge analyses where feasible at the spatial and temporal scales (0.25 × 0.25 degree and every 3 hours) over 50 N-50S (Huffman et al., 2007). For the present study, TMPA 3B42 V7, hereafter referred to as 3B42V7, is used. TRMM rainfall data from January, 1998 to December, 2013 has been used. Figure 30 shows the grid of the TRMM rainfall data set in the Ganges basin.

Table 42 GlobCover land cover classes

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Value</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>Post-flooding or irrigated croplands (or aquatic)</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>Rain-fed croplands</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Mosaic cropland (50-70%) / vegetation (grassland/shrub land/forest) (20-50%)</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>Mosaic vegetation (grassland/shrub land/forest) (50-70%) / cropland (20-50%)</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m)</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>Closed (>40%) broadleaved deciduous forest (>5m)</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>Open (15-40%) broadleaved deciduous forest/woodland (>5m)</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>Closed (>40%) needle leaved evergreen forest (>5m)</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>Open (15-40%) needle leaved deciduous or evergreen forest (>5m)</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>Closed to open (>15%) mixed broadleaved and needle leaved forest (>5m)</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>Mosaic forest or shrub land (50-70%) / grassland (20-50%)</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>Mosaic grassland (50-70%) / forest or shrub land (20-50%)</td>
</tr>
<tr>
<td>13</td>
<td>130</td>
<td>Closed to open (>15%) (broadleaved or needle leaved, evergreen or deciduous) shrub land (<5m)</td>
</tr>
<tr>
<td>14</td>
<td>140</td>
<td>Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses)</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>Sparse (<15%) vegetation</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or temporarily) - Fresh or brackish water</td>
</tr>
<tr>
<td>17</td>
<td>170</td>
<td>Closed (>40%) broadleaved forest or shrub land permanently flooded - Saline or brackish water</td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil - Fresh, brackish or saline water</td>
</tr>
<tr>
<td>19</td>
<td>190</td>
<td>Artificial surfaces and associated areas (Urban areas >50%)</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>Bare areas</td>
</tr>
<tr>
<td>21</td>
<td>210</td>
<td>Water bodies</td>
</tr>
<tr>
<td>22</td>
<td>220</td>
<td>Permanent snow and ice</td>
</tr>
<tr>
<td>23</td>
<td>230</td>
<td>No data (burnt areas, clouds)</td>
</tr>
</tbody>
</table>
Figure 29 Major land use in the Ganges basin

Source: GlobCover, 2009.
Temperature
Temperature is another important weather parameter which is used for the simulation of the SWAT model. The maximum and the minimum temperature are required as the inputs. ERA-Interim is the latest global atmospheric analysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim Project was conducted in part to prepare for a new atmospheric re-analysis to replace the ERA-40, which is extended back to the early twentieth century (Dee et al., 2011). ERA-Interim data is available from 1979 and is continuously updated at real time basis which can be retrieved from http://apps.ecmwf.int/datasets/. ERA-Interim 0.25 degree-gridded temperature data has been used for the present study (Figure 31).
Hydrological data
The hydrological data, particularly the water level and discharge at the Hardinge Bridge gage station, has been collected from the BWDB. The discharge data from 1998 to 2013 was used for the calibration and validation of the SWAT model.

Reservoir information
The reservoir characteristics such as the storage capacity and the diversion of water from channels are important inputs to the SWAT model because upstream storage or withdrawal have significant impacts on the water flow at the outlet of a channel. Reservoirs location and relevant characteristics are obtained from the National Register of Large Dams of India (available at www.cwc.nic.in) and FAO Aqua State (http://www.fao.org/nr/water/aquasta).

Figure 32 presents the major hydroelectric projects in the Ganges basin inside India. Based on the available information, 44 reservoirs have been included for the setup of the Ganges basin model.
Setting-up of the SWAT Model

(i) Watershed delineation: This is the first step in the SWAT modelling which includes DEM processing like filling of the DEM, creation of the flow direction and flow accumulation. For watershed delineation, stream networks are created and watersheds are divided into different sub-basins with the outlets.

(ii) HRU analysis: For the HRU analysis, maps of the land use/vegetation cover, soil attributes and slope definition are overlaid. In the HRU definition, the sub-division of the watersheds into areas with unique land use and soil combinations enables the model to reflect the differences in evapotranspiration and other hydrologic conditions for different land covers/crops and soils.

(iii) Defining the weather data: This step allows the users to load weather station locations into the current project and assign weather data such as precipitation, maximum and minimum air temperature, wind speed, solar radiation and relative humidity to the sub-watersheds. At this step a database files containing relevant information is required to generate default inputs to the SWAT model.
(iv) Edit the SWAT input: The Edit SWAT Input tool allows to edit the SWAT model databases and the watershed database containing the inputs such as point discharge, sub-basin parameters and reservoirs information, etc. to the SWAT model.

(iv) SWAT simulation: The final step of the SWAT model setting up is to simulate or run the model and conduct sensitivity analysis for different parameters and calibrate the parameters. This also includes the validation of the model.

Selection of the emissions scenarios and the GCMs

Emissions scenarios are determined by the driving forces such as demographic development, socio-economic development and technological change. They are required for the climate change analysis, including climate modelling and the assessment of the impacts of adaptation and mitigation. Scenarios RCP 4.5 and RCP 8.5 have been selected for the present study. Downscaled results of four GCMs are available under CORDEX experiments for scenarios RCP 4.5 and RCP 8.5. Table 43 shows the list of the GCM models that have been used for the existing studies. The precipitation and temperature data from the four GCMs for the two selected scenarios are used to identify potential climate change impacts on the long-term water availability for the Ganges basin. The downscaled dynamic data of the GCMs (Table 43) has been taken from CORDEX South Asia which is available at ftp://cccr.tropmet.res.in (McGregor and Dix, 2001).

Table 43 List of the GCMs for climate change studies

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Model</th>
<th>Description</th>
<th>Institution</th>
<th>Data availability</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NorESM-M</td>
<td>Norwegian Earth System Model</td>
<td>Bjerknes Centre for Climate Research University of Bergen</td>
<td>Scenarios 4.5 and 8.5</td>
<td>Period of 2006 to 2099</td>
</tr>
<tr>
<td>2</td>
<td>CCSM4</td>
<td>Community Climate System Model</td>
<td>National Center for Atmospheric Research (NCAR)</td>
<td>Scenarios 4.5 and 8.5</td>
<td>Period of 2006 to 2099</td>
</tr>
<tr>
<td>3</td>
<td>ACCESS1.0</td>
<td>Australian Community Climate and Earth-System Simulator (ACCESS)</td>
<td>CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau of Meteorology, Australia)</td>
<td>Scenarios RCP 4.5 and 8.5</td>
<td>Period of 2006 to 2099</td>
</tr>
<tr>
<td>4</td>
<td>CNRM-CM5</td>
<td>Centre National de Recherches Metéorologiques climate model version 5</td>
<td>Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et</td>
<td>Scenarios RCP 4.5 and 8.5</td>
<td>Period of 2006 to 2099</td>
</tr>
</tbody>
</table>
Calibration and validation

Model calibration is the process of estimating relevant model parameters by comparing the model predictions (the outputs of a given set of assumed conditions) with the observed data under the same condition. Generally speaking, model evaluation guidelines consider the recommended model evaluation statistics with corresponding performance ratings and appropriate graphical analyses (Moriasi et al., 2007).

The most widely used model evaluation statistics are the Coefficient of Determination (R^2), Percent Bias (PBIAS), Nash-Suttcliffe Efficiency (NSE) and RMSE-Observations Standard Deviation Ratio (RSR). The model evaluation statistics are described below.

Coefficient of Determination

The Coefficient of Determination (R^2) is defined as the squared value of the coefficients of correlation which is calculated as follows:

$$R^2 = \frac{\sum (Q_{obs} - Q_{sim})(Q_{obs} - \bar{Q}_{obs})^2}{\sum (Q_{obs} - \bar{Q}_{obs})^2 \sum (Q_{obs} - Q_{sim})^2}$$

where

- $Q_{obs} = \text{Observed value}$
- $Q_{sim} = \text{Simulated value}$
- $\bar{Q}_{obs} = \text{Mean of the observed values}$
- $\bar{Q}_{sim} = \text{Mean of the simulated values}$

The range of R^2 lies between 0 and 1 which describes how much of the observed variance is explained by the simulated values. The value of zero means no correlation while the value of 1 means that the variance of the prediction or the simulated data is equal to that of the observation (Krause et al., 2005).

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Model Description</th>
<th>Institution</th>
<th>Data availability</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Max Planck Institute Earth System Mode at base resolution</td>
<td>Max Planck Institute for Meteorology (MPI-M)</td>
<td>Scenarios RCP 4.5 and 8.5 Period of 2006 to 2099</td>
<td>Used for the present study</td>
</tr>
<tr>
<td>6</td>
<td>Geophysical Fluid Dynamics Laboratory coupled model version CM 2.1</td>
<td>Geophysical Fluid Dynamics Laboratory</td>
<td>Scenarios RCP 4.5 and 8.5 Period of 2006 to 2070</td>
<td></td>
</tr>
</tbody>
</table>
Nash-Sutcliffe Efficiency

The efficiency proposed by Nash and Sutcliffe (1970) is defined as one minus the sum of the absolute squared difference between the predicted and observed values normalized by the variance of the observed values during the period of investigation (Krause et al., 2005). It is calculated as follows:

\[
NSE = 1 - \frac{\sum\limits_{i=1}^{n}(Q_{obs} - Q_{sim})^2}{\sum\limits_{i=1}^{n}(Q_{sim} - Q_{obs})^2}
\]

The range of NSE lies between -∞ and 1. NSE equals to 1 is considered as perfect fit or the optimal value, and values between 0 and 1 are generally viewed as the acceptable levels of performance, whereas values less than 0 indicate that the mean observed value is a better predictor than the simulated values, indicating unacceptable performance (Moriasi et al. 2007).

Percent Bias

The PBIAS measures the average tendency of the simulated data to be larger or smaller than their observed counterparts (Gupta et al., 1999). The optimal value of PBIAS is 0. Lower magnitude value indicates better model simulation. Positive values indicate underestimation bias and negative values indicate overestimation bias (Gupta et al., 1999).

PBIAS is calculated as follows:

\[
PBIAS = 100 \frac{\sum\limits_{i=1}^{n}(Q_{obs} - Q_{sim})}{\sum\limits_{i=1}^{n}Q_{obs}}
\]

RMSE-Observations Standard Deviation Ratio (RSR)

RSR is calculated as the ratio of the RMSE and the standard deviation of the observed data:

\[
RSR = \frac{RMSE}{STDEV_{obs}} = \sqrt{\frac{\sum\limits_{i=1}^{n}(Q_{obs} - Q_{sim})^2}{\sum\limits_{i=1}^{n}(Q_{obs} - Q_{sim})^2}}
\]

The RSR varies from the optimal value 0 indicating zero RMSE or no residual variation and therefore perfect model simulation to a large positive value.

In this study, the SWAT-CUP, a computer program which helps sensitivity analysis, calibration, validation and uncertainty analysis, is used for the calibration (Abbaspour et al., 2007). The SUFI-2 algorithm of the SWAT-CUP has been used for the calibration and validation. The calibration and validation periods have been selected as from 1998 to 2008 and from 2009 to 2013, respectively. After the setting-up of the model, it is simulated for the period from 1998 to 2008 for the calibration of which the first three years from 1998 to 2000 was skipped due to the model initialisation. Hydrological data of the upstream watersheds of the Ganges basin is not available
for detailed calibration. Therefore the model was calibrated and validated based on the available data from the Hardinge Bridge gage station inside Bangladesh (Table 44).

Table 44 Location of the calibration point

<table>
<thead>
<tr>
<th>Station</th>
<th>River</th>
<th>Location</th>
<th>Latitude (°)</th>
<th>Longitude (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardinge Bridge</td>
<td>Ganges</td>
<td>Bangladesh</td>
<td>24.06400</td>
<td>89.02550</td>
</tr>
</tbody>
</table>

A list of the parameters and the final parameter values obtained after the auto-calibration of the model are shown in Table 45.

Table 45 List of major parameters and final calibrated values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Calibrated value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2.mgt</td>
<td>Initial SCS runoff curve number for moisture condition II</td>
<td>74.8</td>
</tr>
<tr>
<td>ALPHA_BF.gw</td>
<td>Base flow alpha factor(days)</td>
<td>0.975</td>
</tr>
<tr>
<td>SOL_AWC(1).sol</td>
<td>Available water capacity of the first soil layer (mm/mm)</td>
<td>0.1035</td>
</tr>
<tr>
<td>SOL_K(1).sol</td>
<td>Saturated hydraulic conductivity of first soil layer (mm/hr)</td>
<td>0.187</td>
</tr>
<tr>
<td>ESCO.hru</td>
<td>Soil evaporation compensation factor</td>
<td>0.706</td>
</tr>
<tr>
<td>GW_DELAY.gw</td>
<td>Groundwater delay (days)</td>
<td>418 (days)</td>
</tr>
<tr>
<td>GWQMN.gw</td>
<td>Threshold depth of water in the shallow aquifer for return flow to occur (mm H2O)</td>
<td>3875 (mm)</td>
</tr>
<tr>
<td>REVAPMN.gw</td>
<td>Threshold depth of water in the shallow aquifer for revap to occur (mm H2O)</td>
<td>0.975 (mm)</td>
</tr>
<tr>
<td>CH_N2.rte</td>
<td>Manning’s n value for the main channel</td>
<td>0.068</td>
</tr>
<tr>
<td>CH_K2.rte</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>64.375(mm/hr)</td>
</tr>
<tr>
<td>CANMX.hru</td>
<td>Maximum Canopy Storage (mm H2O)</td>
<td>1.25</td>
</tr>
<tr>
<td>RCHRG_DP.gw</td>
<td>Deep aquifer percolation fraction</td>
<td>0.525</td>
</tr>
</tbody>
</table>

3.2.2.2 Water demand estimation

Estimation of the water demand for four sectors (irrigation, domestic, industrial and power generation) under current and future conditions are mainly dependent on the secondary information. As most of the relevant information is available at the national level, water demand is estimated at the national level in this study.

Domestic water demand estimation

Domestic water use was estimated at the national level by multiplying the population by per capita water use for urban and rural settlements. Population data from the World Population Prospects 2017 (DESA, 2017) is used to make future population projection using the arithmetic increase method. In urban areas, per capita water use is often higher than in the rural areas due to better water infrastructure in cities and resource intensive lifestyles of the urban households. For the
base year (2015), per capita water use for urban and rural areas are considered as 100 litre per capita per day (lpcd) and 70 lpcd, respectively. Future water demand for urban and rural areas are considered as 126 lpcd and 100 lpcd, respectively.

Irrigation water demand estimation
Base year’s (2015) irrigation water demand was estimated at the national level by multiplying the area covered by major cultivated crops (including rice, wheat and sugarcane) and water requirement for growing particular crops in a season. The crop area data from the year book of agriculture statistics of Bangladesh 2015 (BBS, 2016) and the water requirement data for specific crops from Fishman et al. (2015) were used to estimate irrigation water demand in 2010. Due to the lack of available data on future crop areas, future irrigation demand estimation is estimated based on the assumption that food demand will increase proportionally with population growth, which is 25% in 2040. Achieving food self-sufficiency is one of the priority of the development plan of Bangladesh. In this estimation, it was assumed that these targets will be archived by increasing the areas of crop cultivation or increasing the cultivation intensity.

Industrial water demand estimation
Due to limited data availability and accessibility, it is difficult to estimate the amount of water used for the industrial sector. The estimation only considered the water demand in two major industries including the textile and garments sector and the leather sector, which accounted for 85% of the GDP of the export-oriented sectors. The base year’s (2015) industrial water demand was estimated at the national level by multiplying the annual production of the industrial sectors by the sectoral water requirement per unit production. Water requirement, which is 300 m³/ton for the textile and garments sector and 40 m³/ton for the leather sector in 2030 based on the Water Resource Group (2015), was used for the estimation.

Energy water demand (EWD) estimation
The project team conducted power plant surveys to collect the first-hand information on water use intensity for different power generation technologies and different cooling methods in a few selected power plants in Bangladesh. During the power plant surveys, the team collected various information including fuel types, power generation technologies, plant load factor (PLF), cooling technologies, source of water, volume of water used by the power plants, etc. Water demand from power generation is calculated as follows:

\[
EWD = \text{Installed capacity} \times 24 \text{ hours} \times 365 \text{ days} \times \text{PLF} \times \text{water use per unit power generation (m}^3/\text{MWh)}
\]

Future water demand for energy generation was calculated based on the energy generation scenarios provided in the 2016 Power System Master Plan of the Government of Bangladesh. The water demand from power generation is calculated for both the open loop cooling system and the close loop cooling system scenarios.
3.2.3 Results and discussions

3.2.3.1 Results of water availability assessment in the Ganges sub-basin

The calibration and validation results for the Ganges basin at Hardinge Bridge is shown in Figure 33. The results show that the simulated flow does not match well for the peak flow in the first a few years and the base flow is overestimated to some extent. The base flow is highly overestimated during the validation period whereas the flow in the wet period is reasonably well matched.

The values and the performance of different statistical parameters are presented in Table 46. During the calibration periods, the parameters (NSE value: 0.93 and R^2: 0.96) are well acceptable. Similarly, $PBIAS$ and RSR are within the satisfactory limits. However in the validation periods, the results show overestimations particularly during the dry period.

![Figure 33 Calibration and validation results of the SWAT model at Hardinge Bridge, Bangladesh](image)
Table 46 Model performance for the calibration and validation periods of the Ganges sub-basin at Hardinge Bridge

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSE</td>
<td>PBIAS</td>
</tr>
<tr>
<td>Parameters</td>
<td>0.93</td>
<td>-7.4</td>
</tr>
<tr>
<td>Evaluation results</td>
<td>Acceptable</td>
<td>Largely under-</td>
</tr>
</tbody>
</table>

The calibrated and validated SWAT model was used to run different downscaled GCM outputs to assess the future flow, including the Regional Climate Model (RCM) outputs from four GCM models, i.e. CNRM-CM5, CCSM4, ACCESS1.0 and MPI-ESM-LR (see also Table 43), under two scenarios of RCP 4.5 and RCP 8.5. The model is simulated for different time scales, i.e., 1998-2013, 2010-2020, 2021-2030, 2031-2040, 2041-2050, 2051-2060, 2061-2070, 2071-2080, 2081-2090 and 2091-2099, respectively. The estimated average available monthly flow of the Ganges basin in ten-year period from the four GCM models under RCP 4.5 and RCP 8.5 are shown in Figure 34 - Figure 41. The estimated average available monthly flow of the Ganges in ten-year period from the ensemble of the four GCM models are shown in Figure 42 and Figure 43 for RCP 4.5 and RCP 8.5, respectively. Monthly variations of the available monthly flow in the Ganges basin are shown in Figure 44 and Figure 45 under RCP 4.5 and RCP 8.5, respectively. The simulation results show some overestimations for the months of April, May, June, and July under both the scenarios. On the other hand, the simulation results show that the flow may decease for the months of August, September and October especially in the second half of the century.
Figure 34 Average available monthly flow (m³/s) in the Ganges basin from the CNRM-CM5 model under RCP 4.5

Figure 35 Average available monthly flow (m³/s) in the Ganges basin from the CCSM4 model under RCP 4.5
Figure 36 Average available monthly flow (m3/s) in the Ganges basin from the ACCESS1.0 model under RCP 4.5

Figure 37 Average available monthly flow (m3/s) in the Ganges basin from the MPI-ESM-LR model under RCP 4.5
Figure 38 Average available monthly flow (m³/s) in the Ganges basin from the CNRM-CM5 model under RCP 8.5

Figure 39 Average available monthly flow (m³/s) in the Ganges basin from the CCSM4 model under RCP 8.5
Figure 40 Average available monthly flow (m^3/s) in the Ganges basin from the ACCESS1.0 model under RCP 8.5

Figure 41 Average available monthly flow (m^3/s) in the Ganges basin from the MPI-ESM-LR model under RCP 8.5
Figure 42 Average available monthly flow (m3/s) in the Ganges basin under RCP 4.5 (an ensemble of four GCMs)

Figure 43 Average available monthly flow (m3/s) in the Ganges basin under RCP 8.5 (an ensemble of four GCMs)
Except for the availability of water in terms of discharge or flow per unit time which is presented in the above, it is also important to estimate the amount of water availability in volume in different time periods. This will be useful to assess whether water is sufficient to meet the water demand from various sectors. **Table 47** and **Table 48** show the average monthly water quantity (MCM) in the Ganges basin under RCP 4.5 and RCP 8.5, respectively. **Table 47** shows that more water will be available for the months of January, February, March, April, May, June, July, November and December under RCP 4.5 compared to the baseline condition. On the other hand, less water will
be available for September compared to the baseline condition under RCP 4.5. The quantity of water for the months of August and October will be less until 2040s compared with the baseline condition. Table 48 shows that more water will be available for all months except for September under RCP 8.5 compared to the baseline condition. Table 49 and Table 50 show the average seasonal water quantity (MCM) in the Ganges basin under RCP 4.5 and RCP 8.5, respectively. It is shown that more water will be available for all seasons.

Table 47 Average monthly water quantity in the Ganges basin under RCP 4.5 (MCM)

<table>
<thead>
<tr>
<th>Period</th>
<th>Baseline</th>
<th>2010-2020</th>
<th>2021-2030</th>
<th>2031-2040</th>
<th>2041-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>5,145</td>
<td>19,319</td>
<td>14,788</td>
<td>16,220</td>
<td>20,758</td>
</tr>
<tr>
<td>Feb</td>
<td>3,447</td>
<td>14,763</td>
<td>12,751</td>
<td>13,114</td>
<td>16,729</td>
</tr>
<tr>
<td>Mar</td>
<td>2,925</td>
<td>16,464</td>
<td>13,342</td>
<td>14,476</td>
<td>16,514</td>
</tr>
<tr>
<td>Apr</td>
<td>2,613</td>
<td>21,001</td>
<td>17,449</td>
<td>19,100</td>
<td>20,300</td>
</tr>
<tr>
<td>May</td>
<td>2,898</td>
<td>33,343</td>
<td>32,141</td>
<td>40,079</td>
<td>42,459</td>
</tr>
<tr>
<td>Jun</td>
<td>9,176</td>
<td>67,033</td>
<td>66,268</td>
<td>73,212</td>
<td>93,754</td>
</tr>
<tr>
<td>Jul</td>
<td>55,936</td>
<td>95,149</td>
<td>87,433</td>
<td>90,627</td>
<td>118,918</td>
</tr>
<tr>
<td>Aug</td>
<td>98,541</td>
<td>93,317</td>
<td>84,662</td>
<td>87,655</td>
<td>122,307</td>
</tr>
<tr>
<td>Sep</td>
<td>100,233</td>
<td>80,954</td>
<td>72,842</td>
<td>68,079</td>
<td>95,801</td>
</tr>
<tr>
<td>Oct</td>
<td>53,249</td>
<td>49,055</td>
<td>42,937</td>
<td>36,653</td>
<td>55,536</td>
</tr>
<tr>
<td>Nov</td>
<td>16,936</td>
<td>26,110</td>
<td>23,668</td>
<td>20,865</td>
<td>28,868</td>
</tr>
<tr>
<td>Dec</td>
<td>8,970</td>
<td>20,663</td>
<td>18,820</td>
<td>17,415</td>
<td>23,317</td>
</tr>
</tbody>
</table>

Table 48 Average monthly water quantity in the Ganges basin under RCP 8.5 (MCM)

<table>
<thead>
<tr>
<th>Period</th>
<th>Baseline</th>
<th>2010-2020</th>
<th>2021-2030</th>
<th>2031-2040</th>
<th>2041-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>5,145</td>
<td>24,205</td>
<td>22,645</td>
<td>23,657</td>
<td>21,926</td>
</tr>
<tr>
<td>Feb</td>
<td>3,447</td>
<td>19,899</td>
<td>20,636</td>
<td>21,022</td>
<td>19,665</td>
</tr>
<tr>
<td>Mar</td>
<td>2,925</td>
<td>20,088</td>
<td>21,042</td>
<td>22,347</td>
<td>19,867</td>
</tr>
<tr>
<td>Apr</td>
<td>2,613</td>
<td>22,083</td>
<td>22,652</td>
<td>25,760</td>
<td>22,548</td>
</tr>
<tr>
<td>May</td>
<td>2,898</td>
<td>43,944</td>
<td>41,459</td>
<td>46,307</td>
<td>41,612</td>
</tr>
<tr>
<td>Jun</td>
<td>9,176</td>
<td>75,710</td>
<td>76,470</td>
<td>84,750</td>
<td>77,388</td>
</tr>
<tr>
<td>Jul</td>
<td>55,936</td>
<td>106,918</td>
<td>111,632</td>
<td>116,314</td>
<td>113,531</td>
</tr>
<tr>
<td>Aug</td>
<td>98,541</td>
<td>117,382</td>
<td>113,304</td>
<td>116,327</td>
<td>115,705</td>
</tr>
<tr>
<td>Sep</td>
<td>100,233</td>
<td>97,567</td>
<td>88,565</td>
<td>94,077</td>
<td>89,377</td>
</tr>
<tr>
<td>Oct</td>
<td>53,249</td>
<td>59,237</td>
<td>57,411</td>
<td>55,782</td>
<td>60,258</td>
</tr>
<tr>
<td>Nov</td>
<td>16,936</td>
<td>29,301</td>
<td>31,560</td>
<td>30,135</td>
<td>31,107</td>
</tr>
<tr>
<td>Dec</td>
<td>8,970</td>
<td>25,379</td>
<td>25,016</td>
<td>27,184</td>
<td>23,973</td>
</tr>
</tbody>
</table>
Table 49 Average seasonal water quantity in the Ganges basin under RCP 4.5 (MCM)

<table>
<thead>
<tr>
<th>Period</th>
<th>Baseline</th>
<th>2010-2020</th>
<th>2021-2030</th>
<th>2031-2040</th>
<th>2041-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-monsoon</td>
<td>8,431</td>
<td>70,739</td>
<td>62,830</td>
<td>73,493</td>
<td>79,091</td>
</tr>
<tr>
<td>Monsoon</td>
<td>263,217</td>
<td>335,880</td>
<td>310,747</td>
<td>319,053</td>
<td>430,048</td>
</tr>
<tr>
<td>Post-monsoon</td>
<td>69,609</td>
<td>74,809</td>
<td>66,307</td>
<td>57,274</td>
<td>83,989</td>
</tr>
<tr>
<td>Dry season</td>
<td>17,353</td>
<td>54,509</td>
<td>46,186</td>
<td>46,600</td>
<td>60,577</td>
</tr>
</tbody>
</table>

Table 50 Average seasonal water quantity in the Ganges basin under RCP 8.5 (MCM)

<table>
<thead>
<tr>
<th>Period</th>
<th>Baseline</th>
<th>2010-2020</th>
<th>2021-2030</th>
<th>2031-2040</th>
<th>2041-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-monsoon</td>
<td>8,431</td>
<td>85,917</td>
<td>84,984</td>
<td>94,249</td>
<td>83,867</td>
</tr>
<tr>
<td>Monsoon</td>
<td>263,217</td>
<td>396,849</td>
<td>389,094</td>
<td>410,695</td>
<td>395,083</td>
</tr>
<tr>
<td>Post-monsoon</td>
<td>69,609</td>
<td>88,071</td>
<td>88,571</td>
<td>85,519</td>
<td>90,911</td>
</tr>
<tr>
<td>Dry season</td>
<td>17,353</td>
<td>69,305</td>
<td>68,234</td>
<td>71,724</td>
<td>65,488</td>
</tr>
</tbody>
</table>

3.2.3.2 Water demand estimation

Water demand estimation shows that the cumulative water demand from domestic, industrial and agriculture uses will increase by 20% in year 2040 compared with that in 2015. Agriculture is the largest water consumer (78 BCM) in 2015. Agriculture will continue to be the dominate water user in the future. Industrial sector accounted for 2.5% of the water use in 2015. However, industrial water use will increase to account for 9% of the water use by 2040. Domestic water use will increase from 1 BCM in 2015 to 1.5 BCM in 2040 (Figure 46). Increase in the water demand from domestic use is attributable to the population growth and lifestyle changes.

![Figure 46 Water demand for domestic, industrial and agriculture sectors](image)

Based on our best knowledge, there are no available estimations on the amount of water used by the energy sector for Bangladesh. This present study can be considered as the first attempt to estimate the water demand from the energy sector for Bangladesh. We conducted power plant
surveys in Bangladesh to estimate water use intensity in the power plants. Based on the survey results we estimated the water demand from power generation in 2040. The 2016 Power System Development Plan provided five scenarios of the fuel mix for future power generation in Bangladesh as shown in Figure 47. The five scenarios vary mainly due to the different shares of gas and coal in the fuel mix. Renewable energy will account for 15% of total electricity generation in all the five scenarios.

Since thermal power generation will dominate future power generation, the water demand for the cooling systems of the thermal power plants will significantly increase, however depending on the types of cooling technologies used by the thermal power plants. We estimated the future water demand from electricity generation for two cooling technology scenarios. Figure 48 shows that if all the power plants are installed with the open loop cooling system, water demand for power generation will range from 175 BCM under fuel mix Scenario 5 to 220 BCM under fuel mix Scenario 1. The differences in the water demand among various fuel mix scenarios is due to the fact that coal-based thermal power generation requires more water than gas-based thermal power generation. Figure 49 shows the water demand from power generation using the close loop cooling system. Thermal power plants using the close loop cooling system will reduce water use substantially to less than 10 BCM.

The estimated total water demand showed that the selection of the cooling system by the thermal power plants will play a critical role in influencing the total water demand. Figure 50 shows that if all the thermal power plants are installed with the open loop cooling system, the energy sector will be the largest water consumer in the country followed by the agriculture sector. Under this case, the total water demand will be 305 BCM. If the power plants are installed with the close loop cooling system, the total water demand will be 119 BCM, which is nearly one third of the open loop cooling system scenario. Under this case, water demand for power generation will be less than 10 BCM. However, the energy sector will still be the second largest water consumer in the country.
Figure 47 Five fuel mix scenarios for future power generation in Bangladesh

Figure 48 Water demand from power generation under the open loop cooling system scenario
Figure 49 Water demand from power generation under the close loop cooling system scenario

Figure 50 Water demand under different cooling system scenarios for thermal power generation

3.2.4 Conclusions
This study assessed the water availability in the Ganges basin using the SWAT modelling tool. The calibration and validation of the SWAT model was conducted based on the observation data of the Ganges sub-basin at Hardinge Bridge. The calibrated and validated model was run for the Regional Climate Model outputs from four GCMs, i.e. CNRM-CM5, CCSM4, ACCESS1.0 and MPI-ESM-LR, under RCP 4.5 and RCP 8.5 for ten different time scales, i.e. the base period (1998-2013), 2010-2020, 2021-2030, 2031-2040, 2041-2050, 2051-2060, 2061-2070, 2071-2080, 2081-2090 and 2091-2099 to assess the long-term water availability for the Ganges sub-basin in Bangladesh.
The four models show similar results on future water supply except for the CCSM4 model under RCP 4.5 scenario. The results show that the flow of Ganges will increase significantly in the future compared to the present situation particularly during the pre-monsoon (April to May) and monsoon months (June to September) under both the RCP 4.5 and RCP 8.5 scenarios. There may be a decrease in the inflow during the post-monsoon period (October-November). The results also show that the winter flow may likely increase in the future due to the increase in winter precipitation (December-February) under the climate change conditions.

Water demand estimation shows that the water demand will increase significantly in the future due to population growth, rapid industrial development, expansion of irrigation areas for maintaining food security and the increase of power generation to maintain rapid economic growth. Our estimates show that the power generation sector will emerge as the largest water consumer if the power plants will be equipped with the open loop cooling system. However if the power plants will be installed with the close loop cooling system, a significant amount of water can be saved though the power sector will still stay as the second largest water consumer in Bangladesh. Therefore, choosing the cooling system for power generation will be critical which influence the total water demand in the country.

Although the hydrological modelling results show that the annual flow of Ganges will increase in the coming decades. However, it also shows that in the dry season (December-May) the flow accounts for less than 25% of the total flow in the Ganges sub-basin in Bangladesh. Therefore, the competition among major users for water will be intensified in the dry season. In addition, the spatial diversity of the available water resources will have great implications for many development projects, particularly the energy projects, from the water risk perspective. This can also be learned from the case study in India, which provides the results on the assessment of the water supply and demand balance at the district-level.

Considering the potential impacts of climate change and the increasing competition for water in the future, the Bangladesh’s power development sector should consider the development of a guideline and start to regulate the water use for thermal power generation. Bangladesh can learn the experiences from India. As discussed in the case study for India, India heavily relies on thermal power generation to maintain energy security. The power generation sector has already encountered water conflicts with other users. To minimize the water use by the thermal power plants, the Indian Government set a maximum limit as 2.5 m3/MWh for the water use by thermal power plants and adopted in January 2017 (MOEFCC, 2015).

3.2.5 Limitation of the study

The Ganges basin is a large river basin. Calibration and validation of the hydrological model is critical to build an accurate model for performing the assessment. In this study, the calibration and validation were conducted using the observation flow data of the Ganges sub-basin but limited to the Hardinge Bridge gage station, located in Bangladesh. The hydrological data at the upstream locations is not accessible. This is a major limitation of the hydrological simulation of Ganges in Bangladesh. In addition, there are many water use infrastructure such as dams, reservoirs and irrigation facilities inside the Ganges basin. To get better simulation results it is
important to include the characteristics of major water use infrastructure in the modelling. However, it was not achievable in the present study due to the lack of hydro-meteorological data in the upper reaches of Ganges located in India. Four downscaled climate projection models have been used for the present study. The hydrological model outputs based on these climate projection models are indicative results of future water availability in the Ganges sub-basin.

4. Conclusions
As the most populous river basin in South Asia, the Ganges basin provides water for domestic use, irrigation, industrial use and the power plants. Changes in the water availability in the basin will impact on the economic development as well as the people’s life in the region. This is also true for the nexus between water and energy due to the fact that the energy sector, particularly thermal power generation, consumes a large amount of water and will expand rapidly to fill the gaps between energy demand and supply. Ensuring sufficient water availability is crucial for maintaining the stable operation of the existing and the future planned thermal power plants. To achieve rapid economic development in this region needs more water and energy. Filling the gaps between the supply and the demand of both water and energy requires in-depth knowledge about the linkages between energy and water, in particularly in a quantitative manner, which is lacking in the existing literature.

This project, entitled “Assessment of Climate-Induced Long-Term Water Availability in the Ganges Basin and the Impacts on Energy Security in South Asia”, is funded by the Asia Pacific Network for Global Change Research (APN). The objective of the project is to inform the decision makers, relevant stakeholders and the investors about the water supply and demand balance under the projected long-term impacts from climate change up to 2050 and the level of potential water risks for future energy supply. It is expected to support effective energy planning and integrated water management in the Ganges basin and help reduce the risks of the power plant investment locked in water-stressed areas.

To achieve this objective, we developed a practical integrated approach which combines various modelling techniques and approaches including the hydrological model (the SWAT model) and water demand projections for major water use sectors including domestic, agriculture and industrial sectors, as well as power plant field surveys, to assess the water-energy nexus from the perspective of energy supply security under water constrains.

To inform the decision makers, relevant stakeholders and the investors on the spatial distribution of water stress particularly from the perspective of long-term energy supply security, we conducted a series of stakeholder consultation meetings in the three countries to communicate with relevant stakeholders on the research objective and methodologies, collect the feedbacks on their concerns and needs and convey the research results and the key messages.

To enable the policy makers, relevant stakeholders and the investors to explore the data and associated results, we developed a free on-line tool on the spatial visualisation of the results on water supply, water demand, water supply-demand balance and water risks for the existing and
planned thermal power plants in India at the district level for four selected sub-basins, i.e. the Chambal, Damodar, Gandak and Yamuna sub-basins.

We conducted two detailed case studies for India and Bangladesh. For India, four sub-basins including the Chambal, the Damodar, the Gandak and the Yamuna sub-basins were selected. From the supply side, the results show that the overall water availability will increase in future in the selected sub-basins, particularly in the Chambal, Damodar and Gandak sub-basins. However, the water availability in the Yamuna sub-basin will decrease in the far future.

Water availability will vary from month to month depending on the physical conditions such as precipitation, evapotranspiration and surface runoff, etc. The water availability in both the dry and the wet seasons will increase in the Damodar and the Gandak sub-basins, however, it will decrease in the dry season in the Chambal and the Yamuna sub-basins. At the district level, the water availability in most of the districts in the four sub-basins will increase.

From the demand side, future water demand will increase due to population growth, industrial development, increase in power generation and irrigation. Out of the four sub-basins, there will be the least water demand in the Chambal sub-basin and the most water demand in the Yamuna sub-basin. In all the four sub-basins, the irrigation water demand will dominate followed by the domestic water demand and this trend will continue till 2050. Energy water demand is the highest in the Damodar sub-basin followed by the Gandak sub-basin. Energy water demand will greatly increase in the Gandak sub-basin.

For the water supply-demand balance at the sub-basin level, the Chambal and the Damodar sub-basins will have surplus water in the future. The Chambal sub-basin will have the largest water surplus among the four selected sub-basins. The Yamuna and Gandak sub-basins will face serious water deficit in the future, particularly the Yamuna sub-basin.

At the district level, in the Chambal and the Damodar sub-basins, particularly in the Chambal sub-basin, most of the districts will have water surplus. However, in the Gandak and the Yamuna sub-basins, most of the district will face water deficit in the future. Particularly in the Gandak sub-basin, there will be many planned new thermal power installations which operation will face sever water shortage.

Spatial distribution of the water supply-demand balance at the district level can be used as an important indicator to assess the location and technologies for future power plants. District-level analysis indicates that many of the existing power plants are located in the water-stressed areas and many new thermal power plants are planned to be installed in the areas with high or moderate water stress. Specifically, most of the exiting power plants and the newly planned power plants in the Yamuna and the Gandak sub-basins, a few in the upper part of the Chambal sub-basin and a few in the middle right part and the lower part of the Damodar sub-basin will face high risks of water shortage. Relevant governmental organisations such as the development and planning organisation and the energy planning organisation as well as the investors should take this information seriously to prevent the new installations to be locked in the water-stressed locations.
If the new capacity has not yet been installed, alternative locations where there will be water surplus should be considered. Among the four sub-basins, most of the districts in the middle and lower part of the Chambal sub-basin and the districts located in the upper part of Damodar (the yellow area) can be considered as the ideal alternative locations.

The results of the project and the Water-Energy Nexus Assessment web tool can inform relevant governmental decision makers, the energy planners and the investors about where there will be the risks of water shortage for the existing and planned power plants and help them identify suitable locations for new thermal power installations to ensure there will be sufficient water available for cooling the thermal power plants.

For Bangladesh, the case study is conducted for the Ganges basin within the border of Bangladesh. From the supply side, the results show that the Ganges flow will increase significantly in the future especially during the pre-monsoon (April to May) and the monsoon months (June to September). There may be a decrease of the inflow during the post-monsoon period (October-November). The results also show that winter flow may likely increase in the future due to the increase in winter precipitation (December-February) under climate change.

From the demand side, the results show that the power sector will become the largest water consumer if the power plants will be equipped with the open loop cooling system. However if the power plants will be installed with the close loop cooling system, a significant amount of water can be saved. Selection of proper cooling systems for thermal power generation will be critical to influence on the total water demand and the level of water stress in the country. Relevant policy makers, investors and the energy project developers should be highly aware of the big impacts of the selection of the power generation technologies and the cooling systems in particular on the sustainability of water use.

Although, the hydrological modelling results show that the annual water flow will increase in the coming decades. However, it also shows that in the dry season (December-May) water flow will be very limited. Therefore, the competition among major water users in the dry season will become severer. Considering the potential impacts of climate change and more intensified competition for water use in the future, the power development sector in Bangladesh should consider the development of relevant guideline and start to regulate the water use for power generation. Bangladesh can learn the experience from India which set a maximum limit as 2.5 m³/MWh on the water use for thermal power plants and adopted in January 2017.

5. Future Directions
The present study can be further developed in the following areas. First, the Ganges River includes 19 sub-basins across the borders of three South Asian countries, Nepal, India and Bangladesh. Due to data availability and the scope of the present study, only a detailed case study four selected sub-basins in India and a case study for Bangladesh covering the whole river basin within Bangladesh were conducted. It is necessary to extend the present study for a detailed assessment covering all the 19 sub-basins to provide a full picture on the water-energy nexus in
the Ganges basin. In addition, the case study in India provides a very detailed assessment at the district level for the four selected sub-basins which can be applied to all the 19 sub-basins.

The calibration and validation of the SWAT model for the assessment of water supply at the sub-basin level is very limited in the present study. This is one of the major factors influencing the reliability of the hydrological modelling results and should be improved further using observation data or other reference data from secondary sources.

The dissemination of the present study is limited through stakeholder consultation workshops and the IGES website. This could be extended through relevant outreach events and the publications in relevant journals and presentations at impactful global conferences.

6. References

Water Resources Information System of India (India-WRIS). (2014). India-WRIS WebGIS, *Design and development of web enabled water resources information of India*.

7. Appendices

Appendix I Case study in Nepal: A synthesis from literature review

1. Introduction
The entire area of Nepal falls under the Ganges basin occupying 14% of the basin area. In terms of its contribution to the flow of the Ganges, the rivers in Nepal contribute 46% in the monsoon season and as high as 71% in the lean season (Dungel and Pun, 2009). In Nepal, the annual renewable surface water available and annual renewable groundwater potential is estimated as 225 BCM (WECS, 2003) and 12 BCM (WECS, 2004), respectively. Of the 225 BCM, only 15 BCM per annum is used for agriculture (95.9%), domestic purpose (3.8%) and industry (0.3%) (WECS, 2011). Per capita availability of water in Nepal is 8,900 m3/year, which is about 5 times of the threshold water requirement of 1,700 m3/capita per year (UNDP, 2006).

Nepal has great physiographic diversity ranging from less than 100 m high in the Terai region to 4,877 m high in the hilly region and more than 8,000 m higher above the mean sea level in the mountain regions. These three regions are located parallel to each other from east to west. Monsoon rainfall is prominent from June to September and constitutes to 80% of the annual rainfall. The monsoon in Nepal starts in the mid of June from the eastern regions and gradually moves to the western regions and then finally reaches to the far western regions in half a month. Of the total annual rainfall, the monsoon alone constitutes to 80% of the rainfall starting from mid of June to September. However there is significant regional variation in the annual precipitation within the country. According to WECS (2000), the Central Region of Nepal along the southern slopes of Annapurna Himalaya receives the highest mean annual precipitation of more than 6,000 mm, whereas the North-Central areas around the Tibetan plateau receives less than 250 mm precipitation annually. Snow contributes to 10% to the total precipitation in Nepal (UNEP, 2001) and falls mostly in the northern and western mountainous regions in Nepal. Glaciers cover about 3.6% of the area of Nepal (Mool et al., 2001).

Characterised by extreme altitudinal variation within very short lateral distance, Nepal is heavily dependent on water to generate energy and irrigate crops as well as supply for domestic and industrial uses. With climate change and population growth, water shortage for power generation and food production are becoming acuter. However, water requirements for crop irrigation and power generation vary spatially.

Nepal is ranked as the 4th most vulnerable country from the impacts of climate change (World Bank, 2013). Water resource, food and agriculture are important sectors being affected by climate variability and change. The Himalayas in Nepal have witnessed the impacts of climate change which cause glaciers melting and associated impacts on the water availability in the Ganges basin. The decadal annual precipitation of eighty monitoring stations showed a decreasing trend of the average precipitation in Nepal by a rate of 9.8 mm/decade (MoPE, 2004).
More than 6,000 rivers flow through Nepal which make it a water rich country (Chaulagain, 2009). Rivers in Nepal have been categorised into small, medium and large rivers based on their water source and discharge. About 78%, 9% and 13% of the average flow in the country is available from large, medium and small rivers, respectively (WECS, 2011). Only 4 rivers, Koshi, Gandaki, Karnali and Mahakali, are large rivers (Figure A1-1) and all of them are part of the Ganges basin. The large rivers originate from the Himalayas and are snow fed with significant discharge even in the dry season. These perennial rivers are the major sources of water for drinking, irrigation, industrial processing and hydropower generation (Chaulagain, 2009). However, the stream flow data of the last 20 years showed a downward trend in major rivers, particularly due to the gradual disappearance of the glaciers, which may reduce the water availability for use in the future (Gautam and Achary, 2012).

The current river flow gradient and the river width in the upstream that fall from the hills and mountains in Nepal are suitable for hydropower production. Technically, 40,000 MW hydropower production is feasible. However, despite its potential, Nepal currently only has a total of 787 MW installed capacity while the annual peak demand in FY2014/15 was 1,286 MW (NEA, 2015). 40% of the population has access to electricity. It is estimated that the electricity demand in Nepal increased annually at an average rate of 9% and the peak demand increased by 8.9% (NEA, 2015). Except for one hydropower plant, all other hydropower plants in Nepal are the run-off-river (RoR) plants which power generation is affected due to the decreased river discharge in the dry season. In this context, Nepal’s power security is at a high risk impacted by the seasonal water variability induced by climate change.
Though water is accessible to 81% of the irrigable land, water supply is uncertain due to the impacts from climate change and unmanaged water distribution. Of 2,642,000 ha (18%) of the land suitable for cultivation, Nepal has 1,766,000 ha (66.66%) potential for irrigation. So far only 17% of the cultivated area has year-round irrigation and 42% of the cultivated area is rain fed (WECS, 2011). Water supply for domestic use (drinking water) and industrial use has been manageable and met the demand mainly due to less population and small scale of industrialisation.

Studies on water resources at the basin level are scanty in Nepal possibly due to the unavailability of the hydro-meteorological data or poor data quality. Koshi river basin is the most abundantly studied basin. This case study will contribute to understanding the water resource situation in Nepal at the basin level.

Water resource, mainly used for the domestic sector (drinking), irrigation and the industrial sector, is not adequately utilised, especially for the latter two users. This case study will contribute to the development of the methods for the estimation and projection of the water demand from domestic,
irrigation and industrial sectors. The water demand will be estimated and projected for major river basins.

Study on the water availability in the river basins and the impacts of climate change on water resource availability will help understand the nexus between climate change and water. The extension of the climate-water nexus study to include hydropower generation at the river basin level can be considered as the first time of its kind for Nepal. It will enhance the scientific understanding of the climate-water-energy nexus for Nepal which contributes to strengthening the integrated water resource management and harnessing the potential for cross-border collaboration with the neighboring countries particularly after Nepal has made relevant provisions such as the Power Trading Agreement (PTA) and the Project Development Agreement (PDA).

All the river basins in Nepal flow into the Ganges river basin. A major part of the snow-clad mountains of the Hindu Kush region lie within Nepal, which serves as the major source of fresh water in the Ganges basin. The snow cover and the glaciers contribute to keeping a positive water balance in the basin throughout the year. Hydrology alterations in this region may impact the whole Ganges river basin and climate change has already been identified as a major threat. The current case study is very important for the estimation of possible future water availability in the basin and relevant implications for the demand sectors.

2. Water availability and water demand assessment

Studies on water availability and water demand are important for the optimal planning and management of water resources. Per capita water availability is generally estimated for the whole country which may not be appropriate for the basin level. As water availability vary according to basins, it would be more appropriate to find such value basin wise. Here, the study has been done at the basin level, and it is important for the development of Integrated Water Resources Management (IWRM). Also, such study can be helpful in assessing possibilities of inter-basin water exchange schemes.

The total area of Nepal has been classified under three type of river basins based on their drainage area: the first type are the major river basins that include the basins Koshi, Gandaki and Karnali; the second type are the basins Kankai, Kamala, Bagmati, West Rapti, Babai and Mahakali. Some of these river basins originate in the Himalayas, and include snowmelt contribution while some originate in the Hills. Besides these two types, there are numerous perennial and non-perennial river basins in the southern part of the country originating in the lower hills and are collectively known as Southern Rivers (Figure A1-2).

A process, namely the assessment based on the area contributed, has been applied to find the individual districts (administrative division of Nepal) that can be grouped under the basins. As most of the data like human population, cultivated area and production value, number of industries, etc., are accounted referring to the districts, it would be appropriate to group them under the basins.
The study of basin wise sectoral water demand is based on the findings of individual districts and their summation according to the list above.

Figure A1-2 Major and minor river basins and southern river basins of Nepal

2.1 Assessment of water availability

The water availability in the river basins of Nepal has been studied from relevant papers and reports. Although some of the basins like Bagmati, Koshi and Gandaki have been studied extensively in the past, the rest of them have not been studied and documented in the same extent.

These river systems in Nepal are important mainly for irrigation, water supply and hydropower production. Agreements on river system such as the Koshi Barrage Agreement (for flood control and water supply), the Gandaki Project, and the treaty on the integrated development of the Mahakali River, are important treaties between Nepal and India.

Major river basins (Mahakali, Karnali, Koshi, etc.) originate in the Himalayas and store huge amount of fresh water in the form of snow and glaciers. Similarly, minor river basins (Bagmati, Rapti, etc.) are dependent on rainfall and groundwater sources; Southern rivers depend
almost completely on rainfall. The value of total annual water availability in these basins is discussed below.

Water balance in the major river basins of Nepal is shown in Figure A1-3 (WECS, 2011). The figure shows that water balance reaches zero in April for some basins but never becomes negative.

![Figure A1-3 Water balance in major river basins of Nepal](image)

Source: WECS, 2011

Water balance in the minor river basins of Nepal, shown in Figure A1-4, becomes negative during dry seasons (WECS, 2011). The water balance analysis of the major rivers of Nepal reveals that there is possibility of positive water balance both during dry and wet months for rivers like Koshi, Narayani (Gandaki), Karnali, and Mahakali. Meanwhile water balance in minor rivers such as Kankai, Kamala is negative during dry months as shown in Figure A1-4.
2.2 Assessment of current and future water demand

The water demand in the river basins of Nepal has been calculated based on the information available at the district level. Table A1-1 lists different districts within relevant river basins and the area they account for. ‘Y’ and ‘N’ have been applied to refer whether the district was included (Y) or not included (N) under the particular basin or others. The results are also depicted in the map (Figure A1-5).

For the three sectors (industry, domestic and agriculture), the current and future water demand has been calculated based on the methodology explained for each sector in the following sections.

Table A1-1 Percentage of the area of the administrative districts included within relevant river basins in Nepal

<table>
<thead>
<tr>
<th>Districts</th>
<th>% area within the basin</th>
<th>Included-Y/Not included-N</th>
<th>Districts</th>
<th>% area within the basin</th>
<th>Included-Y/Not included-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahakali Basin (1)</td>
<td></td>
<td></td>
<td>Mahakali Basin (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darchula</td>
<td>100</td>
<td>Y</td>
<td>Kathmandu</td>
<td>98</td>
<td>Y</td>
</tr>
<tr>
<td>Bajhang</td>
<td>2.8</td>
<td>N</td>
<td>Kavre</td>
<td>24.4</td>
<td>N</td>
</tr>
<tr>
<td>Baitadi</td>
<td>80.5</td>
<td>Y</td>
<td>Bhaktapur</td>
<td>98.4</td>
<td>Y</td>
</tr>
<tr>
<td>Doti</td>
<td>1.1</td>
<td>N</td>
<td>Makwanpur</td>
<td>26.6</td>
<td>N</td>
</tr>
<tr>
<td>Dadeldhura</td>
<td>77.3</td>
<td>Y</td>
<td>Lalitpur</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Kanchanpur</td>
<td>10.3</td>
<td>N</td>
<td>Sindhuli</td>
<td>38</td>
<td>N</td>
</tr>
<tr>
<td>Kailali</td>
<td>0.2</td>
<td>N</td>
<td>Rautahat</td>
<td>48.5</td>
<td>N</td>
</tr>
<tr>
<td>Karnali Basin (2)</td>
<td></td>
<td></td>
<td>Karnali Basin (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humla</td>
<td>100</td>
<td>Y</td>
<td>Sarlahi</td>
<td>7</td>
<td>N</td>
</tr>
<tr>
<td>Bajhang</td>
<td>97.2</td>
<td>Y</td>
<td>Nawalparasi</td>
<td>30.7</td>
<td>N</td>
</tr>
<tr>
<td>Mugu</td>
<td>100</td>
<td>Y</td>
<td>Kapilbastu</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Bajura</td>
<td>100</td>
<td>Y</td>
<td>Rupandehi</td>
<td>100</td>
<td>Y</td>
</tr>
</tbody>
</table>

Figure A1-4 Water balance in minor river basins of Nepal

Source: WECS, 2011
<table>
<thead>
<tr>
<th>Districts</th>
<th>% area within the basin</th>
<th>Included-Y/Not included-N</th>
<th>Districts</th>
<th>% area within the basin</th>
<th>Included-Y/Not included-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baitadi</td>
<td>19.2</td>
<td>N</td>
<td>Parsa</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Dolpa</td>
<td>100</td>
<td>Y</td>
<td>Sindhuli</td>
<td>0.1</td>
<td>N</td>
</tr>
<tr>
<td>Jumla</td>
<td>100</td>
<td>Y</td>
<td>Panchthar</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Kalikot</td>
<td>100</td>
<td>Y</td>
<td>Bara</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Doti</td>
<td>98.9</td>
<td>Y</td>
<td>Rautahat</td>
<td>51.5</td>
<td>Y</td>
</tr>
<tr>
<td>Dadeldhura</td>
<td>20.7</td>
<td>N</td>
<td>Dhankuta</td>
<td>2.6</td>
<td>N</td>
</tr>
<tr>
<td>Achham</td>
<td>100</td>
<td>Y</td>
<td>Sarlahi</td>
<td>93</td>
<td>Y</td>
</tr>
<tr>
<td>Dailekh</td>
<td>100</td>
<td>Y</td>
<td>Udayapur</td>
<td>46.2</td>
<td>Y</td>
</tr>
<tr>
<td>Jajarkot</td>
<td>100</td>
<td>Y</td>
<td>Mahottari</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Kailali</td>
<td>19.1</td>
<td>N</td>
<td>Ilam</td>
<td>31.1</td>
<td>N</td>
</tr>
<tr>
<td>Rukum</td>
<td>98.4</td>
<td>Y</td>
<td>Dhanusa</td>
<td>80.3</td>
<td>Y</td>
</tr>
<tr>
<td>Surkhet</td>
<td>100</td>
<td>Y</td>
<td>Siraha</td>
<td>38.9</td>
<td>N</td>
</tr>
<tr>
<td>Myagdi</td>
<td>16.3</td>
<td>N</td>
<td>Saptari</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Bardiya</td>
<td>27</td>
<td>N</td>
<td>Morang</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Salyan</td>
<td>34</td>
<td>N</td>
<td>Sunsari</td>
<td>83.3</td>
<td>Y</td>
</tr>
<tr>
<td>Baglung</td>
<td>17.4</td>
<td>N</td>
<td>Jhapa</td>
<td>93.5</td>
<td>Y</td>
</tr>
<tr>
<td>Rolpa</td>
<td>2.3</td>
<td>N</td>
<td>Koshi Basin (7)</td>
<td>Sindhupalchok</td>
<td>100</td>
</tr>
<tr>
<td>Babai Basin (3)</td>
<td></td>
<td></td>
<td>Dolakha</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Surkhet</td>
<td>0.7</td>
<td>N</td>
<td>Solukhumbu</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Bardiya</td>
<td>36.9</td>
<td>Y</td>
<td>Sankhuwasabha</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Salyan</td>
<td>64.8</td>
<td>Y</td>
<td>Taplejung</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Rolpa</td>
<td>5.7</td>
<td>N</td>
<td>Ramechhap</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Banke</td>
<td>2.4</td>
<td>N</td>
<td>Kathmandu</td>
<td>0.7</td>
<td>N</td>
</tr>
<tr>
<td>Dang</td>
<td>39.7</td>
<td>N</td>
<td>Kavre</td>
<td>75.6</td>
<td>Y</td>
</tr>
<tr>
<td>West Rapti Basin (4)</td>
<td></td>
<td></td>
<td>Bhaktapur</td>
<td>1.6</td>
<td>N</td>
</tr>
<tr>
<td>Rukum</td>
<td>1.5</td>
<td>N</td>
<td>Lalitpur</td>
<td>0.2</td>
<td>N</td>
</tr>
<tr>
<td>Salyan</td>
<td>1.2</td>
<td>N</td>
<td>Okhaldhunga</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Baglung</td>
<td>0</td>
<td>N</td>
<td>Bhojpur</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Rolpa</td>
<td>91.8</td>
<td>Y</td>
<td>Sindhuli</td>
<td>22.9</td>
<td>N</td>
</tr>
<tr>
<td>Pyuthan</td>
<td>100</td>
<td>Y</td>
<td>Khotang</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Banke</td>
<td>60.1</td>
<td>Y</td>
<td>Panchthar</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Gulmi</td>
<td>3.3</td>
<td>N</td>
<td>Tehrathum</td>
<td>100</td>
<td>Y</td>
</tr>
<tr>
<td>Dang</td>
<td>49.1</td>
<td>Y</td>
<td>Dhankuta</td>
<td>97.4</td>
<td>Y</td>
</tr>
<tr>
<td>Arghakhanchi</td>
<td>53.8</td>
<td>Y</td>
<td>Udayapur</td>
<td>33.3</td>
<td>N</td>
</tr>
<tr>
<td>Kapilbastu</td>
<td>0.2</td>
<td>N</td>
<td>Ilam</td>
<td>0.3</td>
<td>N</td>
</tr>
<tr>
<td>Gandaki Basin (also called Narayani Basin) (5)</td>
<td></td>
<td></td>
<td>Morang</td>
<td>0.1</td>
<td>N</td>
</tr>
<tr>
<td>Mustang</td>
<td>100</td>
<td>Y</td>
<td>Sunsari</td>
<td>16.7</td>
<td>N</td>
</tr>
<tr>
<td>Manang</td>
<td>100</td>
<td>Y</td>
<td>Kamala Basin (8)</td>
<td>Sindhuli</td>
<td>39</td>
</tr>
<tr>
<td>Myagdi</td>
<td>83.7</td>
<td>Y</td>
<td>Udayapur</td>
<td>20.5</td>
<td>N</td>
</tr>
<tr>
<td>Gorkha</td>
<td>100</td>
<td>Y</td>
<td>Mahottari</td>
<td>0.1</td>
<td>N</td>
</tr>
<tr>
<td>Baglung</td>
<td>82.5</td>
<td>Y</td>
<td>Dhanusa</td>
<td>19.7</td>
<td>N</td>
</tr>
<tr>
<td>Kaski</td>
<td>100</td>
<td>Y</td>
<td>Siraha</td>
<td>61.1</td>
<td>Y</td>
</tr>
<tr>
<td>Lamjung</td>
<td>100</td>
<td>Y</td>
<td>Kankai Basin (9)</td>
<td>Panchthar</td>
<td>0.1</td>
</tr>
<tr>
<td>Parbat</td>
<td>100</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasuwa</td>
<td>100</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dhading</td>
<td>100</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A1-2: Districts included/not included in the basin

<table>
<thead>
<tr>
<th>Districts</th>
<th>% area within the basin</th>
<th>Included-Y/Not included-N</th>
<th>Districts</th>
<th>% area within the basin</th>
<th>Included-Y/Not included-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulmi</td>
<td>96.7</td>
<td>Y</td>
<td>Ilam</td>
<td>68.5</td>
<td>Y</td>
</tr>
<tr>
<td>Syangja</td>
<td>100</td>
<td>Y</td>
<td>Jhapa</td>
<td>6.5</td>
<td>N</td>
</tr>
<tr>
<td>Tanahu</td>
<td>100</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arghakhanchi</td>
<td>32.7</td>
<td>N</td>
<td>Kanchanpur</td>
<td>87.4</td>
<td>Y</td>
</tr>
<tr>
<td>Nuwakot</td>
<td>100</td>
<td>Y</td>
<td>Kailali</td>
<td>80.7</td>
<td>Y</td>
</tr>
<tr>
<td>Palpa</td>
<td>59.5</td>
<td>Y</td>
<td>Bardiya</td>
<td>36.1</td>
<td>N</td>
</tr>
<tr>
<td>Chitwan</td>
<td>100</td>
<td>Y</td>
<td>Banke</td>
<td>37.5</td>
<td>N</td>
</tr>
<tr>
<td>Nawalparasi</td>
<td>69.3</td>
<td>Y</td>
<td>Dang</td>
<td>11.2</td>
<td>N</td>
</tr>
<tr>
<td>Makwanpur</td>
<td>58.5</td>
<td>Y</td>
<td>Arghakhanchi</td>
<td>13.6</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Palpa</td>
<td>40.5</td>
<td>N</td>
</tr>
</tbody>
</table>

2.2.1 Domestic water demand

Domestic water demand is calculated based on the liters per capita per day (lpcd) coefficients adopted from the guidelines and reports of the Government of Nepal (GoN). The population data was taken from the census report of the GoN. For future population projection, the growth rates have been calculated for individual districts in the past three decades (1981-2011) and the prediction was made to extrapolate the trend up to 2050 (see Table A1-2). The equation for the estimation of the future population \(P2\) based on the exponential growth rate \(R\), the base-year population \(P1\) and time \(T\) is:

\[
P2 = P1 \times e^{(R \times T)}
\]
Table A1-2 Population growth (2011-2050) based on average exponential increase during 1981-2011

<table>
<thead>
<tr>
<th>District</th>
<th>Average population increase (%) (1981-2011)</th>
<th>Population (Estimation based on 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2017</td>
</tr>
<tr>
<td>Achham</td>
<td>1.1</td>
<td>275,012</td>
</tr>
<tr>
<td>Arghakhanchi</td>
<td>0.76</td>
<td>206,862</td>
</tr>
<tr>
<td>Baglung</td>
<td>0.74</td>
<td>280,784</td>
</tr>
<tr>
<td>Baitadi</td>
<td>1.12</td>
<td>268,386</td>
</tr>
<tr>
<td>Bajhang</td>
<td>1.51</td>
<td>213,685</td>
</tr>
<tr>
<td>Bajura</td>
<td>1.97</td>
<td>151,864</td>
</tr>
<tr>
<td>Banke</td>
<td>2.91</td>
<td>584,982</td>
</tr>
<tr>
<td>Bara</td>
<td>2.56</td>
<td>801,934</td>
</tr>
<tr>
<td>Bardiya</td>
<td>2.54</td>
<td>496,828</td>
</tr>
<tr>
<td>Bhaktapur</td>
<td>2.15</td>
<td>346,630</td>
</tr>
<tr>
<td>Bhojpur</td>
<td>-0.18</td>
<td>180,479</td>
</tr>
<tr>
<td>Chitwan</td>
<td>2.68</td>
<td>681,158</td>
</tr>
<tr>
<td>Dadeldhura</td>
<td>1.64</td>
<td>156,796</td>
</tr>
<tr>
<td>Dailekh</td>
<td>1.51</td>
<td>286,554</td>
</tr>
<tr>
<td>Dang</td>
<td>2.43</td>
<td>639,400</td>
</tr>
<tr>
<td>Darchula</td>
<td>1.3</td>
<td>144,091</td>
</tr>
<tr>
<td>Dhading</td>
<td>1.08</td>
<td>358,465</td>
</tr>
<tr>
<td>Dhankuta</td>
<td>0.77</td>
<td>171,119</td>
</tr>
<tr>
<td>Dhanusa</td>
<td>1.86</td>
<td>843,667</td>
</tr>
<tr>
<td>Dolakha</td>
<td>0.71</td>
<td>194,725</td>
</tr>
<tr>
<td>Dolpa</td>
<td>1.7</td>
<td>40,639</td>
</tr>
<tr>
<td>Doti</td>
<td>1.08</td>
<td>225,925</td>
</tr>
<tr>
<td>Gorkha</td>
<td>0.53</td>
<td>279,800</td>
</tr>
<tr>
<td>Gulmi</td>
<td>0.54</td>
<td>289,421</td>
</tr>
<tr>
<td>Humla</td>
<td>3.06</td>
<td>61,111</td>
</tr>
<tr>
<td>Ilam</td>
<td>1.62</td>
<td>319,946</td>
</tr>
<tr>
<td>Jajarkot</td>
<td>1.82</td>
<td>191,038</td>
</tr>
<tr>
<td>Jhapa</td>
<td>1.76</td>
<td>902,989</td>
</tr>
<tr>
<td>Jumla</td>
<td>1.53</td>
<td>119,404</td>
</tr>
<tr>
<td>Kailali</td>
<td>3.67</td>
<td>966,822</td>
</tr>
<tr>
<td>Kalikot</td>
<td>1.49</td>
<td>149,737</td>
</tr>
<tr>
<td>Kanchanpur</td>
<td>3.27</td>
<td>549,207</td>
</tr>
<tr>
<td>Kapilbastu</td>
<td>2.5</td>
<td>664,553</td>
</tr>
<tr>
<td>Kaski</td>
<td>2.66</td>
<td>577,400</td>
</tr>
<tr>
<td>Kathmandu</td>
<td>4.73</td>
<td>2,316,414</td>
</tr>
<tr>
<td>Kavre</td>
<td>0.73</td>
<td>398,851</td>
</tr>
<tr>
<td>Khotang</td>
<td>-0.1</td>
<td>205,822</td>
</tr>
<tr>
<td>Lalitpur</td>
<td>3.11</td>
<td>564,050</td>
</tr>
<tr>
<td>Lamjung</td>
<td>0.31</td>
<td>170,897</td>
</tr>
<tr>
<td>Mahottari</td>
<td>1.84</td>
<td>700,952</td>
</tr>
<tr>
<td>Makwanpur</td>
<td>1.82</td>
<td>469,054</td>
</tr>
<tr>
<td>Manang</td>
<td>-0.24</td>
<td>8,445</td>
</tr>
<tr>
<td>Morang</td>
<td>1.97</td>
<td>1,086,455</td>
</tr>
<tr>
<td>District</td>
<td>Average population increase (%) (1981-2011)</td>
<td>Population (Estimation based on 2011)</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57,947</td>
</tr>
<tr>
<td>Mugu</td>
<td>0.78</td>
<td>13,559</td>
</tr>
<tr>
<td>Mustang</td>
<td>0.13</td>
<td>111,320</td>
</tr>
<tr>
<td>Myagdi</td>
<td>0.53</td>
<td>2,45</td>
</tr>
<tr>
<td>Nawalparasi</td>
<td>1.04</td>
<td>295,374</td>
</tr>
<tr>
<td>Nuwakot</td>
<td>0.24</td>
<td>150,144</td>
</tr>
<tr>
<td>Okhaldhunga</td>
<td>0.66</td>
<td>271,685</td>
</tr>
<tr>
<td>Palpa</td>
<td>0.74</td>
<td>200,495</td>
</tr>
<tr>
<td>Panchthar</td>
<td>0.44</td>
<td>150,526</td>
</tr>
<tr>
<td>Parbat</td>
<td>2.49</td>
<td>698,067</td>
</tr>
<tr>
<td>Parsa</td>
<td>2.23</td>
<td>245,587</td>
</tr>
<tr>
<td>Pyuthan</td>
<td>0.76</td>
<td>121,072</td>
</tr>
<tr>
<td>Ramechhap</td>
<td>1.2</td>
<td>46,523</td>
</tr>
<tr>
<td>Rasuwa</td>
<td>2.42</td>
<td>793,911</td>
</tr>
<tr>
<td>Rautahat</td>
<td>0.96</td>
<td>237,877</td>
</tr>
<tr>
<td>Rolpa</td>
<td>1.51</td>
<td>228,400</td>
</tr>
<tr>
<td>Rukum</td>
<td>2.81</td>
<td>1,041,707</td>
</tr>
<tr>
<td>Rupandehi</td>
<td>1.55</td>
<td>266,152</td>
</tr>
<tr>
<td>Salyan</td>
<td>0.68</td>
<td>165,361</td>
</tr>
<tr>
<td>Sankhuwasabha</td>
<td>1.74</td>
<td>709,728</td>
</tr>
<tr>
<td>Saptari</td>
<td>2.19</td>
<td>877,934</td>
</tr>
<tr>
<td>Sarlahi</td>
<td>1.59</td>
<td>325,885</td>
</tr>
<tr>
<td>Sindhuli</td>
<td>0.71</td>
<td>300,390</td>
</tr>
<tr>
<td>Sindhupalchok</td>
<td>1.76</td>
<td>708,511</td>
</tr>
<tr>
<td>Siraha</td>
<td>2.65</td>
<td>109,817</td>
</tr>
<tr>
<td>Solukhumbu</td>
<td>2.41</td>
<td>895,160</td>
</tr>
<tr>
<td>Sunsari</td>
<td>2.49</td>
<td>407,337</td>
</tr>
<tr>
<td>Surkhet</td>
<td>0.21</td>
<td>292,743</td>
</tr>
<tr>
<td>Syangja</td>
<td>2.13</td>
<td>348,078</td>
</tr>
<tr>
<td>Tanahu</td>
<td>0.18</td>
<td>128,841</td>
</tr>
<tr>
<td>Tarejung</td>
<td>0.31</td>
<td>103,507</td>
</tr>
<tr>
<td>Tehrathum</td>
<td>2.29</td>
<td>364,273</td>
</tr>
</tbody>
</table>

Based on the above population projection at the district level, water demand was calculated for individual basins (Figure A1-6). For 2017, daily per capita water demand of 45 lpcd (MoUD, 2005) and the nationwide water supply coverage rate in 2014, published by the National Management Information Project (NMIP) (NMIP, 2014), were used. Water supply coverage rate means the percentage of households that have been accessed to the basic water supply through government or community-based initiatives. For 2020, 95% water supply coverage and 45 lpcd daily per capita water demand were used. For 2030, 2040 and 2050, 100% water supply coverage and the daily per capita water demand of 100 lpcd recommended by the World Health Organization were used.
Table A1-3 presents daily domestic water demand up to 2050 for different river basins in Nepal (see also Figure A1-6). Domestic water demand includes water for drinking and other household purposes.

Table A1-3 Domestic water demand in litres per day (lpd)

<table>
<thead>
<tr>
<th>River Basins</th>
<th>2017</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahakali Basin</td>
<td>21,798,578</td>
<td>25,312,847</td>
<td>67,528,446</td>
<td>77,050,424</td>
<td>87,957,414</td>
</tr>
<tr>
<td>Karnali Basin</td>
<td>88,702,229</td>
<td>107,621,186</td>
<td>296,292,192</td>
<td>349,948,261</td>
<td>414,814,249</td>
</tr>
<tr>
<td>Babai Basin</td>
<td>28,451,153</td>
<td>34,843,004</td>
<td>101,706,364</td>
<td>127,184,945</td>
<td>159,370,669</td>
</tr>
<tr>
<td>West Rapti</td>
<td>70,602,122</td>
<td>87,100,208</td>
<td>251,715,779</td>
<td>312,995,489</td>
<td>391,565,870</td>
</tr>
<tr>
<td>Gandaki Basin</td>
<td>206,523,080</td>
<td>241,413,174</td>
<td>661,273,227</td>
<td>780,915,920</td>
<td>929,865,712</td>
</tr>
<tr>
<td>Bagmati Basin</td>
<td>134,336,252</td>
<td>156,393,696</td>
<td>558,643,458</td>
<td>859,361,228</td>
<td>1,330,470,070</td>
</tr>
<tr>
<td>Koshi Basin</td>
<td>90,184,985</td>
<td>109,459,047</td>
<td>269,835,008</td>
<td>284,659,405</td>
<td>300,593,522</td>
</tr>
<tr>
<td>Kankai Basin</td>
<td>11,083,240</td>
<td>14,360,233</td>
<td>39,511,379</td>
<td>46,474,960</td>
<td>54,665,818</td>
</tr>
<tr>
<td>Southern Rivers</td>
<td>452,953,551</td>
<td>542,069,791</td>
<td>1,613,778,430</td>
<td>2,065,367,865</td>
<td>2,652,216,300</td>
</tr>
</tbody>
</table>

2.2.2 Industrial water demand

Industrial facilities consume large amounts of water and the rate of consumption varies according to the type of products. In Nepal, the industrial sector has been growing in recent years. Although industrialisation started about 26 years ago, comprehensive information about employment, outputs, resource consumption and waste generation is poorly documented.

In this case study, industrial water use coefficients were used. The coefficients were estimated based on the total amount of water used by particular industrial sub-sector in the form of ‘liter per employee per Day (LED)’. LED includes both the water used for production and the water used by the employees working at the industrial facility during their working hours.
The trend of annual industrial growth in all the districts have been studied between 1991 and 2016 and the average growth rate was calculated (Table A1-4).

Table A1-4 Annual growth rate of industries in all the districts in Nepal (1991-2016)

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Districts</th>
<th>Total industries</th>
<th>Average annual increase (%)</th>
<th>S.N.</th>
<th>Districts</th>
<th>Total industries</th>
<th>Average annual increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACHHAM</td>
<td>4</td>
<td>8.7</td>
<td>39</td>
<td>LAMJUNG</td>
<td>26</td>
<td>16.9</td>
</tr>
<tr>
<td>2</td>
<td>ARGHAKHACHI</td>
<td>3</td>
<td>7.7</td>
<td>40</td>
<td>MAHOTTARI</td>
<td>5</td>
<td>9.6</td>
</tr>
<tr>
<td>3</td>
<td>BAGLUNG</td>
<td>10</td>
<td>12.9</td>
<td>41</td>
<td>MAKWANPUR</td>
<td>102</td>
<td>19.2</td>
</tr>
<tr>
<td>4</td>
<td>BAITADI</td>
<td>6</td>
<td>13.3</td>
<td>42</td>
<td>MANANG</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>BAJHANG</td>
<td>4</td>
<td>16.8</td>
<td>43</td>
<td>MORANG</td>
<td>233</td>
<td>8.5</td>
</tr>
<tr>
<td>6</td>
<td>BAJURA</td>
<td>1</td>
<td>4.2</td>
<td>44</td>
<td>MUGU</td>
<td>2</td>
<td>6.3</td>
</tr>
<tr>
<td>7</td>
<td>BANKE</td>
<td>72</td>
<td>12.5</td>
<td>45</td>
<td>MUSTANG</td>
<td>7</td>
<td>11.0</td>
</tr>
<tr>
<td>8</td>
<td>BARA</td>
<td>212</td>
<td>14.0</td>
<td>46</td>
<td>MYAGDI</td>
<td>14</td>
<td>16.4</td>
</tr>
<tr>
<td>9</td>
<td>BARDIYA</td>
<td>16</td>
<td>15.2</td>
<td>47</td>
<td>NAVALPARASI</td>
<td>105</td>
<td>16.7</td>
</tr>
<tr>
<td>10</td>
<td>BHAKTAPUR</td>
<td>150</td>
<td>8.9</td>
<td>48</td>
<td>NUWAKOT</td>
<td>39</td>
<td>14.2</td>
</tr>
<tr>
<td>11</td>
<td>BHOJPUR</td>
<td>7</td>
<td>6.8</td>
<td>49</td>
<td>OKHALDHUNDA</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>12</td>
<td>CHITWAN</td>
<td>174</td>
<td>10.8</td>
<td>50</td>
<td>PALPA</td>
<td>7</td>
<td>11.8</td>
</tr>
<tr>
<td>13</td>
<td>DADELDHURA</td>
<td>5</td>
<td>9.8</td>
<td>51</td>
<td>PANCHATHAR</td>
<td>9</td>
<td>16.9</td>
</tr>
<tr>
<td>14</td>
<td>DAILEKH</td>
<td>4</td>
<td>9.4</td>
<td>52</td>
<td>PARBAT</td>
<td>3</td>
<td>9.8</td>
</tr>
<tr>
<td>15</td>
<td>DANG</td>
<td>35</td>
<td>11.7</td>
<td>53</td>
<td>PARSAR</td>
<td>148</td>
<td>9.3</td>
</tr>
<tr>
<td>16</td>
<td>DARCHULA</td>
<td>6</td>
<td>10.6</td>
<td>54</td>
<td>PYUTHAN</td>
<td>2</td>
<td>8.4</td>
</tr>
<tr>
<td>17</td>
<td>DHADING</td>
<td>50</td>
<td>27.4</td>
<td>55</td>
<td>RAMECHHAP</td>
<td>11</td>
<td>14.1</td>
</tr>
<tr>
<td>18</td>
<td>DHANKUTA</td>
<td>16</td>
<td>8.7</td>
<td>56</td>
<td>RASUWA</td>
<td>17</td>
<td>16.9</td>
</tr>
<tr>
<td>19</td>
<td>DHANUSHA</td>
<td>33</td>
<td>14.8</td>
<td>57</td>
<td>RAUTAHAT</td>
<td>9</td>
<td>5.3</td>
</tr>
<tr>
<td>20</td>
<td>DOLKHA</td>
<td>33</td>
<td>18.2</td>
<td>58</td>
<td>ROLPA</td>
<td>3</td>
<td>8.4</td>
</tr>
<tr>
<td>21</td>
<td>DOLPA</td>
<td>1</td>
<td>0.0</td>
<td>59</td>
<td>RUKUM</td>
<td>2</td>
<td>8.4</td>
</tr>
<tr>
<td>22</td>
<td>DOTI</td>
<td>6</td>
<td>10.8</td>
<td>60</td>
<td>RUPANDEHI</td>
<td>185</td>
<td>12.3</td>
</tr>
<tr>
<td>23</td>
<td>GORKHA</td>
<td>24</td>
<td>9.7</td>
<td>61</td>
<td>SALYAN</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>24</td>
<td>GULMI</td>
<td>5</td>
<td>9.8</td>
<td>62</td>
<td>SANKHUWASABHA</td>
<td>15</td>
<td>10.0</td>
</tr>
<tr>
<td>25</td>
<td>HUMLA</td>
<td>5</td>
<td>10.3</td>
<td>63</td>
<td>SAPTARI</td>
<td>12</td>
<td>9.6</td>
</tr>
<tr>
<td>26</td>
<td>ILAM</td>
<td>38</td>
<td>10.8</td>
<td>64</td>
<td>SARLALI</td>
<td>16</td>
<td>5.2</td>
</tr>
<tr>
<td>27</td>
<td>JAJARKOT</td>
<td>3</td>
<td>8.4</td>
<td>65</td>
<td>SINDHULI</td>
<td>2</td>
<td>6.3</td>
</tr>
<tr>
<td>28</td>
<td>JHAPA</td>
<td>104</td>
<td>14.5</td>
<td>66</td>
<td>SINDHUPALCHOWK</td>
<td>44</td>
<td>14.8</td>
</tr>
<tr>
<td>29</td>
<td>JUMLA</td>
<td>0</td>
<td>0.0</td>
<td>67</td>
<td>SIRAH</td>
<td>2</td>
<td>11.3</td>
</tr>
<tr>
<td>30</td>
<td>KAILALI</td>
<td>36</td>
<td>18.0</td>
<td>68</td>
<td>SOLUKHUMBU</td>
<td>35</td>
<td>14.9</td>
</tr>
<tr>
<td>31</td>
<td>KALIKOT</td>
<td>4</td>
<td>9.1</td>
<td>69</td>
<td>SUNSARI</td>
<td>124</td>
<td>9.9</td>
</tr>
<tr>
<td>32</td>
<td>KANCHANPUR</td>
<td>28</td>
<td>10.9</td>
<td>70</td>
<td>SURKHET</td>
<td>8</td>
<td>11.7</td>
</tr>
<tr>
<td>33</td>
<td>KAPILBASTU</td>
<td>31</td>
<td>13.2</td>
<td>71</td>
<td>SYANGJA</td>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>34</td>
<td>KASKI</td>
<td>329</td>
<td>13.6</td>
<td>72</td>
<td>TANAHU</td>
<td>18</td>
<td>15.6</td>
</tr>
<tr>
<td>35</td>
<td>KATHMANDU</td>
<td>2912</td>
<td>11.7</td>
<td>73</td>
<td>TAPLEJUNG</td>
<td>11</td>
<td>13.5</td>
</tr>
<tr>
<td>36</td>
<td>KAVRE</td>
<td>137</td>
<td>13.8</td>
<td>74</td>
<td>TEHRATHUM</td>
<td>5</td>
<td>9.9</td>
</tr>
<tr>
<td>37</td>
<td>KHOTANG</td>
<td>4</td>
<td>9.4</td>
<td>75</td>
<td>UDAYPUR</td>
<td>5</td>
<td>10.3</td>
</tr>
<tr>
<td>38</td>
<td>LALITPUR</td>
<td>726</td>
<td>15.3</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.3 Agricultural water demand

Agricultural sector is the largest consumer of water resources in the world (Figure A1-7) and the trend will continue in the future. Both the industrial sector and the domestic sector have a water footprint in the agricultural water. Agricultural sector effectively utilises rainfall and groundwater sources. For high productivity and the production in non-rain fed areas or in the dry season, a large amount of water is required for irrigation.

![Figure A1-7 Trends in global water use](image)

Source: Igor and Jeanna (2003)

In Figure A1-7, the shaded area in grey is the difference between water extraction and water consumption. In addition, the figure shows that the amount of water used for agriculture is the highest compared to the domestic and industrial uses. In order to reduce the gaps in irrigation water supply and increase water irrigation efficiency, sewage from domestic water consumption can be reused for agriculture.

Agriculture is the backbone of the Nepalese economy. Agricultural practices and technologies in Nepal still follow traditional fashion which require substantial improvement in terms of optimal water use. Large amounts of irrigable land are still rain fed and high-value crops which generally require large amount of water are generally not adapted by the farmers until now. Therefore the enhancement of irrigation systems to improve agriculture productivity will require a huge amount of water.

Agriculture is still being practiced in a traditional way. Numerous farmers who have the lands inherited from their ancestors continue the family tradition. The holdings are small in size and most of them keep livestock as a second source of income besides farming. In the estimation
of agricultural water demand for individual basins, livestock water demand was added to the irrigation water demand to calculate the total agricultural water demand.

2.3 Assessment of water supply-demand gap

Water availability and water demand of water for the river basins in Nepal as discussed in previous sections were summarized in this section. Not all the available water can be used for the final demand and certain amount of water is required for the environmental needs. Also, there are some water projects in the basins that are targeted for the people living in the nearby basins or in the neighboring countries. Under these circumstances, water supply-demand gaps assessed within the basin boundaries may not be sufficient for getting an overall picture.

Power supply and demand scenarios

Power supply is the backbone for national economic and social development. The history of power production in Nepal dated back to 1911 when the first hydropower station (the second one in Asia), Pharping Hydropower Station, was built. However, the efforts for electrification and adequate electricity supply cannot match with increased demand and Nepal is continuously being suffered by load shedding.

The load curve on November 11, 2015 provided by the Load Dispatch Center (LDC) of Nepal Electricity Authority (NEA) is presented in Figure A1-8. The figure shows energy sources currently available in Nepal and the gaps during the peak load hours.

![Figure A1-8 System load curve](image_url)

Source: Nepal Electricity Authority, 2016

The current installed capacity in Nepal is 1,075 MW from hydropower. Thermal and solar plants with total capacity of 1,017 MW are under construction. Similarly, 2,920 MW
hydropower mainly of reservoir types are proposed or planned for design and construction in the near future (NEA, 2018)

Electric energy consumption in Nepal is 139 kWh per capita (2014), which is significantly lower than the worldwide average of 3,128 kWh (IEA Statistics, 2014). The low per capita energy consumption is an indicator reflecting the scale of the economy and the condition of electric energy supply. GDP has not been increased sufficiently in Nepal because many local industries suffer from serious shortage of electric energy and have to use expensive energy sources based on fossil fuels. The electrification in Nepal has not yet achieved to 100% (Figure A1-9). The existing very low per capita electricity consumption and potentially further improvement in the electrification imply that the demand for electric energy will increase by multifold in the future.

The Water and Energy Commission Secretariat of the GoN conducted a study on the electricity demand forecast up to 2040. The study estimated per capita electricity requirements in Nepal under a Business as Usual (BAU) scenario, a reference level economic scenario, and a high level economic scenario (Table A1-5 and Figure A1-10). In addition, the estimates are also provided under different policy intervention scenarios.

Nepal has been facing energy crisis in the past several decades. The installed capacity of all types of power plants is not enough to meet the power demand. Total energy imported from India during the year 2017-2018 was 2,582 GWh and increased year by year (A year in Review, Fiscal Year 2017/2018).
Table A1-5 Per Capita electricity demand under different scenarios

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU, 4.5%</th>
<th>Reference scenario, 7.2%</th>
<th>High scenario, 9.2%</th>
<th>Policy intervention, 7.2%</th>
<th>Policy intervention, 9.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>2020</td>
<td>271</td>
<td>291</td>
<td>304</td>
<td>531</td>
<td>547</td>
</tr>
<tr>
<td>2025</td>
<td>464</td>
<td>531</td>
<td>591</td>
<td>801</td>
<td>867</td>
</tr>
<tr>
<td>2030</td>
<td>716</td>
<td>891</td>
<td>1,067</td>
<td>1,261</td>
<td>1,474</td>
</tr>
<tr>
<td>2035</td>
<td>1,062</td>
<td>1,454</td>
<td>1,892</td>
<td>1,848</td>
<td>2,345</td>
</tr>
<tr>
<td>2040</td>
<td>1,536</td>
<td>2,361</td>
<td>3,388</td>
<td>2,927</td>
<td>4,118</td>
</tr>
</tbody>
</table>

Figure A1-10 Per capita electricity demand 2015-2040

Source: WECS, 2017

2.4 Assessment of the challenges and opportunities in the hydropower sector in Nepal

Hydropower, a renewable source of energy generated from flowing water, is a sustainable source with less environmental impacts in terms of heat and pollutants, low investment operation and maintenance costs and flexible and reliable operations. However, large hydro dams have ecological impacts on the hydrology and aquatic biodiversity. According to Bunn and Arthington (2002) there are three types of impacts, i.e. i) biotic responses to the altered flow regimes and associated changes in the habitat; ii) life history responses to the altered flow regimes; and iii) biotic responses to the loss of longitudinal or lateral connectivity. The impacts of hydropower infrastructure have been reported in other literature. Dams alter the natural cycle of water flow and transforms the biological and physical characteristics of the river channels and floodplains (Petts, 1984; Poff et al., 1997). The movement of sediments, nutrients and organisms between water and land may be restricted due to the reduction in the
overbank floods (Junk et al., 1989). Turbines of the hydroelectric projects operated for water release from the reservoirs can harm fish and other biota (Dadswell, 1996).

Nepal has the highest per capita hydropower potential in the world and the hydropower development can be a fundamental key to support Nepal’s economic development, achieve the national goals and alleviate from poverty (Adhikari, 2006). However, until now, Nepalese power supply heavily relies on the energy imports from India and the purchases from independent power producers (IPPs) (Nepal Electricity Authority, 2017). Nepal has not yet realised the prospect of utilising its hydropower potentials due to the lack of proper planning, insufficient investment in generation, transmission and distribution, inadequate policies and the lack of legal and regulatory frameworks and associated policies and plans.

As per the 14th National Plan of the National Planning Commission, the total installed capacity will be 829 MW and the total length of transmission lines will be 2,848 km. It was aimed to increase electricity access to 87% of the population by the end of the 13th National Plan, however only 74% had been achieved.

2.4.1 Assessment of the challenges of the hydropower sector in Nepal

Hydropower development can make significant contributions to the national economic development. However, Nepal is now facing many technical and financial challenges which need to be addressed properly.

Technical challenges

Nepal is endowed with rich hydro resources but the country is still striving for achieving its economic prosperity due to limited hydropower development. Due to geology fragility, hydrologic variability, geotechnical constraints, difficult terrain and sparse hydro meteorological networks, etc., hydropower development is constrained. Some of the technical challenges in Nepal (Baral, 2014) are summarised as follows.

(i) **geology fragility**

About 75% of Nepal is within the Himalayan region. Weak geological formation with rocks makes the Himalayas to be fragile. Because of this, it is very important to understand the geology fragility of the hydropower project sites and other factors that may help the development of safer hydropower infrastructure, as well as the mitigation of natural hazards and environmental degradation (Uprety, 2000).

(ii) **Hydrologic variability**

Nested in the Hindu Kush Himalayas, Nepal has experienced a warming trend between 1977 to 1994 at a rate 0.06 °C and projection shows that the mean temperature will further increase by 1.2 °C by 2050 and 3 °C by 2100 (MOEnv, 2012). Temperature increase has significantly retreated the glaciers and melted the ice which have been contributing to the increase in the size and volume of the glacial lakes and in turn posing a risk to the Glacial Lake Outburst (GLOF) in the Himalayas. There are more than 2,000 glacial lakes in the Nepal Himalayas. As glacier retreating and ice melting will continue, dry-season flows fed by the glacier melts in the monsoon season will be reduced and can be further worsened by climate change which impacts the variability in river flows. As a result, river flows/discharges will be unreliable in the dry season in the Himalayas which may pose serious risks to the investment in the hydropower development projects (Agrawal et. al., 2003).
(iii) High rate of sedimentation

Most of the hydropower plants in the Himalayan Rivers are affected by excessive sedimentation which primarily decreases the capacity (life) of the reservoir (by decreasing the dead storage capacity) and fundamentally causes erosion that reduces efficiency and life of the turbine components. Excessive amount of sediments in the Himalayan Rivers are mainly due to weak rocks and extreme relief representing hard abrasive mineral/rock fragments with the sediments depending on the distance traversed by particles, gradient of the river and the geological formation of the river course as well as the area of the catchment (Thapa et al., 2005). Sedimentation in the 1993 monsoon (March to December, 1993) in the Kulekhani reservoir was 519 ha-m, thereby decreasing the reservoir capacity by 5.2 MCM (Sthapit, 1996).

To mitigate excessive sedimentation it is important to strengthen sediment monitoring and implement necessary countermeasures such as watershed management and the construction of sediment traps and structures to control the sediments within the reservoir and watershed.

(iv) Geopolitical situation and topographical constraints

Nepal is landlocked by the borders with India on the south, the east and the west and with China’s Tibet Autonomous Region on the north. West Bengal’s narrow Siliguri Corridor separates Nepal and Bangladesh. Nepal stretches about 800 km along the Himalayan axis and 150 to 250 km across with Corridor at 28°N and 80°E, an area of 147,181 km². Due to the difficult terrain with dispersed settlements, long transmission lines are required and the costs of connection to national or regional grids could be two to five times as high as those of electricity generation by large and centralized power plants (Rechsteiner, 2001). To mitigate this risk it is needed to amend relevant strategies on the promotion of micro hydropower (with low cost).

(v) Lack of policy interventions regarding hydropower development

Nepal issued its first comprehensive regulation on hydropower development in the early 1990s. The regulation mainly reflected the need to address the demand and supply gaps in hydropower and control forest degradation. Other reasons include fund raising for infrastructure development from public and private sectors and the mobilisation of internal resources to develop hydropower. Pokharel (2001) proposed how to decide the scale of the hydropower projects based on the size of the river catchment areas (Table A1-6).

Table A1-6 Proposal for the scale of hydropower projects based on the size of the river catchment areas

<table>
<thead>
<tr>
<th>River catchment area (km²)</th>
<th>Size of hydropower plant</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 300</td>
<td>Small</td>
<td>Localised approach to replace fossil fuels</td>
</tr>
<tr>
<td>300-1000</td>
<td>Medium</td>
<td>Linked to the national grid</td>
</tr>
<tr>
<td>>1000</td>
<td>Large</td>
<td>Export-oriented projects</td>
</tr>
</tbody>
</table>

Source: Pokharel, 2001

(vi) Other challenges

Insufficient infrastructure, such as access to roads and transmission networks, is another challenge for hydropower development in Nepal. The institutional arrangement also needs to be strengthened to promote effective hydropower development. Isolated load centers which
are not connected to the national or regional grids have discouraged hydropower developers due to additional costs to develop the transmission network. Figure A1-11 portrays the problem tree together with the effects, core problems and their causes in the energy sector in Nepal.

Figure A1-11 Problem tree for the energy sector
Source: ADB, 2013

Despite all these challenges, hydropower development is an effective way to boost the economic development in Nepal (from the government's perspective) and generate multiple benefits through selling energy surplus (from the developers' perspective).

Investment (financial) challenges
Investment in hydropower sector is heavily dependent on prudent management of various risks and the mitigation of risks, including the introduction of an effective insurance program to effectively reduce risks (Shrestha, 2007).

There are some major constraints in mobilising the funding sources from the financial intermediaries (FIs). Ramification of investment in hydropower sector is an equity investment by the entrepreneurs with complementary debt financing (generally accepted debt equity ratio is 70 to 30) from the FIs. An entrepreneur cannot implement a hydropower project just with an equity investment. It is also depends on the entrepreneur's ability to mobilise debt funding. Shrestha (2007) pointed out several constraints in mobilising the fund from the FIs including market failure and portfolio mismatch, lack of project finance instrument, lack of 'due diligence'
capability of the FIs, foreign exchange risk, repatriation risk, sovereign risk, payment risk, hydrological risk, construction risk, local-level disputes and associated risks.

2.4.2 Opportunities of the hydropower sector in Nepal

Nepal faces many challenges (technically and financially) in the exploitation of its immense hydro resources as mentioned above. At the same time, there are many opportunities to harness the hydro potential.

(i) Abundant hydro resources

Nepal has great hydropower potential which could be used as a main source for domestic energy supply and export revenues. It is estimated that Nepal has more than 80,000 MW of gross hydropower potential and 40,000 MW economically feasible potential, which is a significant energy resource. According to the World Bank Report (2014), the largest 23 dams in Nepal can serve an installed capacity of about 25,000 MW, producing 65-70 TWh of electricity annually with a net value of 5 billion USD per year. Compared with other countries, Nepal has high energy consumption in relation to its Gross Domestic Product (GDP) due to lack of a strategy for sustainable, effective and efficient energy use (www.energyefficiency.gov.np).

(ii) Possibility of big dams with large storage capacity

Many studies revealed that Nepal has the potential of building big dams with large storage capacity which can contribute to the hydropower development and help flood control and flow regulation in respect to its downstream countries. This has been illustrated in the World Bank Report (2014) based on the modeling results (including water simulations and economic optimisation model) from the simulation of the baseline condition and the future scenarios on the combination of three mega dams (Pancheswar Dam on the Mahakali/Sharda River, Chisapani Dam on the Karnali/Ghagara River and Koshi High Dam on the Koshi River) and other dams in Nepal.

According to the simulation results, the three mega dams with an installed capacity of 19,000 MW have a potential to produce 35 - 45 TWh of electricity annually. The remaining 11 dams corresponding to 4,600 MW installed capacity can generate at least 18 TWh electricity annually. In addition, 20 small dams can produce 26 - 30 TWh electricity per year. The current hydropower production in the Ganges basin in Nepal is only about 12 TWh annually and the current installed hydropower capacity is about 800 MW (Nepal Electricity Authority, 2017), which is projected to increase substantially to 1,800 MW by 2019-2020.

Due to the geopolitics and essentiality of trans-boundary negotiation it may take several years to design, build and operate hydropower projects in Nepal. Nepal has the great potential to meet its own growing energy demand and at the same to supply to the neighbouring countries to meet partially the increasing regional energy demand. India has a big gap of about 100,000 MW for meeting its energy demand today. It is beneficial for both India and Nepal to build bilateral collaborations on the development of hydropower projects in both countries.

Installed capacity is the theoretical capacity of the turbines if they run at the full design capacity throughout a year. Installed capacity is an important indicator for high peak load management. However, under a monsoonal climate, there will not be enough river flows in many months of the year in the Ganges basin. Without large scale storage, the hydro turbines cannot run at
their full capacity. The actual power generation is highly dependent on the water availability and is crucial for meeting the energy demand and power the economic growth in Nepal.

For example, the modelling results from the World Bank (2014) indicated that the Koshi High Dam with a potential installed capacity of 3,500 MW can produce more electricity than the Chisapani High Dam which has a potential installed capacity of more than 10,000 MW. Similarly, though the 20 small dams just have a potential installed capacity as one fourth of those of the three mega dams, they can generate more than half of the country’s total hydropower.

Figure A1-12 shows that with limited available storage and short monsoon season, the seasonal variations in hydropower production from the storage dams in the Ganges basin should be considered for the development of hydropower. This can be even more significant for the RoR hydro projects which do not have the storage dams but are regulated by the upstream flows throughout the year. Figure A1-13 illustrates that the actual power generation can be lower than the generation under the full installed capacity due to the seasonal fluctuations throughout the year.

![Figure A1-12 Hydropower potential in the Ganges basin](source: World Bank, 2014)

Except for the seasonal variation, it is also important to know about the yearly variations in the flows. Since the hydropower production cannot be stored across years, strong fluctuations exist from year to year. This results from the World Bank report (World Bank, 2014) indicates that there is a significant potential for hydropower generation in Nepal which can not only satisfy its own domestic and industrial energy demand but also export surplus electricity to other countries, such as India.

(iii) Possibility of multiple benefits from large-scale hydro projects
Many existing large scale storage hydro projects, e.g. the Pancheswar Dam, the Chisapani Dam and the Koshi High Dam, can generate multiple benefits for Nepal. Similarly, the Budhigandaki Hydropower project, the Dudhkoshi Storage Hydroelectric Project, the Upper Arun Hydroelectric Project, the Tamakoshi Hydroelectric Project, the Andikhola Storage Hydroelectric Project, the Uttar Ganga Storage Hydroelectric Project, the Tamor Storage Hydroelectric Project and the ChainpurSeti Hydroelectric Project, etc., can also be included as large-scale feasible projects in Nepal (Nepal Electricity Authority, 2017). Besides electricity generation, large scale hydro projects can also be utilised for other purposes including irrigation, drinking water supply, flood control and water navigation, etc. There are numerous cases in the world where downstream population or downstream countries have been benefitted from large hydroelectric projects in the upstream. For example, in the Mekong River Basin, Cambodia, Laos, Thailand and Viet Nam have been benefitted from the multiple use of the hydropower projects for flood control, irrigation and water navigation, etc.

![Graph](image)

Figure A1-13 Monthly hydropower generation based on the modelling results

Source: World Bank, 2014

(iv) **Export of surplus energy to neighbouring countries**

Nepal has a large potential for hydropower generation which can export surplus energy to other countries. Neighbouring countries like India, Pakistan, Bangladesh and Bhutan can import the surplus energy from Nepal if strong diplomatic and economic ties are paved away. India has developed large hydropower projects in Bhutan which provide electricity to India. In the same way, Nepal and India should build mutual trusts and reach common understanding for cross-border energy trading between the two countries. India's economy is one of the largest in the world and its energy demand will increase with rapid economic growth. India should take the initiative to establish the trading relations with Nepal for the transmission of the surplus energy from Nepal to India based on the respect to the Nepal's right on deciding the usage of the upstream water and the respect to the right to access to international water bodies.

(v) **Cross-border grid and integration of the south Asian pool**
Cross-border grid connections are already in place in many parts of the world with an increasing trend. For example, cross-border grid connections exist in Europe, Southern Africa and North America. Development of the cross-border grid connection network can help promote effective utilisation of the untapped hydropower, promote and facilitate power trading and ultimately contribute to the regional economic growth.

Cross-border power trading has been taken place in South Asia, however in a slow pace (Janardhanan and Mitra, 2018). In 2011, the Energy Center was established in New Delhi under the Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) to coordinate, facilitate and strengthen the cooperation on energy sector in the region covering Bangladesh, Bhutan, India, and Nepal. The Center was established with the main objective to develop cross-border energy trading and the regional market for the transmission of the hydropower generated from Bhutan and Nepal to India and Bangladesh. Cross-border energy trading can provide win-win solutions for the riparian countries in the Ganges basin. For example, the grid connections built in Bangladesh can be utilised to transmit the electricity generated from India to Bangladesh (the north-eastern parts) and can be used to transmit the electricity from India to Nepal. These cross-border grid connections can also be helpful for load shifting due to different time zones in these South Asian countries (Pokhrel, 2001).

(vi) **Upstream benefits and advantages**

Being an upstream country, Nepal has plentiful benefits and advantages. The amount of discharge and heads are important parameters for the designing and development of hydro projects. Nepal is endowed with topographical steep gradients, meandering nature of rivers in hills, easily available high heads and naturally existing rocky dams which makes it a feasible place for hydropower generation. In addition, perennial rivers enable to have the minimum required average flow in the rivers all the year round. Comparing the two resources, high heads are the unique natural endowment to Nepal with which the country can tap the undeveloped hydro resources to the great extent.

One of the fundamental upstream benefits is less sedimentation. High sedimentation is a great obstacle to the storage hydro projects which can decrease the lifetime of the reservoir and deteriorate turbine components. Sedimentation in the Nepalese watersheds has been significantly acknowledged in the world community (Carson, 1985). Construction of relevant structures in the upstream can help lower the rate of sedimentation.

(vii) **Replacement of fossil fuel-based energy**

The Paris Agreement provides a strong message on building a low carbon society and hydropower can play a critical role in achieving the targets set by the Agreement. The current fuel mix in the Ganges basin is dominated by high carbon fossil fuels. Exploitation of the untapped hydropower resources through regional cooperation can provide multiple benefits including diversification of energy resources, minimizing the risks of thermal power generation due to water shortage and contributing to the low-carbon development in the region. A study by Timilsina et al. (2015) showed that full operation of the cross-border power trading in South Asia can replace 63 GW of fossil fuel-based thermal power plants.

(viii) **Achieving economic prosperity and the Sustainable Development Goals (SDGs)**
The SDGs in the Nepal’s context have gained a great momentum through the submission of its Voluntary National Review entitled “Eradicating Poverty and Promoting Prosperity in Nepal”. Mainstreaming the SDGs into the Nepal’s Governmental planning and budget began for the 14th National Plan (2016/17-2018/19). For energy sector, the Government of Nepal and the private sector collaboratively held a Power Summit in 2016 to attract the investors to hydro project development. During the Summit, the Government of Nepal assured to provide preferable conditions to the investors and simplify relevant administrative procedures through the formation of a coordination committee. Furthermore, the Government of Nepal has been making efforts to adjust the electricity tariffs based on the power purchase agreement rate. The Government has provided an incentive of 5 million Nepali Rupee per MW to the private hydropower developers as well as tax exemptions. Investors from China, India, Bangladesh, Singapore, Germany, the UK and Norway showed their keen interests in this respect.

3. Conclusions

Nepal has a great amount of hydro resource endowment. Perennial rivers, topographical steep gradient, easily available high heads, naturally existing huge rocky dams, possibility of the cascade projects, etc., provide Nepal a solid foundation for the development of many large hydro projects. Nepal’s economic growth is highly dependent on the proper utilisation of the hydro resources. However, there remains a lot of constrains which require to build a good enabling environment for attracting more investment to the hydropower sector.

Hydropower electricity will power Nepal’s economic growth through industrialization and job creation. On the one hand, hydropower generation can replace fossil fuel-based energy supply which can help mitigate the trade deficits with India. On the other hand, firewood consumption can be reduced substantially contributing to deforestation prevention and ecological conservation.

The fuel mix of electric power supply to satisfy the domestic demand is an important issue for the Government to work on. For hydropower projects, not only the public sector but also a lot of investors from the private sector both in Nepal and from overseas and international organisations are keen to invest. Favorable conditions and solid policies are needed to be laid down the basis for attracting more investment and mitigating relevant risks.

References

Appendix II Summary of the 1st stakeholder workshop in India

Workshop on “Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganga River Basin”

Venue: Committee Hall, Convention Centre, Jawaharlal Nehru University, New Delhi 20th April 2015, Monday

Organizers:
Central University of Rajasthan (CURAJ)
Jawaharlal Nehru University (JNU)
Institute for Global Environmental Strategies (IGES)

Supported by:
Asia Pacific Network for Global Change Research (APN)
Workshop Proceeding

The Stakeholders’ workshop on Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganga River Basin was held on 20 April 2015, at the Jawaharlal Nehru University, New Delhi.

Objectives of the Workshop

The purpose of workshop was to communicate the expected outcomes of this study and share the methodology framework to relevant stakeholders, and to get to know their concerns on water and energy security, water resource management, conflicts among different consuming sectors, optimal allocation of water resources allocation issues, and what the major needs are for nexus assessment. Following were the specific objectives of the workshop:

a) To get feedback and input from key stakeholders on the methodological framework of the APN project
b) To review the state of resources and their management practices in each country
c) To discuss and explore ways to highlight and prioritise a nexus approach in energy planning and identify feasible actions to realise nexus synergies.

Welcome session

Professor K.C. Sharma, Head, Department of Environmental Science, Central University of Rajasthan (CURAJ), welcome the delegates and key resource speakers of the workshop. He briefly introduced about the various academic programmes and research activities which are taking place in the CURaj. He also stated that he hopes to hear fruitful and active discussion in each session with participation from many different institutions.

Dr. Nanda Kumar, Regional Director, IGES-South Asia, welcomes the workshop participants and expressed the importance of water-energy-climate nexus in the present situation and stated that this nexus should be considered at policy level. He informed the participants about the expansion plan of IGES in different geographical areas and future activities in India. On behalf of IGES, he thanks and welcome all for this one day event.
Professor AL. Ramanathan, School of Environmental Science, JNU, welcomes on behalf of JNU and informed about the institutes’ multidisciplinary aspects in both academic as well as research areas. He also thanks to workshop organizers to highlight the important sector like energy and to develop water-energy nexus in the region. JNU is working on climate of Ganges both upstream and downstream. There is need to develop strong linkage between researchers from various sectors to develop comprehensive policy in water and energy sectors.

Session- Project Introduction

Dr. Devesh Sharma, project collaborator (India), briefly introduced the participants about the project development, objectives and expected outcomes of the workshop. He said that uniqueness of this project is to develop linkage between water and energy sectors in the Ganga river basin and further at the sub basin level. He focussed on the workshop objectives. He also showed that stakeholder interaction and input is very important for the workshop methodology and framework. There is also need to understand the present status of the river basin from the perspective of three sectors i.e., water, energy and agriculture. He also highlights that selection of sub basins is another key objective of the workshop which must be based on certain logical criterions like resources scarcity, location of power plants, etc. Dr. Sharma focussed that group discussion is important tool and will be used in the workshop to identifying the criterions for sub basin selection, how the energy water is linked, how the power plants are dependent on the water resources and to know the existing and future challenges for the power sectors.
Dr. Bijon K. Mitra, policy researcher, IGES, introduced the participants about the purpose of the workshop. He briefly mentioned about the background behind the project development and also about the three collaborators. He also acknowledges the support of APN for financial support to conduct this project. He said that it is good opportunity to interact with different stakeholders and their views are useful in further improve the methodology of the project. He shared the information about the previous national level studies in India and Thailand. Based on previous experience, it was realized that there is strong linkage between water and energy and further it should be linked with river basin. Considering the river basin as a hydrological unit, planning and policy should be developed at basin level for sustainable development. In his presentation, he justified the importance of Ganga river basin in South Asia and why this particular river is selected for the project. He mentioned that Ganga is strategic basin in South Asia because of its catchment area, population growth and economic development, good source of water in the region. It contributes about 30 percent of total water resources. In energy sector, thermal power plants are main source in this region and 40% of total India thermal power plants are located in this river basin. Economic contribution of this river basin is 1.1% of global GDP and will increase to 3% by 2050. So, any negative effect in this basin will heavily impact the overall development and situation. Therefore, it is required to assess resource security in terms of water and energy sectors. He also focussed on water security status of this river basin for present and future scenarios. Further, population growth, rapid urbanization, and climate change will put additional pressure on the resources. Energy security is also important concern for South Asia. Annual growth of electricity is expected to be 5%. These two securities is inter dependent. Water requirement of thermal power plant is dependent on the fuel type and efficiency of the plant. Over 75% of the installed power plants is located in areas with absolutely water scarcity and water stress, 35% of thermal power plants are located in the Ganga river basin. This is also one reason for selecting Ganga river basin for this study. He also warned that conventional approach will not be able to ensure resource security and not much surface water will be left to meet additional demand beyond 2040. He then shared the key research questions with participants.

- How much water is used by electricity generation in South Asian countries?
- What are the driving factors of high water footprint for electricity sector in the region?
- Can current policies overcome water conflict between electricity and other users?
- What types of technology can be intervened to deal with water constraint situation?
- How regional cooperation can address nexus approach to promote synergies between water and energy sectors throughout the river basin?

Based on the above research questions, following objectives are prepared;

- Establishing a quantitative resource link between water and energy at the supply side of energy in the Ganges River basin.
- Providing guidance on an integrated assessment of the water-energy nexus for the planning of and investment in large-scale water management and energy development projects.
- Demonstrating the effects of the water availability on long-term energy scenario development and subsequent impacts on energy technology choice.
- Supporting cross-border cooperation by seeking the synergies between water and energy sectors in supporting the achievement of sustainable development at the river basin level.
Session on Methodological framework of quantitative assessment of water energy nexus

Dr. Devesh Sharma, Indian collaborator, started his presentation by highlighting the integrated and multidisciplinary approach used in the methodology framework and also the importance of stakeholders workshop during the project duration. He raised the question about the importance of pre-processing of the data and quality check in hydrological model as hydrology is more dependent on the data input. Identification of sub basins should be based on scientific base with certain criterions so that all the studies will provide different situation within Ganga basin. He mentioned about the basic formulation of SWAT model and fundamental concept of hydrologic response unit (HRU). It is important to understand the behaviour of sub basin in terms of soil, landuse, topography and precipitation. There is also some focus on the data types and various sources from where data can be procured and used in hydrological model. He also discussed about the biasness existing in the future climatic projection of GCMs/RCMs. So, it is important to remove and check the quality of these future projections. He also highlight about the limitation like availability of dataset like discharge data in the Ganga basin and which is directly linked with calibration process. Further, he also mentioned about the methodology to be used for demand calculation in agriculture, industry and domestic. Agricultural demand will estimated with CROPWAT tool may be applied which required meteorological, soil, crop data, and effective rainfall. For domestic and industrial demand, statistical approach will be used. In statistical approach, it is important to identify the dependent variables to estimate the water demand in domestic and industrial sectors. Finally, he showed the expected outcomes of the project like assessment of dynamic water-energy nexus under climate change scenarios at selected sub basin level, outputs may be important for policy makers in integrating water and energy resources. Policy makers can use this information on the selection of power generation technologies, determination of energy mix, and planning of new built power plants under water constrains at sub basin level. Soon after the presentation made by Dr. Devesh Sharma, some questions were raised in open discussion from the participants.

- How to take accountability of flow from outside sub-basin and how to integrate in hydrological model. There is suggestion to consider some extreme and middle scenarios in the study or if secondary data source is available.
- What king of data will be used for calibration as discharge data is not available in public domain and need clearance from ministry. There is possibility to get reservoir water level data but it should also need approval and clearance from concern authority. There is possibility to link data available with hydropower projects in the sub-basins.
- There was suggestion to measure and monitor observed data at certain location in the study area but again project duration and fund is limitation for such activities. It needs few years’ observation.
- Factors like location of existing thermal power plants and agriculture intensive areas will be consider for the selection of sub-basin.
- There is also concern raise by one participant on the matching of scale as datasets are available on two different geographical scales i.e. district and sub basin level.
- Discussion on pollution created by thermal power plant and role of renewable energy in the future period and kind of future power mix options will be consider.
- Issue of pricing of water consumed in the power plant
• There is also suggestion that energy in the Ganga basin should be focus on small hydro as there is huge potential of small hydro power project.

Session-Review and Status of Resources in three sectors (Water, Energy and Agriculture)

Mr. Rajkiran V. Boli, Associate Professor, Administrative Staff College of India, started his presentation by explaining the different kinds of power plants. He also introduced that why the water is important in power plant operation and also different operations where water is required. He justified the water-energy are interlinked and depend on each other. Energy Production depends on water for cooling thermal power plants and extraction, transportation & processing of fuels. At the same time energy is also vital to providing freshwater, needed to power systems that collect, transport, distribute and treat it. Energy generation and water consumption assumes a huge importance in India. As per Central Electricity Authority (CEA) report, a typical 2x500 MW thermal power plant with wet ash disposal without recycling of ash pond requires 4000 m³/h of water. Of this, more than 80% of water is consumed in cooling tower itself. He also showed the breakup of water consumption in such plants. He also presented the total installed capacity of India as on February 2015 i.e., 261,006 MW and thermal generation is 70% of the total capacity. Out of this, coal based thermal power plant is 87% of the total thermal capacity installed. He presented briefly on power scenario & developments in Ganga Basin. Most of the Ganga basin falls in Northern region which is a highly power deficit region. Rapidly increasing population, rising standards of living and exponential growth of industrialisation and urbanisation only increases pressure on supply side to meet the energy demand. He focused about the industrial development which is effecting the overall situation of water resources in the Ganga basin. Each day, more than 500 million liters of wastewater from industrial sources are dumped directly into Ganga.

Dr. T.B.S Rajput, Emeritus Scientist, Water Technology Centre, IARI, started his presentation by evolution of Indian irrigation and development after independence. He stated that earlier period was community driven activities so they what exactly has to done. Watershed programmes are not focus on natural best side. He showed the water demand projection in by various sectors by year 2025. He also presented about the groundwater resources exploitation in India. He stated about the various challenges and issues in aagricultural sector like over-exploitation of the groundwater, water logging and soil salinity, isolated development and use of surface and groundwater resources, increasing groundwater pollution. There is need to rethink about the water distribution system and irrigation efficiency. What measures are required to improve the irrigation efficiency? During the presentation, he also showed the study of CROPWAT application for enhancing water use efficiency in canal command areas. This tool is useful in identifying the optimal date of sowing of wheat resulted from CropWat software. He also presented some examples of on-farm water management methods like laser land leveling, pressurized irrigation system, use of flow measuring instruments, soil moisture sensors for irrigation scheduling, etc. He briefly showed the spatial pattern of rice and wheat production in Ganga river basin. Finally, he showed one case study on climate change and the possible vulnerability in Ganga basin. The impact of climate change on grain yield of crops was studied using A2-2080 and B2-2080 scenarios derived from the PRECIS RCM to show the increase in vulnerability with time.
Prof. A.K. Gosain, Professor, Department of Civil Engineering, IIT Delhi, started with various issues which are related to water Resources Development. He emphasised on the sustainable development and water resources management. He also said that there is ignorance of environmental demand which has many implications. Sustainability of the system depends on water demand. IWRM is never utilized properly and it is mainly on paper. There are some key questions like how we can look at the total availability and demand, gap analysis, etc. If we have good information base like usable reliable sharing. Scientific base is essential to understand the proper analysis and information i.e. application and use of model. He explained the basic approach and background information of SWAT and types of datasets required to develop the model for river basin. He also shared his experience and outputs of Ganga River Basin Management Plan (GRBMP) of IIT Consortium. GRBMP is important to understand the present status of basin. He also showed another research study on Delhi urban drainage system. Most of the drains are flowing with sewage throughout the year. Groundwater is getting contaminated with these drains. He highlighted some major hydrological studies performed at IIT, Delhi including India’s National Communications (NATCOM) to UNFCCC Coordinated by MoEF (2004 and 2012). This study was conducted for whole country to quantify the impact of climate change and results of study is also available on the website.

Mr. Rajkiran V. Bilolikar Dr. T.B.S. Rajput Prof. A.K. Gosain

Group Discussion 1: Selection of sub-basins

Based on the interaction with participants and their views, following factors were identified to select the sub-basins at the initial level.

- State of water availability
- Level of water demand of major consumers
- Level of existing/planned thermal power capacity
- Level of energy demand in the sub - basin
- Data Availability – discharge
- Planned document for power plant
- Economic – industrial corridor
- Urbanization
- Intensive agriculture areas
- Population density
• Contrast – to identify the sub-basins which can give different pictures for water-energy nexus with the Ganga basin

Considering all the above mentioned points, it was realized that there is need to prioritize the factors and develop some criterion to identify the sub-basins. Following are the factors which are required to consider for the selection:

1) State of water availability
2) Economic – industrial corridor and existing/planned power plants
3) Urbanisation
4) Intensive agriculture areas
5) Population density

Criterion for sub-basin selection

State of water availability (1)

Surplus/Availability
– Industrial Development (2)
– Urbanisation (3)
– Irrigation (4)
– Population density (5)

Deficit/Shortage
– Industrial development (2)
– Urbanisation (3)
– Irrigation (4)
– Population density (5)

Group Discussion 2: Understand the Water energy nexus in energy planning
Discussion was carried out in an open-ended format to solicit relevant opinion as well as information. Following points were noted from comments put forward by experts during the discussion:

1) The energy-water nexus is not viewed as an immediate issue of concern by electricity generators. This is mainly due to the fact that generators are pre-occupied with requirements to manage rather challenging short-term economic viability issues of the sector due to various external factors such as increasing fuel prices with low fixed sale prices. Thus, stakeholders viewed the project as timely and suggested that it should be promoted, along with other means, to raise the issue.

2) To analyse water use requirements from power production, stakeholders suggested including government projections on future energy mixes. While it is recognised that renewables will play a role, role of coal and nuclear is suggested not to be downplayed given India’s need to develop and availability of large coal and thorium reserves. The issue of scenarios with very high renewables viewed as impractical was raised. On cooling technologies in future thermal plants, stakeholders suggested that applicability of dry cooling in India may be limited or none due to the hot and humid climate in large swaths of the country.
3) There was a suggestion to expand the project scope to include hydropower in the analysis given its role both in the current and future energy mix, and its dependence on surface water availability. Project team is aware of the context, however, given the focus of the study on water use by the power sector, it is considered as a component for further studies in this area.

4) Estimating future energy generation at sub-basin scale is a challenge requiring a creative yet relatively straightforward method. Experts suggested using similar logic and method of using proxies as used in sub-basin selection.

5) Experts suggested that, discussions on how to minimise the nexus, or issues around policy and institutional arrangements to manage the nexus, should follow the results. Suggested emphasis at this stage is on the robustness of the method and underpinning data as much as possible.

Workshop Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1: Project Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1030-1045</td>
<td>APN Project Overview- Background, Objectives, Expected Outcomes</td>
</tr>
<tr>
<td></td>
<td>Bijon K Mitra</td>
</tr>
<tr>
<td>1045-1100</td>
<td>Methodology and expected outcome of the case study in India</td>
</tr>
<tr>
<td></td>
<td>Devesh Sharma</td>
</tr>
<tr>
<td>1100-1125</td>
<td>Open discussion on the study proposal and expectations</td>
</tr>
<tr>
<td>1125-1145</td>
<td>Group photograph and networking break</td>
</tr>
</tbody>
</table>

Session 2: State of resources and management with focus on water energy and food security in Ganga River basin

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 3: Focused group discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1430-1530</td>
<td>Focused group discussion 1: Sub-basins selection</td>
</tr>
<tr>
<td></td>
<td>Facilitator: Devesh Sharma</td>
</tr>
<tr>
<td></td>
<td>• Selection criteria</td>
</tr>
<tr>
<td></td>
<td>• short list of sub basins for study</td>
</tr>
<tr>
<td>1530-1630</td>
<td>Focused group discussion 2: Water energy nexus in energy planning</td>
</tr>
<tr>
<td></td>
<td>Facilitator: Pranab Jyoti Baruah</td>
</tr>
<tr>
<td></td>
<td>• Practical challenges and stakeholder suggestions</td>
</tr>
<tr>
<td></td>
<td>- Spatial water availability and power plant planning</td>
</tr>
<tr>
<td></td>
<td>- Institutional and policy arrangements to enhance nexus synergies.</td>
</tr>
</tbody>
</table>
1630-1645 Tea/Coffee break
1645-1710 Wrap-up (Reports from group discussion)
1710-1715 Closing remarks

Workshop Participants

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Resources Person</th>
<th>Organization</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prof. AL. Ramanathan</td>
<td>SES, JNU</td>
<td>alnru@gmail.com</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Rajmohan Natarajan</td>
<td>International water management institute</td>
<td>r.natarajan@cgiar.org</td>
</tr>
<tr>
<td>3</td>
<td>Sh. S.D. Mathur</td>
<td>Excellence Enhancement Centre</td>
<td>sd.mathur@eeecpowerindia.com,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sdmathur@yahoo.com</td>
</tr>
<tr>
<td>4</td>
<td>Prof. Suresh Jain</td>
<td>TERI University</td>
<td>suresh.jain@teri.res.in</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Purnamita DasGupta</td>
<td>The Institute of Economic Growth</td>
<td>pdg@iegingdia.org</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Chetana Chaudhari</td>
<td>The Institute of Economic Growth</td>
<td>chetana.chaudhuri@gmail.com</td>
</tr>
<tr>
<td>7</td>
<td>Prof. A.K. Gosain</td>
<td>IIT, Delhi</td>
<td>gosain@civil.iitd.ac.in</td>
</tr>
<tr>
<td>8</td>
<td>Prof. P.K. Joshi</td>
<td>JNU</td>
<td>pkjoshi27@hotmail.com</td>
</tr>
<tr>
<td>9</td>
<td>Dr. Gyana Ranjan Panda</td>
<td>CURAJ</td>
<td>gyana_pplg@curaj.ac.in</td>
</tr>
<tr>
<td>10</td>
<td>Dr. Rajkiran V. Bilolikar</td>
<td>ASC, Hyderabad</td>
<td>rajkiran@asci.org.in</td>
</tr>
<tr>
<td>11</td>
<td>Dr. Chander K. Singh</td>
<td>TERI University</td>
<td>chanderkumarsingh@gmail.com</td>
</tr>
<tr>
<td>12</td>
<td>Prof. T.B.S. Rajput</td>
<td>IARI</td>
<td>tbsraj@iari.res.in</td>
</tr>
<tr>
<td>13</td>
<td>Prof. Umesh Kulshrestha</td>
<td>CURAJ</td>
<td>umeshkulshrestha@gmail.com</td>
</tr>
<tr>
<td>14</td>
<td>Prof. K.C. Sharma</td>
<td>CURAJ</td>
<td>kcsharma@curaj.ac.in</td>
</tr>
<tr>
<td>15</td>
<td>Dr. Devesh Sharma</td>
<td>CURAJ</td>
<td>deveshsharma@curaj.ac.in</td>
</tr>
<tr>
<td>16</td>
<td>Dr. Alok Kumar</td>
<td>CURAJ</td>
<td>aloknu2383@gmail.com</td>
</tr>
<tr>
<td>17</td>
<td>S.M. Binda</td>
<td>Newspaper association of India</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Santosh Kumar Kulkarni</td>
<td>Voyants Solution</td>
<td>santosh@voyants.in</td>
</tr>
<tr>
<td>19</td>
<td>Vivek Ohja</td>
<td>Voyants Solution</td>
<td>vivek@voyants.in</td>
</tr>
<tr>
<td>20</td>
<td>Dr. Nandakumar Janardhanan</td>
<td>TERI IGES</td>
<td>janardhanan@iges.or.jp</td>
</tr>
<tr>
<td>21</td>
<td>Dr. Bijon K Mitra</td>
<td>IGES</td>
<td>b-mitra@iges.or.jp</td>
</tr>
<tr>
<td>22</td>
<td>Dr. Pranab J Baruah</td>
<td>IGES</td>
<td>baruah@iges.or.jp</td>
</tr>
<tr>
<td>23</td>
<td>Dr. Jakir Hussain</td>
<td>CWC</td>
<td>drjakirhussain@gmail.com</td>
</tr>
<tr>
<td>24</td>
<td>Dr. Jayant K Tripathi</td>
<td>JNU</td>
<td>jktripathi@mail.jnu.ac.in</td>
</tr>
<tr>
<td>25</td>
<td>Manoj kumar</td>
<td>JNU</td>
<td>manoj.envt@gmail.com</td>
</tr>
<tr>
<td>26</td>
<td>Sabita Kansal</td>
<td>India Water Portal</td>
<td>sabita@indiawaterportal.org</td>
</tr>
<tr>
<td>27</td>
<td>Om Kumar</td>
<td>JNU</td>
<td>omkr5007@gmail.com</td>
</tr>
<tr>
<td>28</td>
<td>Slayan</td>
<td>JNU</td>
<td>sayonrock@gmail.com</td>
</tr>
<tr>
<td>29</td>
<td>Mr. Swatantra K. Dubey</td>
<td>CURAJ</td>
<td>swatantratech1@gmail.com</td>
</tr>
<tr>
<td>30</td>
<td>Mr. Aamir H. Bhatt</td>
<td>CURAJ</td>
<td>aamirbhatphdenv2012@curaj.ac.in</td>
</tr>
<tr>
<td>31</td>
<td>Mr. Praveen</td>
<td>CURAJ</td>
<td>praveen07ec@gmail.com</td>
</tr>
<tr>
<td>32</td>
<td>Mr. M. Venkatesh</td>
<td>CURAJ</td>
<td>mvenkatesh666@gmail.com</td>
</tr>
</tbody>
</table>
Appendix 2 Summary of the 1st stakeholder workshop in Bangladesh

Workshop on “Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganges River Basin”

Venue: DCE Seminar Room, Institute Building, Bangladesh University of Engineering & Technology
14th June 2015, Sunday

Organizers:
Institute of Water & Flood Management, BUET
Institute for Global Environmental Strategies (IGES)

Supported by:
Asia Pacific Network for Global Change Research (APN)
Workshop Proceeding

The Stakeholders’ workshop on Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganga River Basin was held on 14 June 2015, at Bangladesh University of Engineering & Technology, Dhaka.

Objectives of the Workshop
The purpose of workshop was to communicate the expected outcomes of this study and share the methodology framework to relevant stakeholders, and to get to know their concerns on water and energy security, water resource management, conflicts among different consuming sectors, optimal allocation of water resources, and what the major needs are for nexus assessment.

Following were the specific objectives of the workshop:

a) To get feedback and input from key stakeholders on the methodological framework of the APN project
b) To review the state of resources and their management practices in each country
c) To discuss and explore ways to highlight and prioritise a nexus approach in energy planning and identify feasible actions to realise nexus synergies.

Welcome session
Professor G M Tarekul Islam, Director, Institute of Water & Flood Management, Bangladesh University of Engineering & Technology welcomed the delegates and key resource speakers of the workshop. He briefly introduced about the various academic programmes and research activities which are taking place in the IWFM. He also stated that he hopes to hear fruitful and active discussion in each session with participation from many different institutions.
Dr. Bijon Kumar Mitra, Researcher, IGES, Japan welcomed the workshop participants and expressed the importance of water-energy-climate nexus in the present situation and stated that this nexus should be considered at policy level. He informed the audiences about the importance of such project research for Bangladesh and how this region can gain from this study as a whole.

Dr. Bijon Kumar Mitra (IGES)

Dr. Md. Giashuddin Miah, Professor, BSMRAU and Member, APN Scientific Planning Group welcomed everyone attending the workshop. He iterated a brief overview of APN and its contribution towards research and development in developing countries. Being a member of project awarding committee of APN, he committed to dedicate his utmost support for this project.

Prof. Md. Giashuddin Miah (BSMRAU)
Professor Khaleda Ekram, Honorable Vice-Chancellor, Bangladesh University of Engineering & Technology, thanked the organizers for arranging such an event. She emphasized on the link between water, agriculture and energy. Pointing out the difference between efficiency and effectiveness, she also conveyed how local knowledge of developing countries needs to be involved for research and development purposes. On an ending note, she wished all the success for this workshop.

Prof. Khaleda Ekram (BUET)

Session- Project Overview and State of Water resources in Bangladesh with Special Focus in the Ganges River Basin
Chair: Md. Lutfor Rahman, Director, River Research Institute, Faridpur

Dr. Bijon Kumar Mitra, Researcher, IGES, Japan briefly introduced workshop participants about APN project, “Assessment of Climate-Induced Long-term Water Availability in Ganges River Basin and Impacts on Energy Security in South Asia.” He stated the strategic reason behind choosing the Ganges River Basin as the study area; water security in this region is facing a grave threat. Iterating that water and energy security are interdependent, he showed that conventional features of resource management in this region will no longer be sustainable. In his presentation, he showed that over 75% of the installed power plants in the river basin are located in areas with absolutely water scarcity and water stress. Water conflicts in India are on the rise and may potentially affect Bangladesh in a similar way. He then shared the key research questions with participants.

- How much water is used by electricity generation in South Asian countries?
- What are the driving factors of high water footprint for electricity sector in the region?
- Can current policies overcome water conflict between electricity and other users?
- What types of technology can be intervened to deal with water constraint situation?
• How regional cooperation can address nexus approach to promote synergies between water and energy sectors throughout the river basin?

Based on the above research questions, following objectives are prepared;

i. Establishing a quantitative resource link between water and energy at the supply side of energy in the Ganges River basin.

ii. Providing guidance on an integrated assessment of the water-energy nexus for the planning of and investment in large-scale water management and energy development projects.

iii. Demonstrating the effects of the water availability on long-term energy scenario development and subsequent impacts on energy technology choice.

iv. Supporting cross-border cooperation by seeking the synergies between water and energy sectors in supporting the achievement of sustainable development at the river basin level.

After the end of this presentation, question & answer session was held. Following points were identified:

• Food security was not accommodated in this study as lots of studies on food security have already been conducted in this region; not energy-water security.

• Many parameters could not be included in this project because of time and resource constraint, but they are expected to be covered in continuing projects.

• In India no revenue is gained by the government from power plants for cooling water; same practice is applied in Bangladesh.

• Minimum environmental flow of rivers has been taken into account in this model.

• Biodiversity & ecological sustainability was accounted for in the model of this project.

• Treated wastewater may be used as cooling water for thermal power plants.

Professor G M Tarekul Islam, Director, Institute of Water & Flood Management, Bangladesh University of Engineering & Technology presented the “Methodology and Expected Outcome of the Case Study in Bangladesh.” He started with the assessment of climate-induced long-term water availability in Ganges River Basin and impacts on Energy Security in South Asia and explained how power generation is having a detrimental effect on the ecosystem of this region. He also explained the changes of land use in the Ganges dependent areas, changes in dry season flow of the Ganges at Hardinge Bridge point and the tools that have been used for these purposes. The objectives of this study were delineated as:

• To setup SWAT model and to calibrate and validate over the Ganges river basin.

• To simulate SWAT model for A2 B2 scenarios from regional climate model to capture uncertainty of future flow in the Ganges.

The possible outcomes were stated as:

• To assess water availability and water stress in Bangladesh for future climate scenarios.

• To obtain information about probable future annual discharge, surface runoff and base flow.

Assessment of current and future water demand for four sectors were:
i) Agriculture water use, in particular for irrigation;
ii) Industrial water use for manufacturing and service sectors;
iii) Water use for power generation; and
iv) Domestic water use.

The challenges surrounding the study were identified as:

- A transboundary river basin
- Data scarcity at the upstream catchment (Observed hydro-meteorological data)
- A catchment with so many water diversion and reservoir structure.

On the completion of this presentation, a question & answer session was held. Following points were concluded:

- Hardinge Bridge was considered as the gage station for Bangladesh.
- Salinity was not included in the model.
- Southwest region of Bangladesh was not considered in the study.
- Stress of water in the southwest region of Bangladesh can be assessed by an existing model, but it will not be used at this point.
- Rainfall data was input in the model.
- Data from India was not available and therefore Hardinge Bridge data were used for calibration and validation.
- Construction of barrage will change the whole scenario of this model. Old and new scenarios will be considered.
- Satellite data may not always be accurate and thus other data may be used in combination.
- Water demand varies for different energy sources; gas, coal and oil have different usage of cooling water in power plants.

Dr. Md. Giashuddin Miah, Professor, BSMRAU and Member, APN Scientific Planning Group introduced the participants to his presentation titled "Climate-Smart Technologies/Practices: Agroforestry as a Potential Opportunity." He started with demonstrating how increasing demand for food from limited land resources is affecting this region and stated that integrated action for agriculture/agroforestry is essential to achieve food security under unfavourable climate; climate-smart agriculture/agroforestry technologies that achieve the triple-win of food security, adaptation and mitigation. He stated that agroforestry is the intensive land management that optimizes the benefits of interactions when trees and/or shrubs are deliberately combined with crops and/or livestock and the intentional mixing of trees and/or shrubs into crop/animal production systems to create environmental, economic and social benefits. At the end of his presentation, a brief question & answer session was held. The following points were found out:

- Trees which interfere least with crops have been used in agroforestry purposes.
- Climate and agroforestry are interlinked because increase in vegetation and greeneries will help in reducing the global atmospheric carbon levels.
- Agroforestry uses partial shade condition which reduces evaporation and thus the water demand is also reduced.
- Farmers may gain widely from this type of agroforestry project.
- Soil health condition will improve by a big margin and water availability will be greater if agroforestry is used.
- Bangladesh's mango production has increased drastically because of the use of agroforestry.

Dr. Shamal Chandra Das, Executive Engineer, BWDB delivered his presentation on the challenges and measures of water resources management in Bangladesh. Starting with a brief review on the status of water resources in this nation, he then described the nature of the problems and challenges which Bangladesh faces in different seasons. According to him, Bangladesh Water Development Board have achieved a lot regarding integrating structural and non-structural measures in sustainable river management. He also iterated how climate change has been affecting Bangladesh and BWDB’s efforts to adapt and mitigate accordingly. Following are the approaches which BWDB has adopted for countering the impacts of climate change:

- Systematic overall rehabilitation and improvement of all key structures, also making to withstand climate change
- Set the drainage channels grades to the current situation;
- Add more structures for water management to meet the effect of climate change.
- Carry out foreshore afforestation to reduce the impact of wave surges.
- Involve stakeholder to design and implement revamping through a participatory process.

Further challenges include:
- Long-term sustainability of TRM
- Sequential operation of the Tidal Basin
- Economic development of the area and water availability in the Basin
- Inter-sectoral conflicts (shrimp farming vs. agriculture)
- Land zoning/environmental management plan
- Impacts of climate change
- Establishment of the links between the Ganges Distributaries.

Way forward for water resources management in Bangladesh:
- Develop and implement flood forecasting technology for increasing lead time of forecast from present 5 days to 3 week (Under trial application)
- Develop storm surge forecasting technology (already developed, needs fine tuning)
- Implement river bank erosion monitoring, management and prediction technology (Erosion Early Warning System)
- It is imperative to have regional cooperation for river basin management targeting for food security, energy security, environmental sustainability, adaptation to climate change
- Institutional framework for working out mechanisms for common basin management of common rivers need to be established;
- Joint Task Force for IWRM in Ganges Basin (Nepal, India, Bangladesh) and for Brahmaputra Basin (China, Bhutan, India, Bangladesh).
At the culmination of his presentation, a brief question and answer session was held; the following points were identified:

- Sectorial water demand data is available at BWDB.
- There are plans by BWDB to start participatory management in operation and maintenance in different projects.
- There are clear water allocation principles in national water policy for different purposes during times of water crisis. However, implementation of such policy in Bangladesh is under doubt.
- Bottlenecks regarding acquisition of data from India has constrained flood forecasting lead time for Bangladesh.

Session on State of Resources and Management with Focus on Energy and Food Security in the Ganges River Basin

Chair: A. M. Monsurul Alam, Executive Director, Electricity Generation Company of Bangladesh (EGCB), Dhaka

Dr. Md. Ziaur Rahman Khan, Professor and Director, Centre for Energy Studies, BUET started the session with his presentation, "Overview on Energy Supply and Demand: Present and Future." A brief history of Bangladesh’s energy resources and their current production, reserves consumption was discussed. Gas and coal were identified as key resources for thermal power stations in Bangladesh; demand and supply were discussed. Power System Master Plan (PSMP) was identified as the major future plan by the government of Bangladesh; the following goals were mentioned:

- The government has planned to setup 40 00 MW nuclear power station by 2030.
- The government has planned to setup 4000 MW and 20000 MW coal based power station by 2017 and 2030, respectively.
- The government has planned to extract 2000 MW power from renewable sources by 2020.

Regional connectivity was iterated as one of the greater plans; Bangladesh has started to move towards regional power grid connectivity, the first manifestation of which has been the start of electricity import from India. India has agreed in principle to give Bangladesh corridor facilities for importing electricity from Nepal and Bhutan.

The following points were concluded:

- Meeting future energy demand will be a big challenge for a developing country like Bangladesh. The future growth of the nation is purely dependent on that.
- The Government of People’s Republic of Bangladesh is working towards meeting the gap between the energy supply and demand.
- The government is also encouraging efficient use of energy for ensuring energy security.
- The government has also planned to build a floating liquefied natural gas (LNG) terminal to facilitate import of LNG at Moheshkhali in Built-own-Operate-Transfer (BOOT) basis.
At the end of this presentation, a brief question and answer session was held which was conducted by the honorable Chair. Following points were identified:

- Environmental impact assessment is done by EGCB.
- The temperature difference between incoming and outgoing cooling water for thermal power stations is about 3 degrees centigrade.
- Closed loop system is used nowadays for cooling water; inefficient open loop which was used previously.
- Highly polluted river waters are having a detrimental effect on the operation and maintenance of power stations. Environmental impact assessment is being conducted on these matters by governmental and non-governmental organizations at different levels.
- Solar systems have been implemented successfully in certain parts of the country and their use is on the rise. Other renewable sources of energy are being looked at.
- Locations of power plants are influenced by a variety of factors; a systematic scoring method is applied.
- Transmission loss in Bangladesh is only 2.9%.
- Only closed loop cooling will be permitted from now on for thermal power plants.
- Cost difference between open loop and closed loop system is 20p/kwh; 83 taka/1000 million BTU.
- Cooling water in winter season becomes very hard to acquire as pollutant concentration becomes very high in the rivers.

Focused Group Discussion

Facilitator: Dr. Bijon Kumar Mitra, Researcher, IGES, Japan

Following points were identified in the FGD:

- The power law of 1910 was modified and translated to Bengali in 1972; a thorough update is required.
- Water factors, water uses and environmental were not integrated into the law.
- Power master plan has been updated every 5 years since 1982.
- Standard of cooling water is missing in the master plan.
- Fuel mix of power plants is being experimented on to increase the efficiency.
- Power plants in water scarce areas should not be set up.
- Regional power connectivity may be looked upon.
- Tripura power plant’s excess is being supplied to Bangladesh.
- Brazilian hydropower companies are looking into Nepal and Bhutan for investment in hydroelectric power plants. Downstream countries may support these plans if they get electricity as an incentive.
- Ecosystem may be adversely affected by too much hydropower generation.
- Water and energy relations are not understandable to people unless they are educated or made aware about it.
- India’s example maybe used to explain and convince policymakers in Bangladesh.
- Political biasness may influence unfairly in site selection of power plants.
Workshop Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30-10:00</td>
<td>Registration</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Inauguration</td>
</tr>
<tr>
<td>10:00-10:05</td>
<td>Welcome address by Dr. G M Tarekul Islam, Professor and Director, IWFM, BUET</td>
</tr>
<tr>
<td>10:05-10:15</td>
<td>Address by Dr. Bijon Kumar Mitra, Researcher, IGES, Japan</td>
</tr>
<tr>
<td>10:15-10:20</td>
<td>Address by Dr. Md. Giashuddin Miah, Professor, BSMRAU and Member, APN Scientific Planning Group</td>
</tr>
<tr>
<td>10:20-10:30</td>
<td>Address by the Chief Guest Prof. Khaleda Ekram, Hon’ble Vice Chancellor, BUET</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Group photograph and coffee break</td>
</tr>
<tr>
<td></td>
<td>Session 1: Project overview and state of water resources in Bangladesh with special focus in the Ganges river basin</td>
</tr>
<tr>
<td></td>
<td>Chair: Dr. Sultan Ahmed, Director, Department of Environment</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>APN Project Overview- Background, Objectives, Expected Outcomes, Dr. Bijon Kumar Mitra, IGES, Japan</td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>Methodology and Expected Outcome of the Case Study in Bangladesh, Dr. G M Tarekul Islam, Professor, IWFM, BUET</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Water Resources Situation in Bangladesh: Present and Future Scenarios, Dr. Shamal Chandra Saha, Executive Engineer, BWDB</td>
</tr>
<tr>
<td>12:30-13:00</td>
<td>Q&A</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>Session 2: State of resources and management with focus on energy and food security in the Ganges river basin</td>
</tr>
<tr>
<td></td>
<td>Chair: A. M. Monsurul Alam, Executive Director, Electricity Generation Company of Bangladesh (EGCB)</td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>Overview on Energy Supply and Demand: Present and Future Scenarios, Dr. Md. Ziaur Rahman Khan, Professor and Director, Centre for Energy Studies, BUET</td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>Criteria for the Selection of Site and Technology for Power Plants, Mr. Ibrahim Ahmad Shafi Al Mohtad, Superintending Engineer, Electricity Generation Company of Bangladesh (EGCB)</td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>Trends of Agriculture and Agricultural Practices in Bangladesh: Present and Future Scenarios, Dr. Md. Giashuddin Miah, Professor, Dept. of Agro-forestry and Environment, BSMRAU, Gazipur</td>
</tr>
<tr>
<td>15:00-15:15</td>
<td>Q&A</td>
</tr>
</tbody>
</table>

List of the participants of the stakeholder workshop on “Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganges River Basin”

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the participants</th>
<th>Designation and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Md. Sazzad Hossain</td>
<td>Executive Engineer
Surface Water Processing Branch
Bangladesh Water Development Board
72, Green Road, Dhaka 1205</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Shamal Chandra Das</td>
<td>Executive Engineer
Bangladesh Water Development Board
72, Green Road
Dhaka 1205</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of the participants</td>
<td>Designation and Affiliation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Md. Mofazzal Hossain</td>
<td>Director Joint Rivers Commission 72, Green Road, Dhaka 1215</td>
</tr>
<tr>
<td>4</td>
<td>Saiful Alam</td>
<td>Director (Technical) Water Resources Planning Organization (WARPO), House 103, Road 1, Banani, Dhaka 1213, Bangladesh</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Nurun Nahar</td>
<td>Senior Assistant Chief Programming Division, Planning Commission Sher-e Bangla Nagar, Dhaka</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Md. Ziaur Rahman Khan</td>
<td>Professor and Director Centre for Energy Studies, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000</td>
</tr>
<tr>
<td>7</td>
<td>Dr. Md. Obaidullah</td>
<td>Experimental Engineer Centre for Energy Studies, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000</td>
</tr>
<tr>
<td>8</td>
<td>Md. Lutfor Rahman</td>
<td>Director River Research Institute, Faridpur</td>
</tr>
<tr>
<td>9</td>
<td>Saad Siddiqui</td>
<td>Principal Specialist and Head of Human Resources Division Institute of Water Modeling (IWM), House No. 496, Road No. 32, New DOHS, Mohakhali, Dhaka-1206</td>
</tr>
<tr>
<td>10</td>
<td>B.M. Tamim Al Hossain</td>
<td>Junior Specialist, Climate and Disaster Management Division Center for Environmental and Geographic Information Services (CEGIS), House # 6, Road # 23/C, Gulshan 1, Dhaka 1212</td>
</tr>
<tr>
<td>11</td>
<td>Tanvir Ahmed</td>
<td>Junior Specialist, Climate and Disaster Management Division Center for Environmental and Geographic Information Services (CEGIS), House # 6, Road # 23/C, Gulshan 1, Dhaka 1212</td>
</tr>
<tr>
<td>12</td>
<td>A. M. Monsurul Alam</td>
<td>Executive Director (Joint Secretary) Electricity Generation Company Ltd, BTMC Bhavan, 7-9 Kawran Bazar, Dhaka-1215, Bangladesh</td>
</tr>
<tr>
<td>13</td>
<td>Ibrahim Ahmad Shafi Al Mohtad</td>
<td>Superintendent Engineer Electricity Generation Company of Bangladesh Limited, BTMC Bhaban, 7-9, Kawran Bazar Dhaka - 1215</td>
</tr>
<tr>
<td>14</td>
<td>Mr. Abdul Hye</td>
<td>Group Engineering Manager PENDEKAR ENERGY(L) LTD Meghnaghat Power Ltd., Haripur Power Ltd</td>
</tr>
<tr>
<td>15</td>
<td>Dr. Md. Abdullah Elias Akhter</td>
<td>Scientist, Theoretical Division SAARC Meteorological Research Centre (SMRC) Plot No. E-4/C, Agargoan, Sher-E- Bangla Nagar Dhaka 1207, Bangladesh</td>
</tr>
<tr>
<td>16</td>
<td>Md. Rashadul Islam</td>
<td>Lecturer Institute of Water and Flood Management (IWFM) Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh</td>
</tr>
<tr>
<td>17</td>
<td>Debanjali Saha</td>
<td>Lecturer Institute of Water and Flood Management (IWFM) Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh</td>
</tr>
<tr>
<td>18</td>
<td>Shammi Haque</td>
<td>Lecturer Institute of Water and Flood Management (IWFM)</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of the participants</td>
<td>Designation and Affiliation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| 19 | Dr. Md. Giashuddin Miah | Professor, Agroforestry and Environment
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh |
| 20 | Dr. Abul Fazal M. Saleh | Professor
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 21 | Dr. Md. Munsur Rahman | Professor
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 22 | Dr. Mohammad Rezaur Rahman | Professor
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 23 | Mashrekur Rahman | Graduate Student
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 24 | Aftabuzzaman Khan | Project Officer
Regional Integrated Multi-Hazard Early Warning System (RIMES), Dhaka |
| 25 | Dr. Anisul Haque | Professor
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 26 | Dr. Mohammed Abed Hossain | Associate Professor
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 27 | Dr. Sujit Kumar Bala | Professor
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
| 28 | Dr. Bijon Kumer Mitra | Researcher, Water Resources Management
Natural Resources and Ecosystem Service Group
Institute for Global Environmental Strategies (IGES) |
| 29 | Dr. G M Tarekul Islam | Professor and Director
Institute of Water and Flood Management (IWFM)
Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh |
Appendix 3: Summary of the 1st stakeholder workshop in Nepal

Workshop on “Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganges River Basin”

Venue: Kiran Hall, Summit Hotel, Kupondole Height, Lalitpur
9 August 2015

Organizers:
Center of Research for Environment, Energy and Water (CREEW)
Institute for Global Environmental Strategies (IGES)

Supported by:
Asia Pacific Network for Global Change Research (APN)
INTRODUCTION

The country workshop on ‘Harnessing of Climate-Water-Energy Nexus for resource security in the Ganga River Basin’ was held on 9 August 2015 at Summit Hotel, Kupondole Height, Lalitpur, Nepal.

The workshop was part of the project ‘Assessment of Climate-Induced Long-term Water Availability in Ganges River Basin and Impacts on Energy Security in South Asia’ led by Institute for Global Environmental Strategies (IGES), Japan. The collaborating partners are Bangladesh University of Engineering and Technology (BUET), Central University of Rajasthan, India and Center of Research for Environment, Energy and Water (CREEW), Nepal.

The purpose of the stakeholder workshop was to bring together and engage a wide gamut of stakeholders-government agencies, academic and research communities, civil societies, NGOs, international organizations and the private sector on a common platform to discuss ways to advance the nexus approach in resource management with a focus on water, energy and food security in the Ganga River basin. The specific objectives of the workshop were:

i) To get feedback and input from key stakeholders on the methodological framework of the APN project.

ii) To review the state of resources and their management practices in each country.

iii) To discuss and explore ways to highlight and prioritize nexus approach in energy planning and identify feasible actions to realize nexus synergies.

Participants

The event was attended by about 48 participants from relevant government organizations and their agencies, academic institutes, and other research institutes of non-government organizations. Participants from the government organizations and their agencies were Department of Irrigation (DOI), Groundwater Resources Development Board (GWRDB), Nepal.
Water Supply Corporation (NWSC), Department of Hydrology and Meteorology (DHM), Nepal Electricity Authority (NEA), Water and Energy Commission Secretariat (WECS), Department of Electricity Department (DOED), Kathmandu Upatyaka Khanepani Limited (KUKL). Amongst academic and research institutions were Nepal Academy of Science and Technology (NAST), Institute of Engineering (IOE) of Tribhuvan University (TU), Central Department of Hydrology and Meteorology of TU, Kathmandu University (KU), Nepal Engineering College (NEC) of Pokhara University (PU), Asian Institute of Technology & Management (AITM); international organizations were Food and Agriculture Organization (FAO), International Centre for Integrated Mountain Development (ICIMOD); and research NGOs were The Small Earth Nepal (SEN), Nepal Development Research Institute (NDRI), Institute for Social and Environmental Transition – Nepal (ISET-Nepal) (Please see ANNEX II).

OPENING SESSION

Welcome speech

The opening session of the program was started with welcome remarks from Dr. Rabin Malla, Executive Director, CREEW (Program schedule is attached in the ANNEX I). He welcomed all the participants and presenters who were mostly from relevant government institutions and agencies, research institutes, and universities. Also, he welcomed distinguished guest of the workshop, Dr. Bijon Kumer Mitra, Policy Researcher, Institute for Global Strategies (IGES), Japan. Moreover, he briefed objectives as to share the aim of the study and its major outputs to relevant stakeholders; to seek feedback and input from respective key stakeholders from Nepal on the methodological framework of the APN project; and then to secure water and energy supply security in the Ganga River Basin. He concluded by wishing for active participation, fruitful discussion and thanking all the participants for accepting the invitation of the organizers.

APN Project Overview-Background, Objectives, Expected Outcomes

Dr. Bijon Kumer Mitra, Policy Researcher, Institute for Global Environmental Strategies, (IGES), Japan
Dr. Bijon Kumer Mitra, briefly introduced the participants about the purpose of the workshop. He briefly mentioned about the background behind the project development and also about the three collaborators. He said that it is good opportunity to interact with stakeholders and their views are useful for further improving the methodology of the project. In his presentation, he justified the importance of Ganga river basin in South Asia and why this particular river is selected for the project. He mentioned that Ganga is strategic basin in South Asia because of its catchment area, population growth and economic development, good source of water in the region. It contributes about 30% of total water resources. In energy sector, he said that thermal power plants are main source of electricity in the region mentioning that 40% of the total India thermal power plants are located in this river basin. Dr. Mitra mentioned that as Nepal relies on hydropower it has also a big role to play for more hydropower generation for the region as well. Moreover, he highlighted that the outcome of the project would be to help contribute to build the regional cooperation in climate-water-energy nexus. He then shared the key research questions with participants.

- How much water is used by electricity generation in South Asian countries?
- What are the driving factors of high water footprint for electricity sector in the region?
- Can current policies overcome water conflict between electricity and other users?
- What types of technology can be intervened to deal with water constraint situation?
- How regional cooperation can address nexus approach to promote synergies between water and energy sectors throughout the river basin?

Based on the above research questions, following objectives were prepared;

- Establishing a quantitative resource link between water and energy at the supply side of energy in the Ganges River basin.
- Providing guidance on an integrated assessment of the water-energy nexus for the planning of and investment in large-scale water management and energy development projects.
- Demonstrating the effects of the water availability on long-term energy scenario development and subsequent impacts on energy technology choice.
- Supporting cross-border cooperation by seeking the synergies between water and energy sectors in supporting the achievement of sustainable development at the river basin level.

Open discussion
Er. Gautam Rajkarnikar from Department of Hydrology and Meteorology (DHM) inquired to presenter Dr. Bijon Kumer Mitra why he had chosen the Ganga River Basin despite the many studies carried out in that basin. Dr. Mitra replied that water issues, water uses, water-energy linkage are very hardly seen. It account for 40% of electricity comes from the Ganga basin. Nepal mainly depends on hydropower. Whereas in India, thermal plants and solar plants are being used and these are occupying huge land. He also added that hydropower will be significant in the near future. And Nepal will play a big role in electricity generation.

Er. Jeebachh Mandal, Water and Energy Commission Secretariat (WECS), inquired to Dr. Mitra regarding the difficulties in collecting the discharge data using thermal plant. Dr. Mitra replied that power plant companies will not disclose such data. But in case of Nepal, it is very easy to get data. Furthermore, Er. Mandal inquired him even though only 2% water is consumed for electricity generation; he was quite supersized to see 40% mentioned in Dr. Mitra’s presentation slides. He also suggested adding some parts from Tibet as well for the study since around 2-3% of catchment lies in Tibet. Dr. Mitra replied that for now it was not possible to add because they are already in the middle of the project period but he promised to think about it in upcoming projects in the future.

SESSION I: Project overview
Chair: Dr. Kundan Lal Shrestha, Assistant Professor, Kathmandu University (KU)

Presentation: Methodology and expected outcome of the case study in Nepal
Er. Aashis Sapkota, Research Associate, Center of Research for Environment, Energy and Water (CREEW)

The presentation was mainly focused on the methodology of the project in Nepal and its expected outcome. He discussed on the calculation of current and future water demand for domestic purpose, irrigation purpose, and industrial use. The methodology planned for power plant survey was presented along with some sample questions. The execution of SWAT model along with GCM, input data was also presented for discussion with the stakeholders. Expected outcome of the project included the assessment of the nexus between energy demands in the future.

Open discussion
Mr. Manoj Badu, Kathmandu University (KU) inquired to Er. Aashis Sapkota, whether the study team has any intention to collect primary data for soil texture, land use and climate data or use secondary sources for modelling. He was curious as the basin was too big for simulation, collecting data will be crucial. Er. Sapkota replied that the part of simulation has been planned for second year and the study team will decide suitable methodology and database for the project. So, the comments and suggestions from the workshop will be very important way forward in that regard.

Prof. Kundan Lal Shrestha from KU inquired that the current trend of establishment of industries is quite low but he was quite surprised to see Er. Sapkota’s prediction on the future growth rate of industries. Er. Sapkota replied that the growth till now was not so significant, but in future there will be huge scope for industrial growth. And they have taken optimistic approach for the future that will be industrial growth at the healthy rate.

Prof. Shrestha again added that the global climate model (GCM) has not given good output in case of Nepal. So, he suggested regional climate model (RCM) for this study. In return Dr. Mitra replied that in India and Bangladesh the collaborators are modelling with regional data. The same methodology will be applied in case of Nepal. Dr. Shrestha also suggested simulating, if possible, the extreme climatic events.

Mr. Prakash Gaudel, Nepal Electricity Authority (NEA), inquired that if there was any study in the upper basin it will definitely impact lower basin and how this project would deal with such regional issues. Since, we have transboundary issues. Dr. Mitra replied saying that it was very challenging. He said we can suggest about this issue to some policy researchers. He also said that high level discussion between Nepal, India and Bangladesh has been formed to cope with it.

Dr. Mandan Lall Shrestha, Nepal Academy of Science and Technology (NAST), suggested that there are difficulties in implementing this type of project in our region. It is the same for this project as well as other project so he requested to go along with the project and let the policy makers know about the difficulties. He also mentioned that these things must be included in the final report so that policy maker will have the ideas of difficulties in the project.

State of Resources and Management with Focus on Water, Energy and Food Security in Ganga River Basin

TECHNICAL SESSION II A
Chair: Dr. Madan Lall Shrestha, Academician, Nepal Academy of Science and Technology (NAST)

Presentation: Climate Change and Water Resources in the Context of Nepal
Prof. Dr. Narendra Man Shakya, Institute of Engineering (IOE), Tribhuvan University (TU)
In the beginning of the presentation, Prof. Narendra Man Shakya, clarified the impact of climate change on water resources of Nepal. He showed in his slides that run-off coefficient of rivers was very high especially for rivers in the south. Also, he explained how the river discharge has been changing from 1996 to 2005. During this period, it was shown that among major rivers except Kamala and Kankai Rivers, Bagmati, West Rapti, Babai, Narayani, Koshi, Karnali and Mahakali have positive discharge trend. He pointed that in slides that southern rivers have big burden to support 42% of the agricultural area and 41% of the population of Nepal living in the southern plains with only 13% water available in Nepal. Furthermore, he presented the summary of glaciers, glacial lakes and GLOF in Nepal. In addition, he highlighted that:

- The number of glaciers increased but the total area decreased due to shrinking and defragmentation of glaciers
- The glacial lake number has been decreased but the total area is increasing due to merging and expansion of glacial lakes
- Possibility of high frequency of GLOF in near future.

He further presented that the dependable flow of many river systems will decrease causing reduction of the energy generation of hydropower in the future. He said that increasing of the landslides and debris deposition within the watersheds is underway due to climate change. In one of the slides, he showed the increase in sediment concentration (ppm) during the mid-day time (09:00-15:00). It was shown that value of damage to the electromechanical components could be higher than the income generated by electricity. So the power plant operators might choose to shut the plants during those hours to avoid economic loss. However, he opined that it would not be beneficial for the energy balance in the system.

Presentation: Mainstreaming Climate Change Risk Management in Irrigation Climate Change and Water Resources in the context of Nepal

Er. Pramila Adhikari, Department of Irrigation (DOI)
Er. Adhikari presented on the pilot project on Climate change risk management in the irrigation projects jointly developed by the Ministry of Science, Technology and Environment and Department of Irrigation. She started her presentation by explaining the expected outcomes of that project which are: integration of climate change risks into development projects and development and application of knowledge management tools. So in order to achieve above mentioned outcomes, she presented the methodology of pilot project of Department of Irrigation (DoI). The methodologies were: implementation of Nepal's climate change policy, climate change vulnerability assessment, development of a data support infrastructures, and establishment of an overall climate change risk management system. Similarly, she mentioned the climate change impact and vulnerability assessment steps. Moreover, she presented on the major climate change threats for irrigation such as: temperature, rainfall, wind, humidity, infiltration/runoff, surface hydrology and storm. Furthermore, she presented on the impact of climate change on the irrigation projects of different parts of Nepal such as: the rise in temperature lead to higher evaporation rates and irrigation demand in Dolakha district and so on. In addition she also briefly presented the major climate change threats like flash floods, landslides, large scale extreme flooding, extreme drought, increased evaporation which extremely affect in irrigation system. Furthermore, she explained the climate change impact matrix which was formed by the relation of sensitivity system to climate threat and exposure of system to climate threat. By this relation, scale factor was developed. She also mentioned that, following the proposed methodologies, DoI had undertaken vulnerability assessments of irrigation systems in 6 districts: Banke, Chitwan, Mustang, Kathmandu, Dolakha and Panchthar of Nepal. In addition, she presented on the adaptation responses in intake, main canal, cross drainage and some common areas. Finally, she paid attention on specific vulnerability assessment matrix to be used while assessing a component of an irrigation system to exposure.

Open discussion

Prof. Rijan Bhakta Kayastha, KU, suggested Prof. Narendra Man Shakya to use updated glacier data since the data of 2011 was already available. Furthermore, he was curious to know whether Prof. Shakya used reanalyzed data or observed data for the study as it required much data for determining 8% snow and ice melt contribution in Koshi River Basin and for using the energy balance equation. Prof. Shakya replied that the study team is in the process for developing new data set for the whole project and the analysis was based on the secondary data from Department of Hydrology and Meteorology (DHM). Er. Ram K. Kharbuja, from Department of Electricity Development (DOED), inquired Prof. Shakya whether he had any flow duration curve data for snow melt rivers since the scenario may be different between snow fed river and rain fed river.
Furthermore, he inquired how the number of flood days will be affected due to climate change. Prof. Shakya replied that they have studied flow duration curve for Kaligandaki and Narayani basin. He further added that change in rainfall changed in the return period of flood and they have analysis data for both average and extreme flood cases. In addition, he suggested the department to incorporate all the approach while designing power house.

Mr. Dibesh Shrestha, NDRI, put his curiosity to Prof. Shakya saying that despite decrease in the total area of snow and ice melting, the flow in Karnali and Mahakali was increasing. Further he put his curiosity as whether the increase in the width of hydrograph of Koshi River Basin meant the flow is increasing or not. Prof. Shakya replied that flow was increasing in the northern zone of Nepal due to melting of ice with the increase in temperature. The flow was high because of excessive melting of glaciers. In this context, there hydropower can be generated but after say 40-50 years the rivers discharge will have decreased.

Mr. Manjeet Dhakal, Climate Analyst, inquired Prof. Shakya if the analysis on water availability carried out in the southern part of Nepal was hourly based or daily based data. Also, if he had done any seasonal shift study and whether the results of the present study were compared with the previous study data or not. Prof. Shakya replied that all season analysis have been made and compared.

Similarly, Ms. Shobha K. Yadav, ISET-Nepal, inquired to Er. Pramila Adhikari whether the methodologies she presented for vulnerability assessment of irrigation projects were developed one or adapted from others. Er. Adhikari replied that the methodologies were developed by the Ministry of Science, Technology and Environment and Department of Irrigation (DOI) and they were revising it since lots of indicators were not included in the their methodologies.

TECHNICAL SESSION II B
Chair: Prof. Dr. Hari Prasad Pandit, Institute of Engineering (IOE), Tribhuvan University (TU)

Presentation: Overview on Energy Supply and Demand: Present and Future
Er. Sher Singh Bhat, Deputy Managing Director (Generation Directorate), Nepal Electricity Authority (NEA)

Er. Bhat started his presentation by highlighting, energy as a serious concern for all. Besides this, he also mentioned sources and sector wise energy consumption in Nepal. He stated that till date among the South Asian countries, Nepal rank second last in electricity consumption after Afghanistan. He presented on the electricity demand
forecast starting from 2015/2016 to 2033/2034. The forecasted energy demand including loss will be 6,901 GWh for year 2015/2016 while it will be 36,366 GWh for year 2033/2034. Er. Bhat showed the capacity balance for the year 2015/16 during dry and wet seasons. According to the projections made, the electricity demand will be met by the hydro-electric projects under construction which are mostly run of river type projects but again the generated electricity will be deficit due to increasing demand and reduced discharge in the river during dry periods. This situation will lead Nepal as hydro-electric deficit country even until many years to come. He mentioned that, until electricity is not imported from neighboring country, load shedding in Nepal will remain above 10 hours during dry season even in 2018/19 despite huge wet surplus. The solution to this is development of storage type hydro-electric plants which will be able to generate electricity even in dry periods and the surplus can be exported to Indian market. Moreover, he presented on the Nepal- GDP and electricity demand growth rate and also hourly average load profile. Finally, he concluded his presentation by giving big message that “no end of electricity without storage projects” and “surplus management through integration with Indian system and market”.

Open discussion

Mr. Manjeet Dhakal, Climate Analyst, raised a question to Er. Sher Singh Bhat that he showed future energy demand is somehow in lower side. And then he put his query if he had considered the change in consumption culture in the future. Er. Bhat responded that they have taken care of different aspect and that was the reason that they got optimistic prediction. Again Mr. Dhakal informed that there is a Clean Development Mechanism (CDM) which has been successfully implemented in China and India. He inquired Er. Bhat if NEA has such mechanism considered for our country, Nepal. Er. Bhat replied that CDM is not feasible for small project. The process for gaining those facilities is much expensive so, it will be difficult for small project. It is something that cannot be conceived for project that has already been implemented. However, he revealed that it might be possible for projects like Upper Karnali (900 MV) in the future.

Er. Umesh Babu Marahattta, Kathmandu Upatyaka Khanepeani Limited (KUKL) suggested that tariff system (hourly or seasonally) is a kind of solution for the load shedding. Er. Bhat replied that even though it is a good solution it will take more time since all the household meters have to be replaced.

Dr. Bijon Kumer Mitra (IGES) inquired Er. Bhat if there are any policies in Nepal which will encourage the foreign investigator to invest in the hydroelectricity projects. Dr. Bhat replied Foreign Direct Investment (FDI) policy is in place in Nepal but it was not effectively implemented. He further said that downstream countries will benefit during wet season and it depends on the foreign currency in which the downstream countries are willing to pay. He also gave example of Ethiopia where they are using domestically raised fund for construction of hydroelectricity project. So he opined that Nepal should use its own domestic fund and reduce dependency on FDI.

Dr. Dibya Ratna Kansakar, Department of Irrigation (DoI) suggested that forest resources are exploited a lot for domestic purposes. So, to minimize such activities, hydroelectricity if generated
in surplus can be consumed for domestic use, pumping groundwater in plains (terai) for irrigation and for different scale lift irrigation in hills and mountains of Nepal.

SESSION III: Focused group discussion

Facilitator: Dr. Sujata Manandhar, Researcher, CREEW

Prof. Ashutosh K. Shukla, Nepal Engineering College, suggested including the study on eco-system on the Ganga River Basin under this project. Also, he suggested undertaking study on other sub-basins too while looking the whole basin and try not to simplify the complex study of the basin.

Dr. Mitra, IGES, replied that the eco-system study and sub-basins study will not be carried out in this current study since the project had already completed a year. But he promised to include these studies in future projects.

Prof. Hari Prasad Pandit, IOE, suggested the study team to refer the World Bank Report of 2012 for improving the findings and recommendations of this project and to make it a professional report on regional co-operation to harness Climate-Water-Energy Nexus for resource security in the Ganga River Basin.

CLOSING SESSION

Dr. Bijon K. Mitra (IGES, Japan), closed the program with his closing remarks. He extended vote of thanks to all the participants from different organizations for active participation and fruitful suggestions for this project. He promised to share the results of the study among the stakeholders after completion of the project.
Workshop agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Presenter/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:05</td>
<td>Welcome address</td>
<td>Dr. Rabin Malla, Executive Director, CREEW</td>
</tr>
<tr>
<td>10:05-10:10</td>
<td>Welcome address</td>
<td>Dr. Bijon Kumer Mitra, Policy Researcher, IGES, Japan</td>
</tr>
<tr>
<td>10:10-10:20</td>
<td>Introduction of participants</td>
<td></td>
</tr>
<tr>
<td>10:20-10:25</td>
<td>Workshop objective and agenda</td>
<td>Dr. Rabin Malla, Executive Director, CREEW</td>
</tr>
<tr>
<td>10:25-10:40</td>
<td>APN Project Overview-Background, Objectives, Expected Outcomes</td>
<td>Dr. Bijon Kumer Mitra, Policy Researcher, IGES, Japan</td>
</tr>
<tr>
<td>10:40-10:55</td>
<td>Methodology and expected outcome of the case study in Nepal</td>
<td>Er. Aashis Sapkota, Research Associate, CREEW</td>
</tr>
<tr>
<td>10:55-11:30</td>
<td>Open discussion on the study proposal and expectations</td>
<td></td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Group photograph and coffee break</td>
<td></td>
</tr>
</tbody>
</table>

State of resources and management with focus on water energy and food security in Ganga River basin

TECHNICAL SESSION II A

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Presenter/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:45-12:15</td>
<td>Climate Change and Water Resources in the Context of Nepal</td>
<td>Dr. Narendra Man Shakya, Professor, IOE, TU</td>
</tr>
<tr>
<td>12:15-12:45</td>
<td>Mainstreaming Climate Change Risk Management in Irrigation</td>
<td>Er. Pramila Adhikari, Department of Irrigation (DoI)</td>
</tr>
<tr>
<td>12:45-13:00</td>
<td>Questions and discussion</td>
<td></td>
</tr>
</tbody>
</table>

Lunch Break (13:00-14:00)

TECHNICAL SESSION II B

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Presenter/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:30</td>
<td>Overview on Energy Supply and Demand: Present and Future</td>
<td>Er. Sher Singh Bhat, Deputy Managing Director (Generation Directorate), NEA</td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>Development of Nepal's hydropower resources for energy security in the region: Prospects and Challenges</td>
<td>Er. Jeebachh Mandal, Joint Secretary and, Dr. Sanjaya Sharma Joint Secretary; Water and Energy Commission Secretariat (WECS)</td>
</tr>
<tr>
<td>15:00-15:15</td>
<td>Questions and discussion</td>
<td></td>
</tr>
</tbody>
</table>

Coffee Break (15:15-15:30)

SESSION III: Focused group discussion

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Presenter/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30-16:30</td>
<td>Focused group discussion: Water energy nexus in energy planning</td>
<td></td>
</tr>
</tbody>
</table>
Practical challenges and stakeholder suggestions
- Spatial water availability and power plant planning
- Institutional and policy arrangements to enhance nexus synergies.
- Realizing nexus in regional cooperation on resources security

Way forward to minimize/manage the nexus-stakeholder perspective

16:30-17:00 Wrap-up (Report from focused group discussion)
17:00-17:15 Closing remarks

List of workshop participants

<table>
<thead>
<tr>
<th>SN</th>
<th>Name</th>
<th>Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Government organizations</td>
</tr>
<tr>
<td>1</td>
<td>Er. Pramila Adhikari</td>
<td>Department of Irrigation (DoI)</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Bhupendra Prasad</td>
<td>Nepal Water Supply Corporation (NWSC)</td>
</tr>
<tr>
<td>3</td>
<td>Er. Gautam Rajkarnikar</td>
<td>Department of Hydrology and Meteorology (DHM)</td>
</tr>
<tr>
<td>4</td>
<td>Prakash Gaudel</td>
<td>Nepal Electricity Authority (NEA)</td>
</tr>
<tr>
<td>5</td>
<td>Er. Jeebach Mandal</td>
<td>Water and Energy Commission Secretariat (WECS)</td>
</tr>
<tr>
<td>6</td>
<td>Er. Birat Gyawali</td>
<td>Department of Irrigation (DoI)</td>
</tr>
<tr>
<td>7</td>
<td>Er. Raj Kumar Gumanju</td>
<td>Department of Irrigation (DoI)</td>
</tr>
<tr>
<td>8</td>
<td>Er. Surya Dev Gupta</td>
<td>Department of Electricity Development (DOED)</td>
</tr>
<tr>
<td>9</td>
<td>Dr. Dibya Ratna Kansakar</td>
<td>Department of Irrigation (DoI)</td>
</tr>
<tr>
<td>10</td>
<td>Er. Tilak Mohan Bhandari</td>
<td>Kathmandu Upatyaka Khanepani Limited (KUKL)</td>
</tr>
<tr>
<td>11</td>
<td>Er. Bijaya Man Shrestha</td>
<td>Kathmandu Upatyaka Khanepani Limited (KUKL)</td>
</tr>
<tr>
<td>12</td>
<td>Er. Umesh Babu Marahatta</td>
<td>Kathmandu Upatyaka Khanepani Limited (KUKL)</td>
</tr>
<tr>
<td>13</td>
<td>Jagat Prasad Joshi</td>
<td>Groundwater Resources Development Board (GWRDB)</td>
</tr>
<tr>
<td>14</td>
<td>Er. Sher Singh Bhat</td>
<td>Nepal Electricity Authority (NEA)</td>
</tr>
<tr>
<td>15</td>
<td>Er. Ishwar Prasad</td>
<td>Nepal Water Supply Corporation (NWSC)</td>
</tr>
<tr>
<td>16</td>
<td>Er. Laxmi Devkota</td>
<td>Budigandaki</td>
</tr>
<tr>
<td>17</td>
<td>Er. Ram Gopal Kharbuja</td>
<td>Department of Electricity Development (DOED)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Academic/research institutions</td>
</tr>
<tr>
<td>18</td>
<td>Dr. P.C. Jha</td>
<td>Institute of Engineering (IOE)/Tribhuvan University (TU)</td>
</tr>
<tr>
<td>19</td>
<td>Mohan Bdr. Chand</td>
<td>Kathmandu University (KU)</td>
</tr>
<tr>
<td>20</td>
<td>Dr. Archana Prasad</td>
<td>Central Department of Zoology (CDZ)/TU</td>
</tr>
<tr>
<td>21</td>
<td>Prof. Ashutosh Kumar Shukla</td>
<td>Nepal Engineering College (NEC)/Pokhara University (PU)</td>
</tr>
<tr>
<td>22</td>
<td>Dr. Narayan Shrestha</td>
<td>Nepal Engineering College (NEC)/PU</td>
</tr>
<tr>
<td>23</td>
<td>Dr. Madan Lall Shrestha</td>
<td>Nepal Academy of Science and Technology (NAST)</td>
</tr>
<tr>
<td>24</td>
<td>Dr. Madhav Narayan Shrestha</td>
<td>Asian Institute of Technology & Management (AITM)</td>
</tr>
<tr>
<td>25</td>
<td>Dr. Tirtha Raj Adhikari</td>
<td>Tribhuvan University (TU)</td>
</tr>
<tr>
<td>26</td>
<td>Dr. Rijan Bhakta Kayastha</td>
<td>Kathmandu University (KU)</td>
</tr>
<tr>
<td>27</td>
<td>Manoj Badu</td>
<td>Kathmandu University (KU)</td>
</tr>
<tr>
<td>28</td>
<td>Dr. Narendra Man Shakya</td>
<td>Institute of Engineering (IOE)/TU</td>
</tr>
<tr>
<td>29</td>
<td>Dr. Kundan Lal Shrestha</td>
<td>Kathmandu University (KU)</td>
</tr>
<tr>
<td>30</td>
<td>Dr. Hari Prasad Pandit</td>
<td>Institute of Engineering (IOE)/TU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN agencies and international organizations</td>
</tr>
<tr>
<td>31</td>
<td>Dr. Bijon Kumer Mitra</td>
<td>Institute for Global Environmental Strategies (IGES), Japan</td>
</tr>
<tr>
<td>32</td>
<td>Bhim Nath Acharya</td>
<td>Food and Agriculture Organization (FAO)</td>
</tr>
<tr>
<td>33</td>
<td>Sonu Khanal</td>
<td>International Centre for Integrated Mountain Development (ICIMOD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGOs and Others</td>
</tr>
<tr>
<td>34</td>
<td>Dibesh Shrestha</td>
<td>Nepal Development Research Institute (NDRI)</td>
</tr>
</tbody>
</table>

Final Report: ARCP2015-13CMY-Zhou
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Dr. Jaya K. Gurung</td>
<td>Nepal Development Research Institute (NDRI)</td>
</tr>
<tr>
<td>36</td>
<td>Dilli Bhattarai</td>
<td>The Small Earth Nepal (SEN)</td>
</tr>
<tr>
<td>37</td>
<td>Manjeet Dhakal</td>
<td>Freelance Climate Analyst</td>
</tr>
<tr>
<td>38</td>
<td>Shobha Kumari Yadav</td>
<td>Institute for Social and Environmental Transition –Nepal (ISET-Nepal)</td>
</tr>
<tr>
<td>39</td>
<td>Dr. K.N. Dulal</td>
<td>Center of Research for Environment, Energy and Water (CREEW)</td>
</tr>
<tr>
<td>40</td>
<td>Dr. Sujata Manandhar</td>
<td>CREEW</td>
</tr>
<tr>
<td>41</td>
<td>Dr. Salina Shrestha</td>
<td>CREEW</td>
</tr>
<tr>
<td>42</td>
<td>Meera Prajapati</td>
<td>CREEW</td>
</tr>
<tr>
<td>43</td>
<td>Sarita Shrestha</td>
<td>CREEW</td>
</tr>
<tr>
<td>44</td>
<td>Aashis Sapkota</td>
<td>CREEW</td>
</tr>
<tr>
<td>45</td>
<td>Nihit Bhattarai</td>
<td>CREEW</td>
</tr>
<tr>
<td>46</td>
<td>Upendra Shahi</td>
<td>CREEW</td>
</tr>
<tr>
<td>47</td>
<td>Sangam Ghimire</td>
<td>CREEW</td>
</tr>
</tbody>
</table>
Appendix 4 Project workshop in Bangladesh was covered in the national newspaper

Prof Khaleda Ekram, Vice-Chancellor, BUET, delivering her inaugural speech as chief guest at a workshop on 'Assessment of Climate - Induced Long Term Water Availability in Ganges Basin and Impacts on Energy Security in South Asia' organized by Institute of Water and Flood Management (IWFM) on Sunday at the seminar room of IWFM, BUET. The function was addressed, among others, Dr Bijon Kumar Mitra, Researcher, IGES, Japan and Dr Md Giasuddin Miah, Professor, BSMRAU and member, APN Scientific Planning Group. The function was presided over by Prof Dr G M Tarekul Islam, Director, IWFM, BUET.

NN photo
Appendix 5 Agenda of the final project workshop in Bangladesh

Final Country Workshop of the Research Project on Assessment of Climate-Induced Long-term Water Availability in Ganges River Basin and Impacts on Energy Security in South Asia

Venue: Department of Environmental Science, Central University of Rajasthan
18 November 2018

Organizers: Bangladesh University of Engineering and Technology (BUET)
Institute for Global Environmental Strategies (IGES)
Supported by: Asia Pacific Network for Global Change Research (APN)

Workshop Program

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0930-1000</td>
<td>Registration</td>
</tr>
<tr>
<td>1000-1030</td>
<td>Welcome address by BUET (5 min)……………………………………Prof. GM Tarekul Islam</td>
</tr>
<tr>
<td></td>
<td>Welcome address by IGES (5 min)………………………………………Bijn Kumer Mitra</td>
</tr>
<tr>
<td></td>
<td>Chief Guest Speech (5 min)……………………………………….Dr. Sujit Kumar Bala, Director, IWFM</td>
</tr>
<tr>
<td></td>
<td>Introduction of participants (5 min)</td>
</tr>
<tr>
<td></td>
<td>Workshop objective and agenda (10 min)…………………Prof. GM Tarekul Islam</td>
</tr>
<tr>
<td>1030-1040</td>
<td>Group photograph</td>
</tr>
<tr>
<td>1040-1100</td>
<td>Session 1: Project Overview</td>
</tr>
<tr>
<td></td>
<td>APN Project Overview- Background, Objectives………………Bijn Kumer Mitra</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>Coffee break</td>
</tr>
<tr>
<td>1120-1150</td>
<td>Session 2: Project Overview</td>
</tr>
<tr>
<td></td>
<td>Water Resource Availability in Bangladesh…………………………….Prof. GM Tarekul Islam</td>
</tr>
<tr>
<td>1150-1200</td>
<td>Q&A</td>
</tr>
<tr>
<td>1200-1230</td>
<td>Energy-Water Nexus tool for supporting power development plans…………….Bijn Kumer Mitra</td>
</tr>
<tr>
<td>1230-1240</td>
<td>Q&A</td>
</tr>
<tr>
<td>1240-1340</td>
<td>Interactive Discussion and Suggestions</td>
</tr>
<tr>
<td>1340-1350</td>
<td>Closing remarks</td>
</tr>
<tr>
<td>1350-1500</td>
<td>Lunch and Networking</td>
</tr>
</tbody>
</table>
Appendix 6 Agenda of the final project workshop in India

![Workshop Logo](image)

Workshop on Harnessing of Climate-Water-Energy Nexus for Resource Security in the Ganga River Basin

20th November 2018 (Tuesday)

Venue: Department of Environmental Science, Central University of Rajasthan

Organizers: Central University of Rajasthan (CURAJ), India

Collaborators: Institute for Global Environmental Strategies (IGES), Japan

Center of Research for Environment, Energy and Water (CREEW), Nepal

Supported by: Asia Pacific Network for Global Change Research (APN)

Workshop Program

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0930-1000</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>1000-1005</td>
<td>Opening Session</td>
<td>Dr. Devesh Sharma, EVS, CURAJ</td>
</tr>
<tr>
<td>1005-1010</td>
<td>Welcome Address (CURAJ)</td>
<td>Dr. Bijon K Mitra (IGES, Japan)</td>
</tr>
<tr>
<td>1010-1015</td>
<td>Welcome Address (IGES)</td>
<td>Dr. Devesh Sharma, EVS, CURAJ</td>
</tr>
<tr>
<td>1015-1020</td>
<td>Workshop Objective and Agenda</td>
<td>Dr. Devesh Sharma, EVS, CURAJ</td>
</tr>
<tr>
<td>1020-1025</td>
<td>Introduction of Participants</td>
<td>All Participants</td>
</tr>
<tr>
<td>1025-1030</td>
<td>Presidential Remarks</td>
<td>Dr. L. K. Sharma, Dean, SES, CURAJ</td>
</tr>
<tr>
<td>1030-1050</td>
<td>Vote of Thanks</td>
<td>Dr. Gartima Kaushik, EVS, CURAJ</td>
</tr>
<tr>
<td>1050-1110</td>
<td>Group photograph and networking break</td>
<td></td>
</tr>
<tr>
<td>1050-1110</td>
<td>Technical Session, Chair: Dr. Someshwar Das, Atmospheric Dept., CURAJ</td>
<td></td>
</tr>
<tr>
<td>1100-1130</td>
<td>Water-Energy Nexus and Application to South Asian Countries</td>
<td>Dr. Tomohiro Okadera (NIES, Japan)</td>
</tr>
<tr>
<td>1130-1150</td>
<td>Water Resources Situation in the Ganga Basin</td>
<td>Dr. B. R. Sharma (IWM, New Delhi)</td>
</tr>
<tr>
<td>1150-1210</td>
<td>Water–Energy Nexus in Nepal</td>
<td>Dr. Rabin Mallala (CREEW, Nepal)</td>
</tr>
<tr>
<td>1210-1220</td>
<td>Agriculture and groundwater use in semi-arid regions- Implications for sustainability</td>
<td>Dr. Ram Kumar (WoTR, Pune)</td>
</tr>
<tr>
<td>1220-1240</td>
<td>Project Overview</td>
<td>Dr. Bijon K Mitra (IGES, Japan)</td>
</tr>
<tr>
<td>1240-1300</td>
<td>Water Resource Availability in Selected Sub-basins of Ganga Basin</td>
<td>Dr. Devesh Sharma (CURAJ, India)</td>
</tr>
<tr>
<td>1300-1345</td>
<td>Energy-Water Nexus Tool for Supporting Power Development Plans</td>
<td>Dr. Bijon K Mitra (IGES, Japan)</td>
</tr>
<tr>
<td>1345-1400</td>
<td>Discussion and Suggestions</td>
<td></td>
</tr>
<tr>
<td>1400-1500</td>
<td>Closing Remarks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lunch</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 7 Presentation at the 2018 Nexus conference, North Carolina

Abstract is available at the Conference abstract book.
Aims of our research project

- Our research project “Assessment of Climate-Induced Long-term Water Availability in Ganges River Basin and Impacts on Energy Security in South Asia” aims to quantify the nexus of water and energy from both supply and demand sides and provide a scientific assessment on the long-term impacts of water availability on location-specific power generation scenarios and technology options.
- The water stress map for power generation can be used to guide feasible energy planning and help assess the risk of investment in energy development projects from water security perspective.

Analytical framework for an integrated assessment on water-energy nexus in the Ganges River Basin

Stakeholder participation in the research works

Country workshop on Climate-Water-Energy Nexus, 20 April 2016, Delhi, India
Country workshop on Climate-Water-Energy Nexus, 9 August 2015, Kathmandu, Nepal
Country workshop on Climate-Water-Energy Nexus, 14 June 2015, Dhaka, Bangladesh

Selected sub-river basins of Ganga for study

Power plant survey in India

Results of power plant survey
Water supply-demand projections for four selected sub-basins of Ganga River

Key findings

- Water availability will decrease in Yamuna and Damodar sub-basins by 23% and 6%, respectively, in 2040. In contrast, water availability in Gandak sub-basin will increase by 15% in 2040.
- Yamuna sub-basin water demand will exceed water availability in 2040. This implies that water may become a constraint for the development of new thermal power infrastructure in the sub-basin.
- For Yamuna sub-basin, power supply may need to be provided from neighbouring sub-basins.
- In the coming years, Gandak will have significant increase in water availability and will have large amount of water surplus. Therefore, Gandak could be a suitable place for locating new thermal infrastructure and help alleviate water-stress pressure in Damodar where a number of thermal power plants are located.

Web tool for supporting site-specific suitable power generation technologies

Acknowledgements: We wish to thank the Asia-Pacific Network for Global Change Research (APN) for its generous financial support provided to the implementation of this project (No. ARCP2514-22NMY-Zhou.

Thank you very much