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1.  INTRODUCTION

Food security could be under threat due to the impact
of climate change on regional grain production. Effec-
tive adaptation measures to alleviate the profound dev-
astating consequences necessitate a regional assess-
ment of crop responses to climate change, in order to
identify and evaluate potential adaptation options.
Model-based climate change impact assessment meth-
ods generally fall into 2 categories: biophysical-based
simulations and semi-empirical methods that build on
the statistical relationships between crop yield and
phenological or environmental variables. The latter is

typically used to assess crop sensitivities to climate
change (Naylor et al. 2007, Vera-Diaz et al. 2008). Com-
paratively, the biophysical-based approach has the ad-
vantage of including the crop growing processes in its
simulation, and hence it is capable of providing insight
into the effects of the impact. Jones & Thornton (2003)
applied this method in studying maize production in
Africa and Latin America using the CERES-Maize
model, in which fine spatial resolution simulations
helped to identify highly vulnerable regions to climate
change. The CERES model also has a featured capabil-
ity to assess the quality of adaptations at farm level,
such as farm management, but fewer studies have ex-
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plored the effects of adaptation strategies by using pro-
cess-based models. Using a simplified statistical mo del,
Torriani et al. (2007) conducted sensitivity experiments
on the effects of shifts in sowing dates on maize yield
under diverse climate-change  conditions.

The impact assessment using biophysical crop mod-
els can be either site-specific or spatial. The site-
 specific application normally focuses on agricultural
ob servation sites, whereas for most of the spatial appli-
cations, the impacts are based on the results of several
representative sites. For example, Parry et al. (1999)
used regional transfer functions that were obtained
from site-specific results to calculate the regional/
country-scale crop yield for global food production.
Although it is easy to implement and less time consum-
ing to couple the growing process with environmental
variables, the method of using a representative site for
a large area or area that has complex spatial hetero-
geneity can lead to significant simulation errors.

Projections of future climate change are characterized
by high un certainties due to the different possible socio-
economic development scenarios, as well as our limited
understanding of the climate system. The major sources
of uncertainties underlying climate change scenarios in-
clude: (1) different CO2 emission levels that are used to
project future global warming trends, derived from self-
consistent sets of  assumptions about energy use, popula-
tion growth, economic development, and other factors;
and (2) uncertainty corresponding to regional climate
change projected by different general circulation models
(GCMs; Hulme & Carter 1999, Katz 2002). Recently, en -
semble results consisting of several emission scenarios
and multi-GCM outputs have been used to deal with the
uncertainties. Tebaldi & Lobell (2008) adopted a proba-
bilistic ana lysis to evaluate the uncer-
tainties within the impacts of tempera-
ture and precipitation changes from
multi-GCM runs on crops at a global
level under the Special Report on Emis-
sions Scenarios (SRES) A1B scenario,
and Tao et al. (2009) studied the proba-
bility distribution of future changes in
rice production in northern China by us-
ing a super-ensemble of 10 climate sce-
narios and 5 GCMs.

The objective of our study was not
only to present a vulnerability assess-
ment, but also to analyze the po tential
adaptation options in both crop man-
agement and cultivar changes; we
therefore adopted a  biophysical- based
approach. Climate change uncertainty
was addressed using a pattern-scaling
method, as well as multi-model and
multi-scenario simulations.

2.  MATERIALS AND METHODS

2.1.  Study area

Jilin Province is located in northeastern China
(40° 52’ to 46° 18’ N, 121° 38’ to 131° 19’ E; Fig. 1). The
total land area is about 187 400 km2, which has the
highest altitude of around 2000 m in the southeast and
drops gently towards the northwest with the vast
Songliao Plain lying in the mid-west of the province.
Its climate is dominated by the northerly continental
monsoon, and the annual average precipitation varies
from ~350 mm in the northwest to >1500 mm in the
southeast.

Jilin is the largest commercial grain base of China,
producing about 50% of the commercial maize for the
country and 14% of the total national maize production
(China Agriculture Yearbooks 2000–2007, Ministry of
Agriculture, China Agriculture Press, Beijing). Maize
production accounts for >70% of the total grain pro-
duction of Jilin and occupies 61% of the crop-sown
area, which is mainly in the Songliao Plain in the mid-
west. The main cropping area is irrigated farmland.
The effect of climate change on maize production will
be a significant factor determining both future food
production in Jilin and the national grain supply.

2.2.  Construction of climate change scenarios

While it is generally agreed that GCMs are still the
best tools for constructing future climate change sce-
narios, the large variation of simulation results from dif-
ferent GCM runs, or even from the same GCM but with
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Fig. 1. County and district boundaries of Jilin Province, China. The 9 districts
of Jilin are Baicheng, Songyuan, Changchun, Siping, Liaoyuan, Jilin District,
Tonghua, Baishan, and Yanji. Late (early) maize cultivars are to the west (east) 

of the thick black line
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different radiative forcings, has caused great difficulty
in applying GCM results directly to climate change im-
pact analyses because the range of un certainties is an
im portant factor in adaptation planning. Since the early
1990s, an alternative method, known as pattern scaling,
has been developed for constructing future climate
change scenarios instead of using GCM outputs di-
rectly (Santer & Wigley 1990).  Pattern-scaling was orig-
inally envisaged as a temporary compromise to add a
time component to an equilibrium experiment with a
GCM, pending the availability of transient experi-
ments, and also to permit the comparison of standard-
ized spatial patterns from  different GCMs (Santer &
Wigley 1990). It offers the  possibility of representing
the whole range of uncertainties involved in future cli-
mate change pro jections from  various combinations of
emission scenarios and GCM outputs, which allow
cross-model sen sitivity analyses and uncertainty exam-
inations to be conducted easily (IPCC-   TGICA 2007).
The method is recommended by the Intergovernmental
Panel on Climate Change (IPCC) for  generating the en-
semble climate scenarios, with the  purpose of dealing
with the whole range of future uncertainties (IPCC-TG-
ICA 2007).

The pattern-scaling method is based on the separa-
tion of the global mean and spatial pattern components
of future climate change. Spatial patterns in the data
base are normalized and expressed as changes per 1°C
change in global mean temperature. These normalized
components are appropriately weighted, added, and
scaled up to the global mean temperature defined by
IPCC SRES for a given year.

Pattern scaling has been widely used in mean tem-
perature and precipitation change studies (Mitchell
2003, Ruosteenoja et al. 2007) and associated impact
assessments. Combined with the ensemble approach,
New & Hulme (2000) studied climate change impacts
on the river flow in the UK under a full probability of
climate change with 7 GCM projections, and Li et al.
(2009) studied the risks of global drought disaster
using 20 GCMs and 6 SRES scenarios.

For this study, the scenarios of future monthly tem-
perature and precipitation were generated as follows:

T1 = T0 + ΔT × ΔGMT1 (1)

P1 = P0 (1 + ΔP/100 × ΔGMT1) (2)

where T0 (T1) and P0 (P1) are the baseline (future) tem-
perature and precipitation; ΔT (ΔP), the change pat-
tern, is the localized change in temperature (precipita-
tion) to per-unit global warming, generated through
standardizing the GCM simulation outputs to the cor-
responding global mean temperature changes; ΔGMT,
the scalar, is the change of global mean temperature
increase in a future time slice. Details of the pattern

scaling method can be found in Mitchell et al. (1999),
Mitchell (2003), Wigley (2003), and Li et al. (2009).

To apply the pattern-scaling method to generate cli-
mate change scenarios for Jilin Province, the 20 GCM
change patterns in the IPCC AR4 Climate Model Inter-
comparison Project (CMIP; Covey et al. 2003) and 6
SRES (IPCC 2000), i.e. A1B, A1FI, A1T, A2, B1, and B2,
were used for the ensemble, with a total ensemble size
of 120 scenarios. The GCM change patterns were
interpolated from the original resolution of 2.5° × 2.5°
to 5’ × 5’ in order to simulate the crop change at the
county-level scale, and the years 2020, 2050, and 2070
were selected to assess the impacts of climate change
on maize production at different future times. The
SRES dataset offers different global warming projec-
tions corresponding to different greenhouse gas
(GHG) emission scenarios and low/intermediate/high
climate sensitivities (Wigley 2003). Only the SRES
global temperature projection with intermediate cli-
mate sensitivity was used to generate the spatial mean
changes. The area average changes of temperature
and precipitation of 6 SRES from the baseline climate
for Jilin are shown in Table 1.

2.3.  Crop model and its modification

In selecting a model for the purpose of identifying
adaptation options, as well as for assessing impact
due to climate change, it would be ideal if the
changes in essential signals in the maize growing
period (e.g. planting date, maturity period) could be
detected at the daily time step and the maize
response to cropping practices (such as irrigation and
fertilization) could then be quantitatively examined.
The site-based crop model, CERES-Maize, embedded
in the Decision Support System for Agrotechnology
Transfer (DSSAT) version 4.0, developed by Hoogen-
boom et al. (2004), is operated on a daily time step
and takes into account the effects of cultivar, cropping

225

A1B A1FI A1T A2 B1 B2

Temperature (°C)
2020 0.58 0.62 0.79 0.57 0.63 0.74
2050 1.82 2.03 1.97 1.59 1.41 1.64
2070 2.67 3.46 2.59 2.63 1.94 2.23

Precipitation (%)
2020 2.71 2.79 3.10 2.98 2.98 3.06
2050 3.84 4.54 5.07 5.30 5.42 5.60
2070 6.13 6.85 7.20 7.52 7.61 7.76

Table 1. Average changes of temperature and precipitation of
6 Special Report on Emissions Scenarios (SRES) from the 

baseline climate for Jilin Province
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management, weather, soil moisture, and nutrition on
maize in its simulation (Jones et al. 2003). In addition,
the cultivar is  modeled with explicit genetic coeffi-
cients. Thus, the CERES-Maize model has the capac-
ity to provide critical information for identifying
potential adaptation options. The model has been
widely validated across different climate and soil con-
ditions for different varieties (Wu et al. 1989, Maytín
et al. 1995, O’Neal et al. 2002, Gungula et al. 2003,
Soler et al. 2007, Braga et al. 2008). In Jilin, Jin et al.
(1996, 2002) used it in the projection of maize yields at
specific locations based on the double CO2 climate
scenarios derived from 3 GCMs, and suggested sev-
eral adaptation options. The CERES-Maize model was
also employed by Xiong et al. (2005, 2007) to predict
the future maize production in China under 2 emis-
sion scenarios with daily outputs of the PRECIS
regional climate model at 50 × 50 km re solution. Here
we used the CERES-Maize model to simulate maize
growth, development, and yield in Jilin.

2.3.1.  Generating daily weather

For the purpose of spatial impact analysis, the
CERES-Maize model was further developed with spa-
tial simulation capability. The stochastic weather gen-
erator SIMMETEO, embedded in DSSAT, was used to
produce daily weather for each grid cell from the
monthly climate data, including maximum and mini-
mum temperature, precipitation, wet days, and solar
radiation. The baseline climate data of 1961 to 1990
was obtained from the Climate Research Unit (CRU,
University of East Anglia) global climatology dataset
(New et al. 2002) through linear interpolation of the
spatial resolution from 10’ × 10’ to 5’ × 5’ grids. The
solar radiation was estimated from the CRU sunlight
hours following the method of Tong et al. (2005), and
the maximum/minimum temperature was calculated
from the mean temperature and its diurnal range (New
et al. 2002).

The stochastic weather series generated by SIM-
METEO is associated with a random seed. Simula-
tions with the same monthly climate data but differ-
ent random seeds could show very different yields.
An experiment using 1000 random seeds indicated
that the mean of the cumulative simulated yield
became less variable as more runs were being taken
into the sample. Four tests with different groups of
random seeds (the first 120 results of the 1000 runs
are given in Fig. 2) suggested that the mean value of
the cumulative simulations converged after 100 ran-
dom seed runs. Therefore, the average of 100 cumu-
lative runs with different random seeds was used in
this study.

2.3.2.  Soil data

The spatial soil information was derived from the
ISRIC-WISE (Batjes 2006) database (5’ × 5’), which pro-
vided most of the soil parameters required by DSSAT
within a 100 cm deep soil profile. Other parameters
which are not in the WISE database were estimated
accordingly, including: (1) soil albedo (SLAB), deter-
mined by the surface soil color (Gijsman et al. 2007);
(2) first stage evaporation coefficient (U), drainage
coefficient (SWCON), runoff curve number (CN), and
root hospitality or clumping factor (WR), calculated by
the methods suggested by Iglesias (2006); (3) saturated
moisture content (SAT) and lower and upper limits of
soil moisture content (LL and DUL), estimated by soil
texture in each layer (Saxton et al. 1986, Gijsman et
al. 2002); and (4) saturated hydraulic conductivity
(SWCN), estimated from soil texture and organic mat-
ter using the software SPAW (Saxton & Rawls 2006).

2.3.3.  Cropping management

There are 3 main cropping practices included in
DSSAT: planting density, nitrogen fertilizer applica-
tion, and irrigation strategy.

The planting density was set to the same value (6
plants m–2) for the whole area. The total fertilizer appli-
cation was obtained from the county statistical data,
and only the ammonium nitrogen fertilizer was consid-
ered in the fertilization. The total nitrogen application
(kg ha–1) in each county was the average annual chem-
ical fertilization consumption derived from the county
agriculture census (Jilin Statistical Yearbooks 1990–
2002, Jilin Province Bureau of Statistics, Jilin Univer-
sity Press, Changchun), and applied evenly during the
growing season.

The planting management was changed slightly in
our study. In the original CERES-Maize model, maize
is automatically sown if both soil temperature and soil
moisture exceed a given threshold. This rule is not ap -
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propriate for large areas of Jilin, where the required
soil water condition could not be fulfilled in the normal
dry spring despite the appropriate soil temperature.
We therefore revised the planting date to be de cided
principally by the soil temperature conditions: once the
average soil temperature was >7°C on 5 successive
days, which is the lower limit of soil temperature for
maize emergence (Song et al. 2006), irrigation was
applied on the planting day if the soil water content
was below the threshold of 20% of saturated volumet-
ric water content, and then the seed was sown.

The irrigation practice was re-organized as well, in
order to examine the effect of total irrigation and appli-
cation frequency on maize growth and production. Irri-
gation in DSSAT is originally applied in 2 ways: (1)
automatic irrigation that provides the optimal amount
of water to cover the estimated soil water deficiency,
and (2) scheduled irrigation based on the presetting of
application date and amount. In practice, the auto-
matic irrigation method requires an irrigation amount
exceeding the official quota of 350 mm, the maximum
irrigation amount allowed for maize production by the
local government (C. T. Gao pers. comm.) for most
areas of Jilin. The scheduled method is not applicable
for the spatial simulation, because it does not take into
account the actual climate and soil conditions.

Therefore, we designed a 2-step process for each
grid to assign the irrigation date and the applied water
amount at each irrigation. In the first step, the auto-
matic irrigation feature in DSSAT was employed to
preliminarily estimate 4 irrigation parameters under
the optimal irrigation regime: (1) the optimal total irri-
gation requirement (Q1), (2) the irrigation demand
(Irr1) at 4 growth stages (i.e. before emergence, juve-
nile, tasseling and flowering, and grain filling), (3) the
irrigating frequency (F1) for each stage, and (4) the
ratio of water demand (P1) for each stage, which was
calculated by Eq. (3) (in which the subscript ‘i’ refers to
the ith growth stage). The second step was to refine

these parameters according to the local irrigation
quota (Q2). The irrigation amount in each stage (Irr 2)
was estimated by the corresponding P1 and Q2 follow-
ing Eq. (4). The maximum amount at each irrigation for
a certain growth stage, IrrMax2, was obtained by F1
and Irr2 as shown in Eq. (5). The real irrigation is
applied when the available water in top soil is < 60% of
saturated volumetric water content. The actual applied
amount for each irrigation (IrrAmt2) is the minimum
value of the soil water deficit (SWDEF) estimated in
DSSAT and the IrrMax2 (see Eq. 6). The 2-step method
has the advantage of allowing the irrigation water to
be properly allocated, depending on the specific
growth condition.

In this study, irrigation application efficiency (EffIrr),
which is the ratio of the volumetric water available for
the crop to the irrigation quota, was 0.4 for the furrow
irrigation system, as suggested by Su & Liu (2006). This
means that the actual maximum water available for the
crop, referred to as ‘effective irrigation’, is 140 mm in
the furrow system of Jilin under the official 350 mm
irrigation quota. The effective irrigation amount
 (EffIrrAmt) at each irrigation for the i th growth stage is
calculated using Eq. (7).

EffIrrAmti = IrrAmt2i · EffIrr (7)

2.4.  Genetic coefficient selection

To describe a crop, the CERES-Maize model in DSSAT
requires 6 genetic coefficients which are es sential fac-
tors for crop growth and yield formation (Table 2). Four
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Genotype coefficient Initial reference range Cultivar
Late Early

P1 Thermal time from seedling emergence to the end of the juvenile stage 125–400 280 270
(degree days above the base temperature of 8°C in the juvenile stage)

P2 Photoperiod sensitivity associated with delayed growth under the 0.1–0.8 0.3 0.3
unfavorable long-daylight condition (no unit)

P5 Thermal time from silking to physiological maturity (degree days above 500–900 790 700
base temperature of 8°C in the mature stage)

G2 Potential maximum number of kernels per plant 500–850 720 720

G3 Kernel filling rate under optimum conditions (mg d–1) 5–12 8.5 8.5

PHINT Interval in thermal time between successive leaf tip appearances (degree 35–75 38.9 38.9
days above base temperature of 8°C)

Table 2. Maize genetic coefficients and cultivars



Clim Res 46: 223–242, 2011

of them (P1, P2, P5, and PHINT) control the timing of
phenological stages, and the other 2 (G2 and G3) char-
acterize the potential yield under optimal conditions.
In most previous studies applying the CERES-Maize
model in China, the genetic coefficients were esti-
mated from the observed site data (Yang et al. 2006, Yu
et al. 2006). Some studies expanded the spatial scale to
provincial (Wu et al. 1989) and country-wide (Cui
2005, Xiong et al. 2007), relying on the site-observed
cultivar as representative for a large region, such as in
the study of Cui (2005), which universalized the
genetic coefficients estimated by the observed data at
Dunhua to all of Jilin Province. Xiong et al. (2007)
examined the accuracy of 1 representative cultivar in
Jilin by comparing the simulation derived by the near-
est weather station to the county census in 50 × 50 km
grids, and pointed out a significant uneven overesti-
mation of the mean annual yield. Such biases in spatial
simulations may be caused by the homogeneous appli-
cation of the cultivar obtained from a site to a region,
where the actual maize cultivars in the eastern area
(including Panshi, Baishan, and Tonghua) were quite
different from those in the western and central areas
(in cluding Tongyu, Changling, Shuangliao, Chang -
chun, and Siping), corresponding to the different solar
radiation and thermal potentials (Luo et al. 2000).

There is a mismatch when using data from a single
agricultural experimental station to generate spatial dis-
tribution of genetic coefficients for a process-based crop
model like CERES-Maize at the regional scale. Thus ex-
tensive observed stations that cover the spatial area of
interest are needed, but such a requirement is seldom
satisfied for most crop production research. An alterna-
tive approach is to classify the area into different zones
based on pre-defined factors related to crop production,
such as identification of crop zones based on specific
agro-ecological characteristics, i.e. the agro-ecological
zones (AEZ) method (Xiong et al. 2008),
and for each classified zone, single
and/or multi-observed station data can
be used to generate its genetic coeffi-
cients. As the present study focused on
the impact of climate change, it appears
to be much more appropriate to classify
the zoning of maize cultivars based on
climate characteristics. However, there
are not enough available observation
stations in Jilin to support a selection of
maize cultivars for each conventional
climate zone (Luo et al. 2000). Conse-
quently, only 2 distinctive maize cultivar
zones were found through calibration,
and based on these zones, cultivars
were selected and the maize model was
calibrated, as described below.

Considering the spatial heterogeneity of maize culti-
vars, the genetic coefficients used in this study were
calibrated and validated by multi-year ob servations at
11 agro-meteorological stations lo cated in different
regions of Jilin (Table 3). The re quired data, including
daily weather records  (maximum/ minimum air tem-
perature, precipitation, sunlight duration, and relative
humidity) and the ob served crop data from 1996 to
2006 (annual yield, planting date, harvest date), were
obtained from the China Meteorological Data Sharing
Service System (http:// cdc. cma.gov.cn/index.jsp).

The evaluating indicator (Ie) was a combination of 2
indices, which were used for the genetic coefficients
selection. The maturity date index (Im) was defined as
the difference in physiological stage between simula-
tion and observation, and the yield index (Iy) was used
to evaluate the fitness of the simulated yield Ysim:

(8)

where Msim and Mobs are the simulated and observed
maturity dates, respectively. Thus, the smaller Iy (Im)
indicated the better estimate of yield (maturity date)
for a certain cultivar.

An iteration method was applied to obtain the opti-
mal cultivar (see Fig. A1 in Appendix 1). Firstly, 30 trial
groups of genetic coefficients were sampled within the
reference range using the uniform design method
(Zhang et al. 2004) at each iterative step. The initial re -
ference ranges of P1, P2, P5, G2, and G3 are from
DSSAT documents (Table 2). Secondly, a new nar-
rower range for sampling trial coefficients was decided
from the cultivars with the 2 smallest Ie from the 30 tri-
als, and the iteration was completed when the differ-
ence between the upper and lower range of genetic
coefficients was < 5% of its magnitude.

I I I

M M Y Y

e m y= +

= − + −( / ) ( / )1 12 2
sim obs sim obs

228

County °N °E Altitude (m) Cultivar Ysim:Yobs Msim:Mobs

Changling 123.97 44.25 190.40 Late 0.55 0.94
Nongan 125.16 44.41 190.00 Late 0.92 1.03
Yushu 126.53 44.83 206.00 Late 0.87 1.06
Lishu 124.30 43.35 160.00 Late 1.05 1.05
Jian 126.15 41.10 177.70 Late 0.94 0.96
Shulan 126.93 44.42 252.00 Early 0.87 1.06
Yongji 126.56 43.70 232.40 Early 0.99 0.95
Dunhua 128.20 43.37 523.70 Early 1.23 1.13
Liaoyuan 125.08 42.92 254.00 Early 1.05 1.01
Meihekou 125.63 42.53 341.50 Early 0.94 0.94
Huadian 126.75 42.98 264.20 Early 0.90 1.00

Table 3. Calibration at 11 agro-meteorological stations (see Fig. 1 for county loca-
tions). Ysim:Yobs and Msim:Mobs—11 yr mean ratios of simulations to observations 

for yield (Y) and maturity date (M)
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Taking account of the average Ie at 11 stations in 11 yr
(from 1996 to 2006), we found that the range of physio-
logical coefficients (P1, P2, P5) at the stations located in
the west and middle areas showed a different trend
from those in the southeast. Therefore, 2 groups of ge-
netic coefficients (Table 2) were estimated for the 2 dif-
ferent areas, with 5 sites for the late cultivar and 6 sites
for the slightly early cultivar (Table 3). The bias of the
simulated yield (growing seasons) at most stations was
in the ±10% range of its observed value (Table 3)

The boundary between the late and early cultivar
(shown by the bold line in Fig. 1) was determined
based on the following criteria: (1) calibration at 11
agro-meteorological sites; (2) maize cultivar distribu-
tion in northeast China estimated from the local cli-
mate temperature conditions (Luo et al. 2000); and (3)
conformability of the annual yield simulation to its sta-
tistic with respect to the 2 cultivars in each county. The
cultivar selection based on the 11 sites that had reliable
observed daily weather data and crop records was the
top criterion among the 3 in determining the boundary,
followed by local observations, and finally the compar-
ison of the yield simulations obtained by gridded cli-
mate data with county censuses of yield.

To validate the model for spatial simulation, we com-
pared the census yields and the simulations at the
county level. The annual yield was simulated with the
CRU time-series climate data from 1990 to 2002
(Mitchell & Jones 2005), the 2 cultivars obtained, as
well as the soil properties and crop management men-
tioned above. The county-level yield was obtained by
aggregating the yield simulation for grids where maize
was sown. The percentage of maize-sown area in a 5’ ×
5’ grid was obtained from the Global 18 Major Crops
dataset in 1992 (Leff et al. 2004). The annual county
maize yield data were obtained from the 1990–2002
statistical yearbooks of Jilin Province (Jilin Province
Bureau of Statistics, Jilin University Press, Chang -
chun).

Comparison was made of the mean and standard
deviation (SD) of the 12 yr simulations to that of the
county census yields (Fig. 3). The mean yield simula-

tions were about 10% lower on average than the
reported county statistics. The relative bias in the cen-
tral part, ranging from –18 to 11%, was moderate,
which indicated that the model performed a reason-
able estimation of mean yield in the major maize-sown
area. However, there was a significant overestimation
in low-yield counties (e.g. Tongyu in the western dry-
land area, and counties close to the eastern mountains)
and a slight underestimation in the high-yield area
(Fig. 3a), i.e. the Siping region. The spatial correlation
coefficient of the aggregated simulations with the 47
county censuses reached 0.6 (>99% confidence level,
2-tailed t-test). With regard to the SD of the 12 yr yield,
the simulated values were much smaller than those of
the census for most counties, except those where mean
yields were overestimated (Fig. 3b).

3.  RESULTS

3.1.  Projected regional climate changes

This study was mainly focused on the impact of
changes in monthly mean temperature and total pre-
cipitation, with other climate variables, such as solar
radiation and wind speed, being kept at the baseline
level. The median value of climate change projections
showed a consistent warming trend and increased pre-
cipitation during the maize growing season (April to
September, Fig. 4). The temperature increased by
around 0.6, 1.6, and 2.4°C in the years 2020, 2050, and
2070, respectively, with slight spatial variations, and
the total precipitation increased by around 2.3, 6.2, and
9.0%, correspondingly. The warming trends in April,
August, and September were moderately higher than
in the other 3 months (May, June, July), whereas 85%
of the precipitation increase happened in May, August,
and September (data not shown).

Although both temperature and precipitation in -
creased, the change of the dry/wet status was more
per tinent to crop yield. We measured the change in
dry/ wet status in the growing season by looking at the
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Fig. 3. Bias of (a) simulated and county-census mean yields and (b) their standard deviations
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ratio of precipitation to potential evapotranspiration
(P:PET). The monthly PET was calculated using the
monthly average temperature by the Thornthwaite
method (Ma et al. 2005). There was a clear correlation
between maize yield and P:PET for the central and
western areas (Baicheng, Songyuan, Changchun, and
Siping; see Fig. A2 in Appendix 1).

For all regions in Jilin Province, the P:PET ratio was
projected to decrease in the future. In the central area,
the total PET from April to September surpassed pre-
cipitation (data not shown), which implies an en -
hanced aridification trend for all regions of Jilin. The
current semi-dry area in the central region is likely to
become even drier, and the present dry west may
undergo a larger water deficit in the coming decades.

3.2.  Impacts on yield

3.2.1.  Spatial pattern of impacts for the median
projection

In general, the future yield was projected to decrease
in the main sown area, but increase in a few counties in
the eastern area. The wide western and central regions,
including Baicheng, Songyuan, Chang  chun, Siping,
and parts of Liaoyuan and the Jilin District, were likely
to experience a significant yield reduction due to the in-
creasing dryness. The largest reduction tended to be
about 1.1, 2.1, and 2.7 t ha–1 in the years 2020, 2050, and
2070, respectively, for the central cropping area, which
covers Changchun, most of Songyuan, and the north-
ern part of Siping (Fig. 5).

In contrast, a favorable rise in yield emerged for the
current marginal maize-growing regions in the eastern
mountainous areas. Some unsuitable areas at present

could have a doubled maize yield in 2050. It is worth
noting that in the southeast of Tonghua and part of
Yanji, the future change in yield was initially projected
to go up in 2020 but to fall again by around 2.0 t ha–1

towards the end of this century.
Projected yield changes were significantly different

from one region to another (Fig. 5).
In regions showing a downward trend, the reduction

of regional average yield in central counties (Song -
yuan, Changchun, Liaoyuan, and Siping) was pro-
jected to be about 10% in 2020 but more than 20 and
30% in 2050 and 2070, respectively (Table 4). For the
Jilin District and Tonghua, the reduction was less obvi-
ous initially but became significant towards the middle
and end of the century. The 2 eastern regions, Yanji
and Baishan, showed a large benefit in maize produc-
tion during the first 50 yr. However, the gains might be
retarded towards the end of the century because the
potential productivity of the existing cultivar would
have been fully exploited in line with the correspond-
ing local temperature increases.

3.2.2.  Uncertainty analysis of yield projections

Fig. 6 displays the predictions under each scenario in
order to identify the uncertainty within specific SRES.
In the yield reduction areas, the biggest reduction was
projected by the A1T scenario in 2020, but was over-
taken by the A1FI scenario in 2070. The projection of
the B1 scenario demonstrated the smallest reduction
for most of the area in most future periods. With regard
to the positive change areas of Baishan and Yanji, the
differences among 6 SRES projections are much less
than those in the areas with reduced yield. The lowest
yield was projected by the B1 group simulations for
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Baishan in 2050, but was again overtaken by the A1FI
group simulations in 2070. For Yanji, the A1FI group
simulation consistently projected the lowest forecast-
ing for all time periods.

We explored the probabilities of 6 reduction levels
(5, 10, 20, 30, 40, and 50% reduction relative to the
baseline yield) to quantify the likelihood of yield
change. The probability density distribution of 120
regional yield  simulations (from 20 GCMs under 6
SRES) was estimated by the Gauss kernel method
(Parzen 1962), and the cumulative probability of each
reduction level was then calculated (Fig. 7). Baicheng
was most vulnerable to climate change. For the same
reduction rates, this region demonstrated the highest
probabilities for all future time  periods simulated. In
contrast, Jilin District showed the most resilience. Its
2020 reduction was projected to be less than 10% by
all simulations, with a relative small probability that it
would have a 50% reduction by 2070. Apart from the
Jilin District, other maize-growing regions all showed
more than 90% probability to have a 10% reduction
for 2050, and 20% reduction for 2070.

3.3.  Effects on phenology

Climate change also has an impact on maize phenol-
ogy, since temperature changes influence the schedule
of maize sowing, flowering, and grainfilling.

3.3.1.  Sowing date

Spatially, the sowing date of maize will slightly
advance in the future due to the warming trend in
spring. The average result of 100 runs under the
median projection of climate change (see Section 2.2.)
re vealed that the sowing date was 1.5, 3, and 4 d ear-
lier in 2020, 2050, and 2070, respectively, than the
baseline for the main cropping areas, and the advance
in the eastern regions even exceeded 1 wk after 2050
but with high spatial variability (Fig. A3 in Appendix 1).
The advances in the eastern regions were due to the
comparatively lower sowing temperature threshold of
April and May that could be easily surpassed during
future warming. Phenologically, the early sowing
helps to prolong the maturity season of the current
early maize cultivar in the east and is a favorable
change for maize yield.

3.3.2.  Flowering date

Similar to the sowing date changes, there was also
an advance in flowering date but with a more homoge-
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Fig. 5. Simulated maize yield (t ha–1) at baseline and yield 
change in 2020, 2050, and 2070.
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neous pattern for the whole province. The flowering
dates were 2, 3, and 4 d earlier for 2020, 2050, and 2070
(Fig. A4 in Appendix 1).

3.3.3.  Maturity days

Distinctive from the changes in sowing and flower-
ing phases, the entire number of maturity days (from
sowing to harvest) was predicted to shrink in the cen-
tral and western plains, ranging from about 10 to 30 d
shorter in the next few decades, but lengthened by 8

to 22 d in the eastern mountainous areas covering
Yanji, Baishan, and part of Tonghua (Fig. A5 in Appen-
dix 1).

3.3.4.  Grain-filling period

Despite the advance in both sowing and flowering
dates (1 to 5 d earlier), the changes in the reproduction
phase (periods after flowering, including tasseling and
grain-filling) may contribute to most of the changes in
maize phenology (10 to 30 d shorter in middle-western
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Region Baseline 2020 2050 2070
Median Range Change (%) Median Range Change (%) Median Range Change (%)

Baicheng 5.08 4.34 3.80 – 4.55 –14.6 3.66 2.60 – 4.17 –27.9 3.26 1.85 – 3.92 –35.9
Songyuan 6.94 6.33 5.67 – 6.64 –8.7 5.27 3.92 – 5.85 –23.9 4.66 3.00 – 5.45 –32.8
Changchun 8.15 7.33 6.77 – 7.68 –10.0 6.02 5.00 – 6.72 –26.2 5.33 4.03 – 6.22 –34.6
Siping 7.14 6.35 5.76 – 6.64 –11.0 5.26 4.07 – 5.86 –26.4 4.64 3.21 – 5.38 –35.0
Liaoyuan 7.14 6.46 6.04 – 6.71 –9.5 5.43 4.66 – 5.93 –23.9 4.88 3.89 – 5.48 –31.6
Jilin District 6.98 6.76 6.50 – 6.90 –3.2 5.96 5.12 – 6.50 –14.6 5.33 4.09 – 6.13 –23.6
Baishan 4.23 4.75 4.51 – 5.03 12.2 5.60 5.27 – 5.86 32.3 5.71 4.85 – 5.97 34.8
Tonghua 7.06 7.04 6.86 – 7.13 –0.3 6.39 5.49 – 6.79 –9.6 5.73 4.41 – 6.45 –18.9
Yanji 4.16 4.62 4.45 – 4.82 11.1 5.18 4.79 – 5.34 24.6 5.15 4.05 – 5.43 23.9

Table 4. Maize yield projections (t ha–1) in 2020, 2050, and 2070 using 20 general circulation models (GCMs) under 6 scenarios from
the Special Report on Emissions Scenarios (SRES). Median: median yield of 120 projections by 20 GCMs under 6 scenarios; Range: 

10th and 90th percentile range of 120 projections; Change: reduction ratios to baseline yield
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areas and 8 to 22 d longer in the east). Hence, it is
likely that the varied length of the reproduction phase
may be linked to yield changes. In this part of the
study, the single run simulation of both yield and
growth phases at selected sites was calculated and
analyzed.

Four sites were chosen for this experiment, 2 in the
far west (Baicheng and Tongyu), and 2 in the east
(Dunhua and Huadian). Three periods of the growing
phase were considered: the period from sowing to tas-
seling, from the first tasseling to the beginning of
grain-filling, and from grain-filling to maturity.

At Baicheng and Tongyu, the shrinking of the maize
filling period represented more than half of the overall
reduction of the growth season, while the simulations
at Dunhua and Huadian showed the reverse: the grain-
filling was prolonged despite the shortening trend in
the periods from sowing to flowering (Fig. 8). The pos-
sible increase in maize yield in eastern cold counties
was mainly attributed to the improvement of local ther-
mal conditions, as regional warming develops, which

could significantly extend the grain-filling phase. It is
also worth noting that since the maize yield in some
western counties is likely to decrease in the future,
even in the automatic irrigating test (in which irriga-
tion supplies enough water for maize growth) such a
reduction in yield is probably not caused by a deficient
water supply, but rather is induced by the shortened
grain-filling period.

3.4.  CO2 fertilization effect

The increasing atmospheric CO2 concentration was
hypothesized to have positive influences on C4 crop
growth, due to the fact that it accelerates potential
photosynthesis production (Kimball 1983) and in -
creases leaf stomatal resistance, which in turn reduces
the evaportranspiration (Hoogenboom et al. 1995).
However, such a hypothesis of CO2 fertilization was
not supported by some studies based on open-air
experiments (Leakey et al. 2006), and even in some
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confirmed cases, the observed yield increase was
much smaller than expected (Leakey et al. 2009). Nev-
ertheless, in order to obtain a comprehensive view on
the impacts of future climate change on food produc-
tion, we tested CO2 fertilization on the maize yield of
Jilin based on CERES-Maize by taking into account
both the effects of CO2 on the daily photosynthesis rate
and stomatal resistance.

The SRES A1FI and B1 scenarios were selected to
measure the CO2 fertilization effect on yield. The CO2

concentration of these 2 scenarios and their corre-
sponding stomatal resistance are given in Table 5.

As shown in Table 6, the CERES-Maize model simu-
lated significant CO2 fertilization effects for both A1FI

and B1 scenarios. On average, the trade-offs of positive
effects of elevated CO2 concentration on yield reduc-
tion is about 6, 14, and 21% in 2020, 2050, and 2070,
respectively. Relying on regular irrigation, the dry
western regions experienced much more favorable
effects from the elevated CO2 concentration than the
central and eastern regions. Beicheng and Songyuan
showed the highest improvement for all future time
periods, with half or more of the yield reduction being
offset by the enhanced CO2 fertilization. By comparing
the results of A1FI to B1, it is clear that higher CO2 con-
centrations in future change projections have a more
favorable fertilization effect on yield. Although the
favorable effects of CO2 on yield are likely to be signif-
icant, it cannot offset the yield reduction, especially
toward the end of this century.

3.5.  Potential adaptive strategy

As discussed previously, the changes in dryness and
length of grain-filling are the 2 main reasons why
future maize yield may decline in the western and
 central areas of Jilin Province. Therefore, potential
adaptations can be achieved by improving irrigation
efficiency and changing the sowing schedule or intro -
ducing new cultivars that require longer thermal accu-
mulation in response to the predicted increases in the
maize growth season.
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Fig. 8. Maize yield and phenological indicators under 2 irrigation strategies at 4 selected sites. The line and symbols show the 
simulated yield obtained using automatic/controlled irrigation

CO2 (ppm) Stomatal resistance used
in CERES-Maize (s m–1)

Baseline
1961–1990 330.0 65.84

A1FI
2020 417.51 76.50
2050 569.86 99.87
2070 723.82 126.68

B1
2020 411.61 75.71
2050 487.24 86.47
2070 522.03 91.92

Table 5. Relationship of CO2 concentration and the corre-
sponding stomatal resistance as given in DSSAT 4.0



Wang et al.: Climate change effects on maize production

3.5.1.  Improving irrigation efficiency

The sensitivity of the maize yield to increasing water
supply was tested at Baicheng and Tongyu, both in the
western areas. We conducted a series of experiments
of increasing the total effective irrigation from 140 to
300 mm with an increment of 20 mm. It is evident that
the increase in effective irrigation helped to maintain
the present maize yield in the future with climate
change for western regions (Fig. 9). For Baicheng, the
effective irrigation was required to increase approxi-
mately 30% in 2020, and to be nearly doubled in 2050,
in order to acquire the baseline level yield. However,
in 2070, even an amount of 300 mm effective irrigation
could not maintain the baseline level yield. The situa-
tion appeared to be worse in Tongyu, where the yield
loss could not be compensated for by increasing irriga-
tion after 2050, since the grain-filling period of the cur-
rent cultivar is shortened under a warming climate.
The positive effect was more significant when the
effective irrigation increased from 140 to 220 mm, but
less so for higher levels of irrigation.

When using the current furrow irrigation method—
with its low efficiency of only 0.4, which is much lower

than the value of 0.7–0.8 in developed countries (Xu &
Kang 2002) — the maximum effective irrigation (140
mm) under the local official quota (350 mm) cannot sat-
isfy the water demand to keep the baseline maize yield
of Jilin in future decades. If irrigation efficiency can be
increased to 0.55 in the year 2020, which is the objec-
tive value in the national water resources plan (Min-
istry of Water Resources 2010, see www. mwr. gov. cn/
slzx/ slyw/ 201011/ t20101125_246091.html), the maxi-
mum effective irrigation will increase to 192.5 mm, and
the the maize yield can then be maintained in 2020. In
2050, the water required to keep yields at the baseline
level can only be achieved at Baicheng if irrigation
efficien cy is improved to 0.8 by applying a sprinkler/
hose irrigation system (see http:// politics. people. com.
cn/ GB/  1026/ 3540846. html). However, even raising the
efficiency as high as 0.85, irrigation still could not
bring the 2070 projected yield to the baseline level for
either Bai cheng or Tongyu.

3.5.2.  Changing sowing schedules and introducing
alternative cultivars

In response to the future warmer climate, shifting to
an earlier sowing date may alleviate the negative
effects of high temperature on grain filling, but its ef -
fect on maintaining production was not as high as
expected. Experiments at the Baicheng site showed
that the reduction in 2020 was only offset by 3% if sow-
ing occurred 8 d earlier. However, if postponing the
sowing date to delay grain filling until late summer or
early autumn with the optimal temperature for grain
formation, the yield loss could be significantly re -
duced. By sowing on 10 May, which is 20 d later than
the baseline, the production loss at Baicheng could be
reduced by 13 and 22% in 2050 and 2070, respectively.

We also examined the possibility of introducing a
new maize cultivar with a longer growth period than
the cultivar JilinLate. A spring cultivar from southwest
China, Jiao3danjiao (Xiong et al. 2007, with P1 = 320,
P2 = 0.3, P5 = 900, G2 = 700, G3 = 9.2, PHINT = 38.9),
was experimented with in the western areas of Jilin. To
exclude the effect of different G2 and G3 values on
yield, we only used P1 and P5 of Jiao3danjiao in this
experiment. Without changing the planting schedule,
the new cultivar makes more use of the warm climate,
and thus has a longer growth season, especially a 1 to
2 wk extension of the grain-filling period, and pro-
duces much higher yield in 2020 and 2050 than the
baseline level. This indicates that introducing cultivars
of southern origin directly is probably a better adapta-
tion option to alleviate the projected reduction in
maize production in Jilin than staying with the Jilin-
Late cultivar.
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A1FI B1
Without CO2 With CO2 Without CO2 With CO2

Baicheng
2020 –14.2 –2.0 –14.3 –3.0
2050 –30.5 –5.5 –23.0 –5.4
2070 –42.4 –7.8 –29.0 –8.5
2020 –7.8 1.7 –8.1 0.8

Songyuan
2050 –27.7 –7.3 –19.9 –7.3
2070 –38.5 –8.6 –26.7 –8.6
2020 –8.9 –2.4 –9.3 –3.1

Changchun
2050 –28.9 –15.3 –20.4 –10.4
2070 –41.8 –21.2 –27.9 –16.6
2020 –10.4 –2.9 –10.5 –3.1

Siping
2050 –29.8 –12.6 –22.0 –10.2
2070 –41.5 –15.6 –28.8 –14.8
2020 –8.8 –6.0 –9.0 –6.2

Liaoyuan
2050 –26.6 –19.7 –20.0 –15.3
2070 –37.0 –26.6 –25.7 –20.1
2020 –2.8 0.9 –2.9 0.8

Jilin District
2050 –17.0 –8.1 –10.0 –3.83
2070 –32.6 –18.9 –16.1 –8.96
2020 0.02 2.56 –0.02 2.4

Tonghua
2050 –13.0 –6.1 –5.9 –1.3
2070 –28.2 –16.9 –12.1 –6.4

Table 6. Change ratio (%) of maize yield with/without a CO2

effect under the A1FI and B1 scenarios to the baseline level
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4.  DISCUSSION

The large sample size of the ensemble approach cov-
ered a wide range of GCM internal and inter-model un-
certainties and revealed the high uncertainty of climate
change in Jilin. Nevertheless, it is very likely that both
temperature and precipitation are going to in crease, as
projected by the majority of the model experiments of
the ensemble. However, the precipitation increase can-
not offset the land surface water loss due to the inten-
sive thermal variation, which will in crease the irriga-
tion insufficiency if the current irrigation supply is
maintained (Fig. 8). The arid and semi-arid zones will
expand into most parts of the present cropping areas.
Furthermore, the changes in thermal resources due to
regional warming will accelerate crop growth for the
present maize cultivars. The growth period, in particu-
lar the grain-filling phase, is projected to be shortened
by about 10 to 30 d in the current main cropping re-
gions (central and western areas), leading to a de-
creased maize yield. Therefore, the reduction of maize
yield in Jilin will keep in step with the global warming
trend if current agriculture management is maintained.
On the other hand, en hanced CO2 fertilization, or
the enhanced CO2 effects on stomatal resistance and
photo synthesis, arising from the elevated atmospheric
CO2 concentration, might offset the yield reduction sig-
nificantly, which was also pointed out by previous stud-

ies in northeastern China using the CERES model (Jin
et al. 1996, Xiong et al. 2007). It is worth noting that
such a significant CO2 effect on maize production was
only realized for the limited irrigation condition. With
sufficient water resources being available through irri-
gation, the CO2 effect was only about 2 to 3%, which is
not as large as the insufficient irrigation experiment.
However, in addition to the modeling approach, further
detailed field studies are needed to verify the signifi-
cance of CO2 fertilization on yield under different irri-
gation regimes. Nevertheless, even with the CO2 fertil-
ization being taken into account, Jilin may still face
noticeable risks of reduction in maize yield due to the
impacts of climate change.

It is thus evident that the 2 main adaptation mea-
sures would be to increase the irrigation efficiency and
to change the maize cultivar. The improvements in irri-
gation facility can provide a better water supply for
crops and help maintain the current yield, but they
become less effective during the second half of this
century. For the semi-arid region, the improvement of
irrigation efficiency to 0.55 in 2020 is necessary in
order that the present irrigation quota can still satisfy
the water demand in maintaining the baseline yield
level; otherwise there may be a high risk of reduction
in maize production.  After the 2050s, even a well-
developed irrigation system with an efficiency as high
as 0.85 cannot maintain the maize yield at the current
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times for each site under the median climate change scenario
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level in the absence of other adaptations. The other
adaptation of switching to new maize cultivars that
would suit the changed thermal conditions was also
tested. As the maturity period of the current cultivar is
likely shortened by 20 to 30 d in the coming decades,
alternative cultivars that have a longer grain-filling
stage should be introduced, since grain-filling plays a
primary role in yield. Compared to optimizing irri -
gation strategies, the option of cultivar switching is
likely to be a long-term adaptation. A final adaptation
option might be switching to different crops. However,
the effects would rely heavily on the practicability of
technique transformation, which is beyond the scope
of this study.

The overall changes in eastern humid areas are pro-
jected to have more favorable effects on maize yield
due to the improved thermal conditions, except for
small areas among the present maize-planted areas
(e.g. in some areas of Yanji and western Tonghua in
Fig. 5). This may suggest that the cultivar used in the
eastern area has considerable thermal potential in
most parts of eastern Jilin where maize is not the main
crop at the current time (maize constitutes <5% of total
sown area). However, the gains might be weakened in
the late part of this century. As shown in Fig. 6, the A1
group scenarios projected a yield decline for Yanji in
2070 compared to 2050, and similarly for Baishan.

Compared to the yield variation among 20 GCMs,
the difference among projections under the 6 emis-
sion scenarios was much smaller (Fig. 6). It is clear
that the uncertainties of the impacts on crops mainly
arise from the GCMs selected to simulate the future
climate changes, and thus any results based on single
GCM projections should be interpreted carefully in
impact assessments. The disparity in the projected
yield among 20 GCMs under A1FI (which is charac-
terized by intensive global warming) was quite large
compared to that under the other SRES. This was
especially true in Baishan and Yanji, where the yield
simulations by some GCMs (CSIR0-30, GISS-ER,
IPSL_ CM4, UKHADCM3) in 2070 were even lower
than the baseline level, deviating from most of the
projections of the 120 runs. This raises a question of
the conformity of multi-GCM simulations under high
global temperatures.

There are limitations of this study due to the data
availability, as well as our current understanding of the
biophysical processes of maize growth. Firstly, the
observation data of maize growth and weather were
obtained from those sites located in the main cropping
areas of maize, thus in calibration and validation, the
cultivar information in minor maize areas was not
included. This may induce simulation biases in areas
where maize productivity has growth potential and
may be the reason why such increases were projected

in yield and grain-filling periods in the minor maize
areas. Secondly, more soil samples are needed to vali-
date the WISE soil dataset. Several soil parameters
required by DSSAT are not included in WISE and
hence were estimated from other data sources, or were
defaulted to best guess values. More validations of soil
data for crop models are required.

Finally, the focus of this study was on the changes in
long-term mean maize production and the uncertain-
ties under impacts of climate change. Due to the limits
of the crop model and the climate dataset we used, the
potential effects related to changes in climate variabil-
ity were not considered. For example, extremes, such
as droughts and floods, may result in a crop-production
shock events at an annual or inter-annual timescale.
Consequently, predictions of maize yield change and
corresponding adaptation options suggested in this
study are only applicable to average conditions at the
decadal scale.

5.  CONCLUSION

In this study, we demonstrated an approach for both
qualitative and quantitative analysis of the effects of
climate change on maize at the regional scale using
ensemble climate scenarios derived from 20 GCMs
and 6 emission scenarios.

With no alteration in cultivar or cropping techniques,
maize yield was projected to decline on average by
about 10 to 30% of the current yield in the central plain
and western regions of Jilin Province, but to increase
in the current marginal area of the eastern counties
under climate conditions in the years 2050 and 2070.
The yield reduction in the main cropping area was a
response to the combined effect of temperature and
precipitation changes on potential water supply and
maize phenology. The maize growth season in the
major planting regions may be shortened by 15 to 20 d
in 2070, with a significant drop in the grain-filling
period. Although there may be a moderate improve-
ment in maize production in eastern regions, where it
is not the major production region, the yield reduction
of the whole province could be quite substantial in the
coming decades and could have serious implications
for local, and even national, food security. In 2070, we
predict a >90% probability of a 15% reduction in Jilin
maize yield based on the ensemble results.

We identified improvement of irrigation and crop
cultivar shifting as the 2 major adaptation options. The
increasing dryness of the main maize growing area
can be alleviated by increasing irrigation. With dou-
bling of the total irrigation, the maize yield in the arid
west would maintain the baseline level up to the year
2050, but the improvement in irrigation will become
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less effective towards the second half of this century.
Combined adaptation measures for optimising irriga-
tion and switching cultivars are required to keep the
current maize yield level unchanged. Further studies
are needed on the individual and interactive effects of
irrigation strategy, cultivar alteration, and other adap-
tation options in future cultivation.

In summary, this study illustrates a method for pro-
viding useful information on the impacts of climate
change on food security and adaptation options for
local policy makers based on risk assessment. It de -
monstrates a spatial application of an originally site-
based crop production model to simulate the effects
of climate change on yield, working grid cell by grid
cell, rather than following the common representative
site ap proach. Depending on data availability, such a
method provides a potentially more accurate simula-
tion for each grid cell, thereby resulting in significantly
improved confidence in a regional assessment when
results are obtained from spatial aggregation of the
grid cells for the given region.
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Fig. A1. Iteration procedure to optimize the maize cultivar genotype. Ie: evaluating 
indicator (see Section 2.4. in main text)

Appendix 1. Additional information
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Fig. A2. Change in maize yield responding to a future decline in the precipita-
tion to potential evaporation ratio (P:PET) during the growing season (April to
September) in Baicheng, Songyuan, Changchun, and Siping. Yield change 
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Fig. A3. Maize sowing date at baseline and its changes in 2020,
2050, and 2070. DoY: day of year; negative values: advance date

Fig. A4. Simulated flowering date (days after sowing) at
baseline and its probable advances in 2020, 2050, and 2070. 

Negative values: earlier days
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Fig. A5. Simulated number of maturity days (days after sowing)
at baseline and its probable advances in 2020, 2050, and 2070. 

Negative values: earlier days
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