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Project Summary 

The project addressed existing gaps in the field of global land use and climate change research. 

It focused on building and enhancing scientific capacity in three developing countries and 

explored the quantifying methods on assessing spatiotemporal variability of net primary 

production (NPP), NEP and carbon sinks of global grassland ecosystem in response to climate 

change and human activity during 1911-2011. This is a new attempt to integrate natural and 

social sciences in the study of land use change and climate change, and to overcome critical 

gaps in knowledge on how to enhance and manage the global grassland ecosystem, which 

includes management of grassland production, biomass, NPP, NEP, and carbon sinks and 

environmental goals, in the face of climate change in the period 1911-2011.  

 

Keywords: climate change, Human activities, comprehensive sequential classification system 

(CSCS), global grassland ecosystems, NPP, NEP, Carbon Sinks; Grassland degradation; 

Quantitative assessment using comprehensive methods. 

 

Project outputs and outcomes 

Project outputs: 

1. Two APN training-workshops in Nanjing University and in Inner Mongolia 
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 A training workshop and international meeting was held in Nanjing University from 29 

May – 2 June 2013, and were attended by 36 students and 10 lecturers from the four 

collaborating countries.  

 Two training workshop and international meeting were held in Xilinhot City on 25-29 

June 2014 and attended by a total of 56 persons from four countries.  

2. Workshops and field surveys in the study sites (Inner-Mongolia and Xinjiang) 

3. Participation in MAIRS conference in Beijing, China 

 Ten (10) young scientists and lecturers participated in the MAIRS Conference in Beijing, 

China on April 7-12, 2014.  

4. Final workshop, summarizing the project, was organised in Beijing, China, on 8-10 April 

2017.  

5. Assessment results of variations of distribution, extent and NPP of global natural vegetation 

in response to climate change in 1911-2000. 

6. Grassland ecosystem model BEPS-GESS and its synthetical application on carbon cycling 

study on Temperate Eurasian Steppe (Apendix1-2). 

 

Potential for further work 

1. Due to the limited financial support obtained from APN, a large amount of in-kind data, 

models and resources were not able to be utilised in the development of the tool and field 

case study applications.  

2. Some of the case study applications are still in progress and need additional resources to 

complete. The methodology, model and reviewing system developed in this project has 

broad applicability in more countries.  

3. One of the potential future scientific researches is to expand the methodology and model 

to incorporate related issues such as husbandry and farm. 

4. For wider use of the integrated system and results, it is highly important to develop good 

user-interface and technical and user guides. 
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spatiotemporal dynamic of global grassland carbon use efficiency in response to climate 
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1. Introduction 

Grasslands ecosystem, one of the world’s important ecosystem types, accounts for nearly 40 % of 

the world’s land surface. It has important adjustment effects on terrestrial ecosystem function, 

especially to global terrestrial carbon cycle process. Additionally, grassland ecosystem is quite 

sensitive to global climate change. Moreover, it has been deeply influenced by climate change and 
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human activities for food production and animal husbandry development. However, at present the 

response mechanism and correlation between grassland and environment factors are not clear 

and large uncertainties still exist in estimating grassland carbon storage and its response to climate 

change, such as the response of grassland structure, function and carbon cycle to climate change 

and human activities, especially to grazing intervention. In particular, the area of global grassland 

area, grassland types, grassland productivity, and grassland carbon storage etc. are not quite sure. 

Additionally, researches about issues mentioned above are relative rare compared with other 

ecosystems, and there are many blank areas, which need to be explored and studied.  

 

In order to solve the above scientific problems and to illuminate the responses of grassland 

ecosystem function and carbon storage in response to climate, we will do the following researches 

to complete the above research tasks (see Figure 1). 

 

Figure 1 Grassland ecosystem carbon cycle process schematic diagram. 

 

Vegetation classification models play an important role in studying the response of the terrestrial 

ecosystem to global climate change. Additionally, with the progress of technology and the 

advanced needs of grassland production and management in human society, scholars from home 

and abroad posed a variety of grassland classification methods, such as Holdridge Life Zone (HLZ) 

and BIOME4 potential natural vegetation. We designed the CSCS (Comprehensive and Sequential 
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Classification System) method based on thermal and water index, the global grassland types were 

classified and the grassland areas and productivity were calculated of different grassland types.  

The CSCS model designed by ourselves based on four factors, putting the class as the basic unit. 

Advantage of the method is to bring the various types of grassland isolated in the world into a 

unified classification system, and breaking the historical limitation of independent named regions 

of different grassland types in the world (Akiyama & Kawamura, 2007; Chen, et al., 2014; Fan, et 

al., 2012; Foley & Pollard, 2000; French, 1979; Gang, et al., 2014; Gao, et al., 2013; Han, et al., 

2008; Herrmann, Anyamba, & Tucker, 2005; Horion, Cornet, Erpicum, & Tychon, 2013; 

Intergovernmental Panel on Climate Change, 2014; Li, 1997; Lieth, 1975; Lieth & Box, 1972; Liu 

& Zha, 2004; Lu, Batistella, Mausel, & Moran, 2007; Ma, Zhou, & Pei, 2012; Mu, et al., 2013; Mu, 

et al., 2013; O'Mara, 2012). 

 

2. Methodology 

2.1. CSCS classify methods of vegetation from our team 

In practice, the class is determined by combining the quantitative biological climate indices of 

average annual cumulative temperature above 0°C (Σθ) (i.e., Growing Degree-Days on 0°C 

base, GDD0) and humidity index (K), as calculated by the following formula (Akiyama & 

Kawamura, 2007; Chen, et al., 2014; Fan, et al., 2012; Foley & Pollard, 2000; French, 1979; 

Gang, et al., 2014; Gao, et al., 2013; Han, et al., 2008; Herrmann, Anyamba, & Tucker, 2005; 

Horion, Cornet, Erpicum, & Tychon, 2013; Intergovernmental Panel on Climate Change, 2014; Li, 

1997; Lieth, 1975; Lieth & Box, 1972; Liu & Zha, 2004; Lu, Batistella, Mausel, & Moran, 2007; 

Ma, Zhou, & Pei, 2012; Mu, et al., 2013; Mu, et al., 2013; O'Mara, 2012).  

𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 𝑰𝒏𝒅𝒆𝒙 (𝑲) =  
𝑴𝑨𝑷

(𝟎.𝟏 × 𝚺𝚯)
=  

𝑴𝑨𝑷

(𝟎.𝟏 ×𝑮𝑫𝑫𝟎)
    Equation 1 

Where: 

 MAP is the mean annual precipitation (mm);  

 GDD0 is Growing Degree-Days above 0℃, (i.e., mean annual accumulative temperature 

above 0℃) 

 0.1 is a justified coefficient of the model.  

Based on decades of studies, 7 thermal zones and 6 humidity zones (Table 1, 2, 3) have been 

identified and used to differentiate vegetation classes. The CSCS recognizes 42 vegetation 

classes (Figure 2, Table 2,3). 
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2.2. Grassland productivity estimation 

a. Grassland net primary production(NPP) estimates 

Using the MODIS NDVI data and CASA (Carnegie-Ames-Stanford Approach) model and LPA 

model designed by ourselves, we calculate natural vegetation NPP in China from 2001 to 2010, 

and analyse its spatio-temporal dynamic and driving factors. Moreover, we will explore the 

relative roles of climate change and human activities on vegetation restoration or degradation. 

Furthermore, we calculate the global terrestrial vegetation NPP at different spatio-temporal 

scales using Zhou Guangsheng model.  

 

 

Table 1 Classification of 7 thermal zones based on GDD0 

Thermal grades 
Growing degree-days on 0℃ 

base （GDD0） 

Corresponding thermal 

zone  

Frigid  ＜1300  Alpine / frigid zone  

Cold temperate  1300-2300  Cold temperate zone  

Cool temperate  2300-3700  Cool temperate zone  

Warm temperate  3700-5300  Warm temperate zone  

Warm  5300-6200  Temperate subtropics  

Subtropical  6200-8000  Equatorial subtropics  

Tropical  ＞8000  Tropics  
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Figure 2 Global grassland carbon source and sink estimation technical route 
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Figure 3 Index chart for determining PNV class and broad category in the CSCS model (42 

classes and 10 broad categories) (Li, 1997) 

 

Table 2 The classification of 6 humidity level based on K 

Humidity degree K-value Corresponding  natural landscape 

Extrarid ＜0.3 Desert 

Arid 0.3-0.9 Semi desert (desert steppe, steppe desert) 

Semiarid 0.9-1.2 Typical steppe, xerophytic forest, savanna 

Subhumid 1.2-1.5 
Forest, forest steppe, meadow steppe, 

savannah, meadow 

Humid 1.5-2.0 Forest, tundra, meadow 

Perhumid ＞2.0 Forest, tundra, meadow 

 

Table 3 The correspondence relation between 10 broad CSCS PNV categories and 42 classes 

Name of broad category Name of class 

Tundra & alpine steppe 

Frigid-extrarid frigid desert & alpine desert, Frigid-arid frigid zonal semi 

desert, alpine semi desert, Frigid-semiarid dry tundra, alpine steppe, Frigid-

subhumid moist tundra, alpine meadow steppe, Frigid-humid tundra, alpine 

meadow, Frigid perhumid rain tundra, alpine meadow 

Frigid desert 

Cold temperate-extrarid montane desert, Cool temperate-extrarid 

temperate zonal desert, Warm temperate-extrarid warm temperate zonal 

desert 

Semi-desert 

Cold temperate-arid montane semi desert, Cool temperate-arid temperate 

zonal semi desert, Warm temperate-arid warm temperate zonal semi 

desert, Warm-arid warm subtropical semi desert 

Warm desert 
Warm-extrarid subtropical desert, Subtropical-extrarid subtropical desert, 

Tropical extrarid tropical desert 

Savanna 

Subtropical arid subtropical desert brush, Tropical arid tropical desert 

brush, Subtropical-semiarid subtropical brush steppe, Tropical-semiarid 

savanna, Tropical subhumid tropical xerophytic forest 

Steppe 

Cold temperate-semiarid montane steppe, Cool temperate-semiarid 

temperate typical steppe, Warm temperate-semiarid warm temperate 

typical steppe, Warm-semiarid subtropical grasses-fruticous steppe 

Temperate humid 

grassland 

Cold temperate-humid montane meadow, Cool temperate-subhumid 

meadow steppe, Cold temperate-humid montane meadow, Cool temperate-

humid forest steppe, deciduous broad leaved forest 

Forest, including 

temperate forest, sub-

tropical forest and tropical 

forest 

Warm temperate-subhumid forest steppe, Warm temperate-humid 

deciduous broad leaved forest, Warm temperate perhumid deciduous 

broad leaved forest, Cool temperate perhumid mixed coniferous broad 

leaved forest, Cold temperate perhumid taiga forest, Warm-subhumid 

deciduous broad leaved forest, Subtropical-subhumid sclerophyllous forest, 

Warm-humid evergreen-deciduous broad leaved forest, Subtropical-humid 

evergreen broad leaved forest, Warm-perhumid deciduous-evergreen 

broad leaved forest, Subtropical perhumid evergreen broad leaved forest, 

Tropical-humid seasonal rain forest, Tropical perhumid rain forest 
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Based on global climate dataset derived from CRU-TS2.1 (Climate Research Unit), which 

consists of multi-variate mean monthly climatology records at 0.5° x 0.5° resolution for global 

land areas (excluding Antarctica) for the period 1911-2011, we classify the global natural 

vegetation and analyse its NPP of different vegetation types at different spatio-temporal scales 

(Rojstaczer, Sterling, & Moore, 2001; Scurlock & Hall, 1998; Sekiyama, Takeuchi, & Shimada, 

2014; Wang, Sun, Han, & Yan, 2012; Wessels, et al., 2007; Xu D. Y., Kang, Liu, Zhuang, & Pan, 

2009; Xu D. , Kang, Liu, Zhuang, & Pan, 2010; Xu, et al., 2011; Yeh, 2005; Ykhanbai, Bulgan, 

Beket, Vernooy, & Graham, 2015). 

 

CASA model 

NPP was calculated using the CASA model in Figure 4, and it is based on the product of 

Absorbed Photo synthetically Active Radiation (APAR) and light-use efficiency ( ). The basic 

principle of the model can be described by the following formula:  

𝑵𝑷𝑷 (𝒙, 𝒕) = 𝑨𝑷𝑨𝑹 (𝒙, 𝒕) ×  𝜺 (𝒙, 𝒕)      Equation 2 

Where:  x is location (the pixel number) and t is time. APAR represents the canopy-absorbed 

incident solar radiation integrated over a given time period (MJ/m2) and  (x, t) represents the 

actual light use efficiency (g C/MJ) of pixel x in t time.  

 

Estimation of APAR:                     

𝑨𝑷𝑨𝑹 (𝒙, 𝒕) = 𝑺𝑶𝑳 (𝒙, 𝒕) × 𝑭𝑷𝑨𝑹 (𝒙, 𝒕) × 𝟎. 𝟓   

 Equation 3 

Where SOL (x, t) is the total solar radiation (MJ/m2) of pixel x in t time. FPAR (x, t) is the fraction 

of PAR absorbed by vegetation canopy, 0.5 stands for the fraction used for vegetation. 

 

Estimation of  : 

        max21 ,,,,    txWtxTtxTtx    Equation 4  

Where: ),(1 txT and ),(2 txT are temperature stress coefficients which reflect the reduction of 

light-use efficiency caused by temperature factor;
 

）（x,tW  is the moisture stress coefficient; 
max

is the maximum light-use efficiency under ideal conditions. 

 

Zhou Guangsheng model 

This model estimated NPP based on the water-balance and heat-balance equations. The model 

was expressed as follows: 
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 
  

RDIe
RDIRDI

RDIRDIr 25.687.9

2

2
2

11

1
RDINPP 






   Equation 5                  

 
2

20.629 0.237 0.00313RDI PER PER       Equation 6 

rBTPER  931.58     Equation 7 

Where: PER is the potential evaporation; BT is the monthly mean biomass temperature for 

temperature ranging between 0 and 30℃; and r is the annual precipitation (mm). This model is 

climate productivity model only based on the climate data such as temperature and precipitation. 

 

Thornthwaite Memorial Model： 

The Thornthwaite Memorial model was established based on the data used in the Miami model, 

but was modified to include Thornthwaite’s potential evaporation model. The model was 

expressed as follows: 

  200009695.013000  veNPP     Equation 8 

 2
05.111

05.1

Lr

r
V


    Equation 9 

305.0253000 ttL     Equation 10 

 

Where: v  is the annual average actual evapotranspiration (mm), L is annual average 

evapotranspiration (mm), r is annual precipitation (mm), t is the annual average temperature (℃). 

 

b. Grassland net ecosystem production(NEP) estimation 

Carbon flux is important to carbon storage and carbon cycle. Here we calculate NEP through 

model estimation, such as BEPS model and Biome-BGC model. The estimation process based 

on BEPS model is as follows in Figure 5: 
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Figure 4 CASA model estimation of NPP 

 

 

c. Grassland soil organic carbon estimation 

We explore the mechanism and process of carbon (especially soil carbon carbon) cycle at 

regional and global scale using field observation data, and build proper terrestrial vegetation 

biological process model and remote sensing retrieval. 

 

Soil is the largest organic carbon reservoir in terrestrial biosphere, about two times larger than 

that of vegetation or atmosphere, and thus plays a crucial role in the terrestrial carbon cycle. 

Although a minor change of SOC storage could result in a significant alteration of atmosphere 

CO2 concentration. Therefore, accurate estimation of SOC storage and its distribution is critical 

for predicting feedbacks of soil C to global environmental change. Additionally, grassland as the 

most important ecosystem in the world, plays an important role in the global terrestrial C cycle 

due to their large area and high proportion of belowground C stock. They likely contribute as 

much as 20% of the total terrestrial production and provide an annual sink of 0.5 P g C. A 

quantitative assessment of grassland carbon storage and its temporal dynamics in grassland 

ecosystems is thus the basis to accurately evaluate C sinks or sources in global terrestrial C 

cycling. Moreover, identifying the effects of climate change on biomass C dynamics in grassland 
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ecosystems is critical to predicting the response of grassland ecosystems to future climate 

change. However, large uncertainties still exist in estimates of grassland carbon storage and its 

response to climate change. In addition, previous estimates have been mainly based on field 

surveys from the 1960s to 1980s, which limits our understanding of the current carbon storage in 

grassland ecosystem.  

 

 

Figure 5 BEPS model estimation of NEP 

 
 

1) Remote sensing retrieval SOC 

Based on the above conclusions, firstly, we will make a large scale field survey in China and 

reference previous researches SOC density database. Then we established the site-level 

relationship between SOC density and remote sensing dataset such as NDVI or EVI, and 

then to estimate the SOC in a large scale through remote sensing retrieval. Moreover, we 

analysed the spatial-temporal change of SOC of China from the 1980s to 2010s, and explore 

the response of carbon storage to environmental changes. 

2) Century model simulate the SOC: 

Soil Organic Carbon can be also estimated by the Century model, the model calculation 

process show in the following diagram 6-7. 
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3) Hyperspectral detection SOC method: 

At the same time, soil organic carbon (SOC) can be predicted by hyperspectral retrieval 

method. 

― Soil samples: Soil samples plots were set in the typical grassland. And soil sample were 

collected and the SOC were measured in laboratory. 

― Hyperspectral detection: The reflectance of the soil samples was measured in the field 

with the FieldSpec TM Pro JR portable spectrometer. The FieldSpec TM Pro JR 

spectrometer has a light source and measurements are made using the contact probe. It 

offers a full spectral range (350–2500 nm) and rapid data collection (10 scans per 

second). A white spectral on panel (5×5 cm) provided the absolute reflectance factor for 

field measurements. The surface scanned was a core of 10 cm and 10 scans were made 

per sample. The spectral on panel was systematically measured before each sample 

measurement, using 50 replicates. A spectrum reflection curve was recorded by the 

ViewSpec Pro 4.02 spectrum processing software. 

― Prediction of SOC: Partial least-squares regression (PLSR) with leave one-out cross 

validation was used for SOC predictions using both the field spectra and the Hyperion 

remotely-sensed satellite data in SAS software. The root mean squared error (RMSE), 

coefficient of determination (R2) and ratio of performance to deviation (RPD) were used 

to evaluate the performance of SOC prediction models. 
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Figure 6 Estimation SOC based on Century model 

 

― Global potential natural vegetation (PNV) was classified using CSCS method based on 

CRU’s climate data from 1911 to 2000. The PNV in continents, such as Asia, Europe, Africa, 

America and Oceania, was simulated and compared. The NPP changing trend under 

different temporal-spatial conditions was also analysed. Meanwhile, we predict the effects of 

the future extreme climate change and land use change on carbon cycle and carbon storage 

and their changing trend using the CA model built by ourselves. 

― The simulated results of different models, including CASA model, Century model, BEPS 

model, LPA model and Projection Pursuit Regression model were compared through the 

filed observation data, remote sensing data and the atmospheric reflection data. Through the 
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validation of the simulation results that derived from the above different models, the global 

grassland classification, spatial distribution, NPP, biomass, soil organic carbon and the total 

carbon storage of different continents are calculated; the changing trend of the above 

parameters in respond to climate change are also analysed (Rojstaczer, Sterling, & Moore, 

2001; Scurlock & Hall, 1998; Sekiyama, Takeuchi, & Shimada, 2014; Wang, Sun, Han, & 

Yan, 2012; Wessels, et al., 2007; Xu D. Y., Kang, Liu, Zhuang, & Pan, 2009; Xu D. , Kang, 

Liu, Zhuang, & Pan, 2010; Xu, et al., 2011; Yeh, 2005; Ykhanbai, Bulgan, Beket, Vernooy, & 

Graham, 2015; Yong-Zhong, Yu-Lin, Jian-Yuan, & Wen-Zhi, 2005; Zhang, Wang, Li, & Hua, 

2011; Zheng, Xie, Robert, Jiang, & Shimizu, 2015; Zhou W. , et al., 2015; Zhou W. , et al., 

2014) (see Figure 6-7). 

 

 

Figure 7 Hyperspectral detection SOC technical route 
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4) Grassland carbon storage estimation and evolution trends evaluation in Figure 8-10. 

 

Figure 8 Grassland carbon stocks estimation and evolution analysis 

 

 

Figure 9 Estimation of grassland NPP based on BEPS Model 



Final Report: ARCP2015-03CMY-Li 21 

 

 

Figure 10 Grassland carbon storage dynamic and driving mechanism analysis 

 

3. Results & Discussions 

3.1. The NPP of grasslands in China, Mongolia, Pakistan and Uzbekistan during 2000-

2013 

The spatial distribution of grassland NPP was represented in the four countries from 2000 to 

2013 (Figure 11). The distribution of Chinese grassland NPP decrease trend from the southeast 

of China to the northwest. The highest value of grassland NPP was located in the Yunnan-

Guizhou Plateau. In Mongolia, the changing trend of grassland NPP was decreased from north to 

south and the value of Hovsgol grassland NPP was the highest in Mongolia. In Pakistan, the 

grassland NPP was higher in the Islamabad than other regions. The spatial distribution of 

grassland NPP was not occur evenly, and the trend was increase from the south to north. By 

compare the grassland NPP in these four countries, the value of grassland NPP was highest in 

China, followed by the Mongolia, Pakistan and Uzbekistan. The average of grassland NPP 

during the period of 2000-2013 was 1112.827 Tg C in China, 161.011 Tg C in Mongolia, 26.66 

Tg C in Pakistan and 16.39 Tg C in Uzbekistan (table 4) (Yang, 2017). 
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Figure 11 The spatial distribution of grassland NPP in these four countries (g C/m2/year) (Yang, 

2017) 

 

Table 4 The NPP of grasslands in China, Mongolia, Pakistan and Uzbekistan during 2000-2013 

(Unit: Tg C) (Yang, 2017) 

Year China Mongolia Pakistan Uzbekistan 

2000 1009.22 159.24 23.24 13.16 

2001 1016.67 151.42 24.26 13.23 

2002 1141.95 156.29 22.78 18.50 

2003 1136.14 172.32 27.62 20.78 

2004 1137.03 146.13 25.14 20.28 

2005 1091.19 156.58 28.14 17.96 

2006 1144.32 153.92 26.85 15.13 

2007 1121.84 130.39 29.97 15.74 

2008 1126.63 157.75 27.32 11.98 

2009 1125.91 153.82 22.56 22.08 

2010 1093.87 155.67 28.55 17.00 

2011 1092.66 176.70 29.48 11.01 

2012 1139.97 194.79 26.60 15.32 

2013 1202.17 189.14 30.67 17.37 
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Figure 12 The validation of the grassland NPP simulated by CASA model (g C/m2/year) (Yang, 

2017) 

 

The NPP determined from the field sampling was compared with the simulated values to verify 

the estimation accuracy of the CASA model. The correlation between the observed NPP and the 

estimated NPP (R2 =0.6954, P < 0.001) indicated that the CASA model exhibited a satisfactory 

estimation accuracy in estimating NPP (Yang, 2017). The simulated NPP was slightly larger than 

the actual field data. However, these differences did not alter the results of the model. 

 

Calculated by the least squares method, simple linear regression was employed to analyze the 

inter-annual variation of grassland NPP dynamics at a global scale from 2000 to 2013. The slope 

of the trend line in the multiyear regression equation for a single pixel represents the inter-annual 

variation rate, which is solved by the ordinary least-squares method. We found that the 

interannual variability of China grass growth trends, the extent of growth is less (R2=0.3277), and 

interannual variability of Mongolia grassland is the trend of growth, and with the less amplitude 

(R2=0.2656). Through to the Pakistan grass observation found that the interannual NPP grow 

larger (R2=0.366). By contrast, the grassland NPP decline slightly (R2=0.0044) in the Uzbekistan 

(0). 



24 Final Report: ARCP2015-03CMY-Li 

 

 

Figure 13 The inter-annual variation of grassland NPP in these four countries (Pg C in China and 

Mongolia; Tg C in Pakistan and Uzbekistan) (Yang, 2017) 

 

3.2. The carbon storage in China, Mongolia, Pakistan and Uzbekistan based on CASA 

model and climate controls in these four countries 

3.2.1. Grassland ecosystem storage and its spatial patterns 

The CASA model estimated that the biomass carbon storage was 1.47 Pg C, 0.44 Pg C, 0.03 Pg 

C, 0.03 Pg C in China, Mongolia, Pakistan and Uzbekistan, respectively. By contrast, the soil 

carbon storage was 29.25 Pg C, 13.86 Pg C, 0.46 Pg C, 0.29 Pg C in these four regions (table 

5). The grassland carbon storage contained the biomass carbon storage and soil carbon storage. 

Among these four countries, the soil carbon storage accounted for most of the total carbon 

storage, and the proportions were all over 90%. As China had the largest areas of grassland, it 

had the most grassland carbon storage among the four countries. Mongolia had the second 

largest carbon storage. And, followed by Pakistan and Uzbekistan. 

 

It should be noted that our model results were close to the estimates made by Ma et al. (2016). 

For instance, it was estimated that the biomass carbon storage was 1.61 Pg C and SOC storage 

was 29.37 Pg C using six methods (three spatial interpolation methods and three grassland 

classification methods) to estimate carbon storage of Chinese grasslands based on published 
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data. Fang, et al. (2010)’s estimation of biomass carbon and SOC storage also agreed with the 

results of our study. 

 

Table 5 The carbon storage of grasslands in China, Mongolia, Pakistan and Uzbekistan (Unit: Pg 

C) 

 China Mongolia Pakistan Uzbekistan 

Biomass carbon storage 1.47 0.44 0.03 0.03 

Soil carbon storage 29.25 13.86 0.46 0.29 

Grassland carbon 

storage 
30.72 14.30 0.49 0.32 

Study result of Ma 

(2016) 
30.98 - - - 

Study result of Fang 

(2010) 
29.10 - - - 

 

3.2.2. Spatial distribution of grassland ecosystems carbon storage in the four regions 

The distribution of biomass carbon storage was discovered in Figure 14. In general, the biomass 

carbon density of grassland decreased from southeastern China toward the northwest. The 

mean biomass carbon density was 0.41 kg C m-2 and the range of carbon density was 0.1-1.33 

kg C m-2. The higher mean carbon density of grassland was found in the southeast of Qinghai 

province, West Sichuan Plateau and Gannan Plateau, where the biomass carbon storage per 

unit area was above 0.7 kg C m-2, and the largest value was 1.33 kg C m-2. In Mongolia, the 

higher carbon storage was distributed in the north part, the carbon density decreased from north 

to south. In Pakistan, the higher carbon density was found around the Islamabad and the largest 

carbon density was 1.23 kg C m-2. The carbon density of Uzbekistan was generally lower than 

the other three countries.   

 

The results showed that the spatial pattern of soil carbon storage in China, Mongolia, Pakistan 

and Uzbekistan had obvious regional differences (Figure 15-16). According to the simulated 

results, the total SOC storage of Chinese grassland was 29.25 Pg C and the distribution of SOC 

storage in China showed an obvious zonal pattern. The lowest values (<5 kg C m-2) appeared in 

dry regions near deserts, and the highest values (>25 kg C m-2) were found in humid regions 

such as the parts of Hulunbeir Grassland, southeastern fringe of the Qinghai-Tibetan Plateau 

and Altay Prefecture of Xinjiang province. In Mongolia, the highest values (>25 kg C m-2) were 

found in the north of Mongolia, and most in the Huvsgel province. The situation of the distribution 
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of soil carbon storage in Pakistan and Uzbekistan were similar with the distribution of biomass 

carbon storage and the Uzbekistan had the lowest carbon density among these four regions. 

 

Figure 14 The spatial distribution of biomass carbon storage in these four countries  

(kg C m-2) (Yang, 2017)  

 

This study did not consider the human activities and land use change on the influence of 

grassland ecological system, so the carbon stock changes mainly affected by climate change. A 

lot of research has shown that the grassland ecosystem carbon cycle is influenced by climate 

factors such as rainfall and temperature which is significant affected the carbon cycle. The 

climate variation influenced terrestrial vegetation mainly through precipitation and temperature 

changes, which further regulated soil respiration, photosynthesis, and growing status and 

distribution. As the rainfall was good for the growth of vegetation, especially in dry land, the 

grassland carbon storage was higher in the areas with high rainfall. And the low temperature in 

the meadows of these four regions, hence soil organic carbon decomposes slowly, causing the 

soil organic carbon density to be high. However, in some areas the carbon storage is affected by 

the humid climate, therfore the biomass carbon density is higher. By contrast, the warm climate 

stimulates soil organic carbon decomposition and conduces the lower soil carbon density. 
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Figure 15 The spatial distribution of SOC storage in these four countries (kg C m-2) (Yang, 2017)  

 

 

Figure 16 The spatial distribution of whole grassland carbon storage (kg C m-2) (Yang, 2017) 
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Figure 17 The changing trends of climate factors in the four countries from 2000 to 2013 (Yang, 

2017) 

 

Precipitation change by changing the water by vegetation growth and soil microbial activity, as 

well as the soil moisture content, to influence the litter carbon to the soil type and soil respiration 

rate, and thus affect the grassland ecosystem carbon library. And the temperature change is a 

major role in plant photosynthetic rate, plant root respiration and soil microbial activity, thereby 

affect the ecological system input and output of carbon library. Therefore, the change of the 

grassland ecosystem carbon depends on the balance between input and output. 

 

3.3. The grassland net ecosystem productivity (NEP) of these four countries based on 

CASA model 

3.3.1. The spatial distribution of grassland NEP in these four countries 

The distribution of grassland NEP in China was presented in Figure 18. We can see from the 

fig18, the general distribution characteristics of the grassland NEP higher from north to south, the 

central and northeast of China was low, the grassland NEP in Qinghai-Tibet Plateau was high. 

The carbon sources (NEP < 0) was mainly located in Sichuan Basin, northeast part of Inner 

Mongolia. The carbon sink (NEP > 0) was mainly distributed in the southeast of Tibetan. In 

Mongolia, the carbon sources (NEP < 0) was mainly located in the central and east of Mongolia. 

The carbon sink (NEP > 0) was mainly distributed in the Hovsgol. By contrast, the grassland is a 
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weak carbon sinks in Pakistan. And the grassland in Uzbekistan was almost the carbon sinks. 

Through the table 6, we found that the annual average grassland NEP in China was 0.01448 Pg 

C/year, which showed the grassland ecosystem absorb carbon dioxide from the atmosphere. In 

Mongolia, the grassland annual average NEP was negative value (-0.00725 Pg C/year), which 

explained that the grassland ecosystem released the carbon dioxide into the atmosphere. In 

Pakistan, the grassland annual average NEP was negative value (-0.00037 Pg C/year). Both the 

grassland in Mongolia and Pakistan are weak carbon source, and the Pakistan was even weaker 

when compared with the grassland NEP in Mongolia. In Uzbekistan, the annual average 

grassland NEP was 0.00139 Pg C/year.  

 

Table 6. The annual average NEP of grasslands in China, Mongolia, Pakistan and Uzbekistan 

(Yang, 2017) 

 China Mongolia Pakistan Uzbekistan 

NEP (Pg C/year) 0.01448 -0.00725 -0.00037 0.00139 

 

 

Figure 18 The spatial distribution of grassland NEP in these four countries (gC/m2/year) (Yang, 

2017)  
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3.3.2. The dynamic analysis of grassland NEP in these four countries 

Figure 19 is obtained by least square fitting of the NEP trend chart. The dynamic of grassland 

NEP in these four countries is diverse from each other. In China, the grassland NEP decline was 

mainly located in Hulun buir grassland in the northeast of China. And grassland NEP in the 

central of Mongolia reduced significantly. By contrast, the grassland NEP fall mainly distributed 

around the Islamabad in Pakistan, and the reduction of grassland NEP in Uzbekistan is less, the 

lowest value is 0.98 g C/m2/year.  

 

Figure 20 for the variability of spatial distribution of annual precipitation, nationally, decadal 

carbon absorption increase/decrease area basically consistent with the increase or decrease in 

rainfall decadal area. This shows that in the national scale, the precipitation is the NEP spatial 

pattern of the main climate factor of change, but its role in different regions also have certain 

differences. The NEP in the north and inter-annual NPP, and the southern region is related to soil 

respiration. On the national scale, NPP and HR have better correlation with precipitation and 

temperature respectively, the NEP as their difference nature is affected by the common 

temperature and precipitation changes, just in different regions vary their degree of the impact of 

the NEP. The grassland NEP increases with the increase of atmospheric CO2 concentration and 

precipitation, the grassland NEP decrease with temperature rising (Figure 20-21). 

 

Need to point out that the difference in value as the NPP and soil respiration, the NEP the 

uncertainty of the estimating results is far greater than the NPP, and this is only driven by climate 

change a change in the pattern of regional carbon balance of payments may be an estimate. 

From the model itself, CASA model only considers the climate change and the CO: concentration 

increase, there is no consideration of land use/cover change, forest regeneration and pests, fire 

and other natural disturbances on terrestrial carbon balance, the influence of these have caused 

a lot of uncertainty for the results of the study, especially the land use/cover change is an 

important driving factor of carbon balance changes. In recent years, the land use and cover 

change on the influence of the carbon balance research more is to use based on the statistical 

and survey data, the method of estimating the result error is bigger, no authority for the China 

regional data. 
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At the same time, due to the lack of Mongolia, Pakistan, Uzbekistan observation data, the 

simulation of soil respiration also lack sufficient validation, simulation verification to China also 

need to be further strengthened. These are to be the next step work continued to improve and 

improve. 

 

Figure 19 The changing trend of grassland NEP in these four countries (g C/m2/year) (Yang, 

2017)  
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Figure 20 The distribution of precipitation in China, Mongolia, Pakistan and Uzbekistan (Yang, 

2017) 

 

Figure 21 The distribution of temperature in China, Mongolia, Pakistan and Uzbekistan (Yang, 

2017) 
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3.4. Assessing the Spatiotemporal Variations of Distribution, Extent and NPP of 

Terrestrial Ecosystems in Response to Climate Change from 1911 to 2000 

In our previous paper (Gang , et al., 2013), we analyzed the distribution, extent and NPP of 

terrestrial ecosystems from 1911 to 2000, and came to the conclusion that consistently rising 

global temperature and altered precipitation patterns had exerted strongly influenced on 

spatiotemporal distribution and productivities of terrestrial ecosystems, especially in the mid/high 

latitude. The area of tundra & alpine steppe reduced significantly (5.43%), and were forced to 

head northward due to significant ascending temperature in northern hemisphere. In accordance, 

the global terrestrial ecosystems productivities increased by 2.09%. In general, effects of climate 

change on terrestrial ecosystems were deep and profound in 1911-2000, especially the latter half 

period. Key challenges for estimating grassland ecosystems vulnerability under varying 

temperature and precipitation changes lie in better recognizing how and to what extent the past 

climate change have affected the grassland ecosystems. To better clarify this issue, in this study, 

the distribution and shifts of grassland ecosystems as well as their NPP from 1910 to 2010 were 

evaluated. The correlation analysis between NPP dynamics and climate factors in the same 

period were also performed to reveal how climate changes have controlled the grassland 

productivity. The outcomes of this study do not only shed lights on how grassland ecosystems 

responded to climate change, but provide a basis for better grassland management. The results 

may be partly complement to IPCC report. Furthermore, methods used in this paper can serve as 

a guidance for regions lacking of collected data in past and future global change research. 

 

The grassland ecosystems have long been affected by climate change, knowledge about how 

grassland ecosystems responded to climate change is still lacking. To evaluate how the climate 

change have affected the grassland ecosystems across the globe from 1910 to 2010, in this 

study, the spatiotemporal dynamic of distribution, shift ranges and net primary production (NPP) 

of grassland ecosystems were analyzed by using the modified comprehensive sequential 

classification system (CSCS) and the segmentation model. The results showed that consistently 

increasing temperature and altered precipitation patterns had exerted strongly influence on 

spatiotemporal distribution and productivities of grassland ecosystems, especially in the mid- and 

high latitude. The total area of grassland ecosystems widespread declined by 73.58 × 104 km2 

(1.42%) over the past 100 years. Only the distribution of tropical savannas expanded with 238.06 

× 104 km2 (12.36%), while areas of all the other grassland type decreased, the largest reduction 

was found in tundra & alpine steppe. During this period, most grasslands were forced to shift 
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northwards due to the significant ascending temperature, particularly in the northern hemisphere. 

The longest and shortest shift distance was found both in the southern hemisphere, for the 

desert grassland shift 1289.75 km towards southwest, and the tundra & alpine steppe move 

towards northeast with 55.38 km. Meanwhile, the global grassland NPP showed an overall 

increasing trend with a rate of 745.52 Tg DW yr-1 (2.88%), within which tropical savannas 

contributed the most. By contrast, NPP of all the other grassland types declined during this 

period. Grassland NPP was more correlated with mean annual precipitation in comparison to 

mean annual temperature.  

 

To assess the variations of distribution, extent and NPP of global natural vegetation in response 

to climate change in the period 1911-2000, and to provide a feasible method for global change 

research in regions where historical data collected/observed were difficult to be obtained. In this 

research, variations of spatiotemporal distributions of global potential natural vegetation (PNV) 

from 1911 to 2000 were analysed with the comprehensive sequential classification system 

(CSCS), and net primary production (NPP) of different ecosystems was evaluated with the 

Synthetic model, to determine the effect of climate change on the terrestrial ecosystems. The 

results showed that consistently rising global temperature and altered precipitation patterns had 

exerted strongly influenced on spatiotemporal distribution and productivities of terrestrial 

ecosystems, especially in the mid/high latitude. Ecosystems in temperate zones expanded and 

the areas of global deserts decreased as a consequence of climate variations. The mostly 

decreased vegetation was cold desert (18.79%), while the maximum increase (10.31%) was 

recorded on Savana. In addition, the area of tundra & alpine steppe reduced significantly 

(5.43%), and were forced to head northward due to significant ascending temperature in mid-and 

high latitude. In accordance, the global terrestrial ecosystems productivities increased by 2.09%, 

most of which was attributed to Savana (6.04%), tropical forest (0.99%) and temperate forest 

(5.49%), whereas the most NPP losses was found on cold desert (27.33%). NPP increase also 

presented latitudinal distribution, tropical zone, NPP of which amounted to more than a half of 

total NPP, was estimated to be the maximum increase with 1.32%, and followed by NPP in North 

Temperate Zone with 3.55%. At global scale, NPP showed a significant positive correlation with 

precipitation in comparison to mean annual temperature and biological temperature. In general, 

effect of climate change on terrestrial ecosystems was deep and profound in 1911-2000, 

especially the latter half period (Gang C. , 2015). 
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3.5. Assessing the impact of restoration-induced land conversion and management 

alternatives on net primary productivity in Inner Mongolian grassland, China 

Using Inner Mongolia (IM) as a case study, we used MODIS NDVI data to estimate the 

vegetation coverage for assessing the current status of grassland, and calculated the changing 

trend of vegetation coverage from 2001 to 2010 to judge whether the grassland showed 

restoration trend or degradation trend. Net primary productivity (NPP) was selected as an 

indicator to measure the relative contributions of climate change and human activities. We used 

ArcGIS 9.3 software to analyse the spatial heterogeneity of vegetation dynamics and the 

contributions of the two factors by combining the biome boundaries of IM. Grassland was the 

most widespread vegetation in China and has a major influence on environmental quality and 

social-economic development. Accurate assessing of its dynamics as well as its relevance to 

climate change and human activities has attracted the attention of many researchers. In this 

paper, vegetation dynamics of the grassland in Inner Mongolia were studied by analyzing 10 

years’ (2001-2010) satellite observations of vegetation coverage. Potential NPP and the 

difference between potential and actual NPP were selected as indicators to assess the relative 

role of climate change and human activities in vegetation dynamics. The mean vegetation 

coverage of the total grassland area in Inner Mongolia was 0.37 in 2010, increasing gradually 

from the southwest to the northeast part of the region. During 2001-2010, 42.10% of the region’s 

total grassland area tended to be restored, while 45.06% exhibited a degradation trend. Human 

activities were the dominant driving force responsible for 78.54% of the restoration process, while 

climate change only contributed 19.05%. However, in the degradation process, climate change 

nearly played a coequal role with human activities, contributing 40.50% and 55.69%, respectively 

(Mu, et al., 2014).  

 

3.6. Assessing the spatiotemporal dynamics of carbon balance of the terrestrial 

biosphere in response to climate change in 1911-2000 

To assess how terrestrial ecosystems react to climate change at different scales in a long term, 

in this paper, the spatiotemporal variability of terrestrial carbon flux at global and continental 

scales were assessed and compared in the period 1911-2000. The 30-year running mean values 

results indicated that the terrestrial biosphere has been approximately neutral in 1911-1940 

periods, and climate variability and change promoted absorbance of terrestrial carbon in 1941-

1970 periods with 0.482 Pg C yr-1, while in 1971-2000, the sink effect weakened with 0.239 Pg C 

yr-1. Ecosystems in Europe and North America were estimated to have been absorbing carbon in 
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the last 90 years. Savanna and temperate forest contributed the most to carbon uptake than 

other ecosystems, while most carbon release was induced by tropical forest. Ecosystems at 

northern mid-latitude north of the tropics have been sinks for atmospheric carbon, and the effect 

strengthened gradually in the past 90 years. By contrast, the South Temperate Zone appeared 

neutral for carbon in 1911-1970, while carbon accumulated significantly and amounted to 0.208 

Pg C yr-1 in 1971-2000. The tropic zone appears to be a small net source of carbon in 1911-

1940, and then carbon was accumulating in 1941-1970. However, in 1971-2000, a robust carbon 

source was formed. Due to the consistently rising global temperature and redistributed 

precipitation patterns, the distribution of terrestrial ecosystems changed with shrinking mid- and 

high latitude ecosystems, while expanding of ecosystems in temperate zones. Accordingly, the 

global terrestrial NPP increased during the past century, but it didn`t cause a substantial 

terrestrial carbon sink, for warming may enhance NPP, but also stimulates soil respiration. In 

general, the react of carbon flux of different terrestrial ecosystem varied a lot in response to 

climate change, and the generation or reversal of the terrestrial carbon sink caused by climate 

change itself may play a negative feedback to the climate system (Wang Z. , 2016).  

 

3.7. Assessing the Spatiotemporal Dynamic of Global Grassland Carbon Use Efficiency 

in Response to Climate Change from 2000 to 2013   

Carbon use efficiency (CUE) mainly refers to the allocation of photosynthesized products by 

plants and is commonly used to measure the primary production of plants in terrestrial systems. 

To reveal whether the global grassland ecosystem is becoming more or less effective in storing 

carbon under climatic fluctuation, in this study, the annual CUE of grassland ecosystems was 

calculated from 2000 to 2013 based on the MODIS data. The spatiotemporal dynamics of 

grassland CUE and their correlations with climate variables were also investigated to reflect how 

ongoing climate variations are affecting grassland CUE at a global scale. The results showed 

that the highest and lowest value of CUE was recorded in closed scrublands with 53.93% and 

woody savannas with 46.51%, respectively. From 2000 to 2013, nearly 55.76% of grassland 

areas experienced increasing CUE, and most of these regions (44.33%) experienced non-

significant increase. By contrast, regions experienced non-significant decrease accounted for 

38.64% of total grassland areas, and mainly distributed in east of Australia and south of Africa. 

Regions showing significant and extremely significant decrease CUE accounted for 3.67 and 

1.93% of total grassland areas, and mainly concentrated in the west of the Kgalagadi Basin and 

north of the Turan plain. During the period 2000 to 2013, the maximum increase of CUE 
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(0.251%/yr) was found in wood savannas, while the least increase (0.022%/yr) was observed in 

non-woody grasslands. The temporal dynamics of the grassland CUE were strongly controlled by 

temperature and precipitation. The areas of grassland CUE demonstrated a positive correlation 

with MAP and a negative correlation with MAT accounted for 68.68 and 68.81% of total 

grasslands, respectively. A warmer and drier condition would led to higher ecosystem respiration 

and lower net productivity, which would limit the capability of grassland ecosystems to store 

carbon (Wang Z. , 2016). 

  

3.8. Several main innovations in the research methodology  

1) This research paper improves the algorithm of the optimum temperature. This paper adopts 

vegetation growth temperature which is proposed to solve the method of upper and lower in 

NDVI corresponds to the maximum temperature and NDVI change rate corresponding to the 

largest temperature to determine the appropriate vegetation growth temperature of upper 

and lower limits. Then, based on suitable growth temperature range, calculated temperature 

and NDVI partial correlation relationships beside the influence of precipitation. Though the 

significance test, the maximum correlation coefficient of the corresponding temperature 

value is defined as the optimum temperature.  

2) Maximum light energy utilization is one of the most important input parameters of CASA 

model, its value is different between different vegetation types. Previous study found that the 

ε_max was also affected by leaf area index, thus assuming maximum light energy utilization 

and vegetation index and leaf area index multiplicative factor relations, and inverse 

proportion. But this method has been used on small regions and China's grassland areas, 

and have achieved good results. In other areas and even the global scale has not been 

verified. Therefore, this article applied this method in the global grassland NPP simulation. 

Through the validation of the measured data, this method has been proved that has a good 

applicability on a global scale.  

3) Among the influence factors of NPP in the grassland ecosystem research, research focuses 

on the impact of climate change trend of long-term average assessment ways, and less 

research focused on extreme weather events. At the same time, the research about drought 

mostly focused on the influence of forest ecosystem, few studies have been done on 

grassland ecosystem. And the study scale is small, lacking of large-scale comprehensive 

analysis. Therefore, this study used scPDSI drought index to study the effect of drought on 

global grassland NPP, helps to elucidate climate change especially extreme climate 
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influence on the grassland ecosystem carbon cycle process, and have important 

significance on disaster prevention and mitigation and adaptation countermeasures of 

extreme events. 

 

4. Conclusions 

4.1. Main Achievements from the project  

Grasslands are among the largest biomes in the world, accounting for nearly 25% of the land 

surface on earth. Grasslands have many ecological functions, such as wind prevention, sand 

fixation, soil and water conservation, climate adjustment and air clearness. Grasslands significantly 

contribute to food security by providing food for ruminants, which are sources of meat and milk for 

human consumption. Due to the largest distribution, grassland ecosystems also play a key role in 

balancing the concentrations of global atmospheric greenhouse gases, reducing the effects of 

green-house gases through carbon storage and sequestration. With the global climate change and 

intensification of human activities, structures and functions of grassland ecosystems have been 

changing accordingly. Assessing the effects of climate change on the spatiotemporal distribution 

and dynamic of grassland ecosystems and driving factors do not only help to understand in the 

interactions of global change and grassland ecosystems, but provide baselines for grassland 

carbon cycle and global terrestrial carbon cycle assessment.  

 

Based on global grassland as the main research object, we used the International Geosphere 

Biosphere Program (IGBP) to obtain the grassland area. Model simulation is the main research 

methods, as remote sensing and meteorological data was used to drive the model driven during 

the 1982-2008 period. Based on our researching works, our project had accomplished the following 

achievements:  

 based on the CASA model, on the basis of the model parameters of the largest light 

energy utilization coefficient and temperature stress of the algorithm of optimum 

temperature was improved, using the improved CASA model to simulate the global 

grassland net primary productivity from 1982 to 2008, and the ground verifies the 

accuracy of the measured data of the improved model. 

 to simulate the 1982-2008 global grassland Net primary productivity (NPP) the spatial 

distribution and its variation characteristics over time. 
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 based on the analysis of global temperature and precipitation from 1982 to 2008, we 

analyse the the spatial distribution and internal characteristic, explore the correlation 

between global grassland NPP and temperature and precipitation. 

 using scPDSI drought index to analyses the global grassland drought occurred in 1982-

2008 range and extent, through the analysis of global grassland scPDSI drought index 

characteristics and evolution of space and time, and study its impact on the global 

grassland NPP. 

 the spatial distribution and variation of global grassland NPP was simulated in this study, 

a comparative analysis was conducted to detect the spatial differences of NPP which 

modelled by three model, and its correlation with climate factors was also performed. 

 

4.2.  Main Advances and Conclusions from the project 

1) By our project, the spatial distribution of grassland NPP dynamic was represented in the four 

regions and the grassland NPP variation of these four regions were calculated from 2000 to 

2013. The grassland NPP increased 859.63 Gg C year-1, 306.9 Gg C year-1, 49.4 Gg C year-

1 in China, Mongolia and Pakistan, respectively. In Uzbekistan, the grassland NPP decreased 

by 9.4 Gg C year-1. The trend of NPP variation was consistent with the change of grassland 

area in these four regions. Furthermore, our results had showed that the spatial trends of 

grassland NPP at different significance levels are not equal in the four regions. For example, 

Mongolia has the largest percentage of grassland with slight increase, which accounts for 

64.93% of the grassland. Pakistan has the largest percentage of grassland with significant 

increase (17.81%) and extremely significant increase (14.68%) in the four regions. The largest 

percentage of grassland with slight decrease occurred in Uzbekistan, accounting for 60.93% 

of the grassland area. 

2) In the project, the CASA model estimated that the biomass carbon storage was 1.47 Pg C, 

0.44 Pg C, 0.03 Pg C, 0.03 Pg C in China, Mongolia, Pakistan and Uzbekistan, respectively. 

By contrast, the soil carbon storage was 29.25 Pg C, 13.86 Pg C, 0.46 Pg C, 0.29 Pg C in 

these four regions. The grassland carbon storage contained the biomass carbon storage and 

soil carbon storage. Among these four countries, the soil carbon storage accounted for most 

of the total carbon storage, and the proportions were all over 90%. As China had the largest 

areas of grassland, it had the most grassland carbon storage among the four countries. 

Mongolia had the second largest carbon storage. And, followed by Pakistan and Uzbekistan. 

It should be noted that our model results were close to the estimates made by Ma et al. (2016). 
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For instance, it was estimated that the biomass carbon storage was 1.61 Pg C and SOC 

storage was 29.37 Pg C using six methods (three spatial interpolation methods and three 

grassland classification methods) to estimate carbon storage of Chinese grasslands based on 

published data. Fang et al. (2010)’s estimation of biomass carbon and SOC storage also 

agreed with the results of our study. 

3) The distribution of grassland NEP in China was presented in Figure 18. We can see from the 

figure that the general distribution characteristics of the grassland NEP higher from north to 

south, the central and northeast of China was low, the grassland NEP in Qinghai-Tibet Plateau 

was high. The carbon sources (NEP < 0) was mainly located in Sichuan Basin, northeast part 

of Inner Mongolia. The carbon sink (NEP > 0) was mainly distributed in the southeast of 

Tibetan. In Mongolia, the carbon sources (NEP < 0) was mainly located in the central and east 

of Mongolia. The carbon sink (NEP > 0) was mainly distributed in the Hovsgol. By contrast, 

the grassland is a weak carbon sinks in Pakistan. And the grassland in Uzbekistan was almost 

the carbon sinks. Through our researches, we found that the annual average grassland NEP 

in China was 0.01448 Pg C/year, which showed the grassland ecosystem absorb carbon 

dioxide from the atmosphere. In Mongolia, the grassland annual average NEP was negative 

value (-0.00725 Pg C/year), which explained that the grassland ecosystem released the 

carbon dioxide into the atmosphere. In Pakistan, the grassland annual average NEP was 

negative value (-0.00037 Pg C/year). Both the grassland in Mongolia and Pakistan are weak 

carbon source, and the Pakistan was even weaker when compared with the grassland NEP 

in Mongolia. In Uzbekistan, the annual average grassland NEP was 0.00139 Pg C/year. 

4) Our study is based on CASA model, on the basis of the model parameters are maximum light 

energy utilization coefficient and temperature stress of the optimum temperature of the 

algorithm is improved, and by using the improved CASA model to simulate the grassland net 

primary productivity in the world during 1982 to 2008, and we used the measured data to 

assessment the accuracy of the improved model. Results show that the improved CASA 

model can be used in the estimating of grassland NPP simulation NPP value of correlation 

between measured values with the ground reached significant level (R2 = 0.77, P < 0.05). 

5) Our study used improved CASA model to simulate the global spatial distribution of grassland 

NPP from 1982 to 2008. We found that the global total grassland NPP in an average of 

24.73±0.27 Pg C /yr. The growth trend of global grassland NPP to present more significantly 

(P < 0.05) from 1982 to 2008, the growth trend of 0.0254 Pg C/yr. Using the piecewise linear 

regression model, the global grassland NPP from 1982 to 1982 showed significant growth 
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trend (P < 0.05), the annual growth rate of 0.0554 Pg C/yr, while show no significant downward 

trend from 1996 to 2008, annual growth rate of 0.0337 Pg C/yr. Analysis different grassland 

types, savannas has the highest average NPP, was 560.07 g C/m2/yr, followed by woody 

savannas, 474.45 g C/m2/yr, closed shrub land and non woody grassland were 328.58 and 

237.78 g C/m2 /yr, and the lowest was open shrub land, 162.53 g C/m2/yr. 

6) By analysing the space-time dynamic temperature and precipitation of global grassland, it is 

concluded that global average temperature of grassland presents ascendant trend during 

1982-2008, and have a significant increase trend after 1995. And at the same time of the 

precipitation in 1982-1995, on the whole a decrease trend, the trend of decline is not significant. 

After 1995, the precipitation showed a rising trend of global grassland, and the increase of 

1999-2006 trend is significant. Through the analysis of NPP and the internal correlation 

between temperature and precipitation, we found that the positive correlation between 

temperature and the NPP was 0.47 and negative correlation was 0.48; the positive correlation 

between precipitation and NPP of was 0.49, and the negative correlation was 0.43. Therefore, 

in terms of global scale, precipitation is the main climate factor of grassland NPP. In the area 

or regional scale, the temperature's influence on the grassland NPP will become more 

prominent. 

7) By using scPDSI drought index, the paper analyzes the global grassland drought occurred in 

1982-2008. Through the global grassland scPDSI features and evolution regularity of drought 

index, the results show that scPDSI drought index of the grassland has a good applicability. It 

can reveal the drought situation of global grassland and different grassland types. The trend 

of global grassland scPDSI drought index rise on the whole during 1982-2008, the average 

speed was 11.9%/10 a, especially in the 2004-2005 and 2008, the scPDSI drought index 

increased significantly. The drought area had a decreasing trend, and sizes of different 

grassland types of drought area as follows Savannas > Non woody grassland > closed 

shrublands > open shrublands > Woody savannas. Spatial distribution of drought occurred on 

different levels of spatial differentiation characteristics significantly. Through the study, global 

scPDSI drought index showed a trend of synchronous increase and decrease with grassland 

NPP during 1982-2008, namely the more severe drought year, the lower the NPP. Where the 

drought occurred more seriously, the NPP is also lower, and in the region of the drought 

degree is weakening, NPP also weakens. The scPDSI drought index of different grassland 

type and the change trend of NPP is synchronous, the increase or decrease performance of 

closed shrub land is more obvious. Through the analysis of the influence of grassland under 
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different level of drought area and the corresponding variation in NPP, shows that global grass 

drought happens the scope and degree of volatility during 1982-2008, and show the 

weakening trend on the whole, and t grassland NPP only have dropped affected by the 

drought during the 1992-1996. 

8) Using the CASA model to simulate the spatial distribution of the global potential NPP 

grassland, the actual NPP and the NPP affected by human activities. Based on time series of 

the changing rate of these three NPP, established the quantitative evaluation of human and 

climate factors of the grassland NPP scene model. The results showed that 54.89% of the 

world's grassland NPP increase at a rate of about 1.76 gC/m2 annually, compared with 45.1% 

of the grassland 0.54 gC/m2 per year rate reduce, play a leading role in the grassland NPP 

climate change, the cause of global grassland NPP increase 64736.52 GgC, climate and 

human interaction is the main factors of grassland NPP reduce caused the reduction of the 

grassland NPP 4210.96 GgC. The correlation between rainfall and NPP was the highest in 

the climate factor, is the main climate factor decided the grassland NPP. Climate and human 

factors of influence on the grassland NPP quantitative simulation helps to meet the global 

ecosystem carbon cycle, so as to provide basis for improving grassland ecosystem 

management and decision making. 

In summary, this project had simulated the spatial distribution of grassland net primary productivity 

and NEP and its temporal variation characteristics with the modified CASA model, and analyses 

the impacts of climate factors such as temperature, precipitation, and human activities on net 

primary productivity of grassland (Yang, 2017). 

 

5. Future Directions 

1) Due to the limited financial support obtained from APN, a large amount of in-kind data, 

models and resources were not utilised from the host and collaborative organizations in the 

development of the tool and undertaking field case study applications in other 3 countries.  

2) Some of the case study applications are still in progress and need additional resources to 

complete those. The methodology, model and reviewing system developed in this project has 

broad applicability in more countries.  

3) One of the potential future scientific researches is to expand the methodology and model to 

incorporate related issues such as husbandry and farm. 

4) For wider use of the integrated system and results, it is highly important to develop good 

user-interface and technical and user guides. 
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5) To continue the research work and finish the future research objectives, we will need to 

continue the future works and get new 2017 -2018 funds from the APN. 
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7. Appendix 

7.1. Appendix 1. List of Young Scientists of our team in four countries in 2013-2017* 

№ Name Affiliation Role  Output Time line 

1 Yue YANG Doctor, 
Nanjing 
University 
 
 

Project 
collaborator 

Report 
Policy formulation 
Journal paper 

2016 January to 

December 2017 

2 Ying ZHANG Lecture, 
Nanjing 
University 
 
 

Environmental 
& grassland 
works and 
policy expert  

Sampling analysis 
Journal paper 

2016 January to 

December 2017 

3 Zhao-qi 
WANG 

Doctor, 
Nanjing 
University 
 
 

Fieldwork 
works, 
experiments, 
sampling 
analysis 

Journal paper 
Result report 
 

2016 January to 

December 2017 

4 Yi-zhao 
CHEN 

Doctor, 
Nanjing 
University 
 
 

Remote 
sensing 
analysis and 
grassland 
works 

Web data base 
Design 
Journal paper 

2016 January to 

December 2017 
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*contact: jili2008@nju.edu.cn 

7.2. Appendix 2: Outputs and outcomes of this project in 2013-2017 

No. Outputs 
 

Outcomes 

1  Create a multidisciplinary team and 
website. 

The team includes 4 experts from 
developing countries and 5 experts from 
developed countries.  

2 May 29 - June 2. 2013:  Our team had 
held the international meeting for four 
countries in Nanjing University of China.  

A total of 46 participants, 10 experts of 
our project team have trained 8 young 
scientists and 28 students. 

3 June 3 - June 8. 2013: Our team had 
investigated and toured the four-country 
international works in inner-Mongolia 
grassland in China. 

Includes 6 experts and 12 students. 

4 The published papers in first year. Includes 10 Chinese papers, 6 English 
papers and 1 working report.  

5 April 7-12, 2014:  Our team had taken 
part in the MAIRS conference in Beijing in 
China.  

Includes 10 representatives, and 4 of 
them had given a speech. 

6 June 19 - June 24, 2014: Our team had 
investigated and toured the four-country 
international works in inner-Mongolia 
grassland in China.  

6 experts and 12 students participated in 
Inner Mongolia grassland surveys. 

7 June 25-June 29, 2014: Our team had 
held the international meeting in Xilinhot 
City in China. 
 

8 experts of our project team have  
trained 48 young scientists and students. 

8 The published papers in second year. 
 
 

Includes 6 Chinese papers, 6 English 
papers and 1 working report. 

9 April 13, 2017:  We have held the working 
summary meeting in Beijing.  

Includes 6 experts, in which 2 is form 
China, 2 is from America, 1 is from 
Mongolia and 1 is from Pakistan. 

10 The published papers in third year. Includes 10 Chinese papers, 8 English 
papers, 1 working report, 1 financial 
report and 1 technical report.  

11 Graduate student in 3 years (Master, 
PhD). 

Includes 6 Masters, 12 PhD and 2 post 
doctorates.  

12 The published works in 2016. 1 book.  

13 Access to Chinese government support.  2 projects. 

14 Access to Australia government support.  1 project. 

15 Support for international organizations.  1 Future Climate Change Scenario 
Report. 

16 Support for IPCC 4.0 
 

1 technical report. 

17 The global grassland is divided into 4 
broad categories, 42 categories.  

Constructed 1 global grassland 
quantitative classification system. 

5 Cheng-
cheng 
GANG 

Lecture, 
Nanjing 
University 
 
 

Grassland 
works and 
Simulation of 
potential 
erosion 

Journal paper 
Degradation 
analysis 
 

2016 January to 

December 2017 
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18 We have improved CASA and LPA 
models.  

Constructed 2 new grassland NPP 
valuation models. 

19 We propose a new approach to 
quantitatively estimate grassland 
degradation using grassland productivity, 
grassland coverage, and taint index.  

1 new method of grassland degradation 
monitoring. 

20 1 set of grassland carbon source, sink 
quantitative estimation and verification 
system was constructed from soil - grass 
ecosystem.  

We have obtained a lot of research data, 
theoretical results and published 23 
scientific peer-reviewed papers from our 
team in 2013-2017. 

 

 

 

 

 


